LEARNING
GAME PROGRAMMING

A Hands-on Guide to Building Online Games Using Canvas, SVG, and WebGL

JAMES L. WILLIAMS

Learning HTMLS
Game
Programming

Addison-Wesley Learning Series

ll../ -

LEARNING

LEARNING LEARNING ANDRODI
GAME PROGRAMMING 4 LEﬂRNING ; GAME PROGI‘!AHHING

1 | gy

vvAddison-Wesley

ROD STROUGO

AY WENDERLICH

Visit informit.com/learningseries for a complete list of available publications.

The Addison-Wesley Learning Series is a collection of hands-on programming
guides that help you quickly learn a new technology or language so you can
apply what you've learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

vAddison-Wesley informiTeom | Safari’

ALWAYS LEARNING PEARSON

Learning HTMLS
Game
Programming

A Hands-on Guide to Building Online
Games Using Canvas, SVG, and WebGL

James L. Williams

vvAddison-Wesley

Upper Saddle River, NJ - Boston - Indianapolis - San Francisco
New York + Toronto + Montreal + London + Munich - Paris + Madrid
Cape Town - Sydney - Tokyo - Singapore + Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data:

Williams, James L. (James Lamar), 1981-

Learning HTML5 game programming : a hands-on guide to building online games using
Canvas, SVG, and WebGL / James L. Williams.

p. cm.

ISBN 978-0-321-76736-3 (pbk. : alk. paper) 1. Computer games—Programming. 2.
HTML (Document markup language) |. Title.

QA76.76.C672W546 2011

794.8'1526—dc23

2011027527

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671-3447

ISBN-13: 978-0-321-76736-3
ISBN-10: 0-321-76736-5

Text printed in the United States on recycled paper at RR Donnelly in Crawfordsville,
Indiana.

First printing September 2011

Associate
Publisher

Mark Taub

Senior Acquisitions
Editor

Trina MacDonald
Development
Editor

Songlin Qiu

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Bart Reed

Indexer
Tim Wright

Proofreader
Sheri Cain

Technical
Reviewers

Romin Irani

Pascal Rettig
Robert Schwentker

Publishing
Coordinator

Olivia Basegio

Cover Designer
Chuti Prasertsith

Senior Compositor
Gloria Schurick

2
0‘0

To Inspiration

Came over for a midnight rendezvous
And is gone by morning as if by cue
—Author
2

0‘0

Table of Contents

Chapter 1 Introducing HTML5 1
Beyond Basic HTML 1
JavaScript 1
AJAX 2
Bridging the Divide 2
Google Gears 3
Chrome Frame 3

Getting Things Done with WebSockets and
Web Workers 4

WebSockets 4
Web Workers 4
Application Cache 5
Database APl 6
WebSQL API 6
IndexedDB APl 7
Web Storage 7
Geolocation 8
Getting Users’ Attention with Notifications 10
Requesting Permission to Display Notifications
Creating Notifications 11
Interacting with Notifications 12
Media Elements 13
Controlling Media 13
Handling Unsupported Formats 14
HTML5 Drawing APls 15
Canvas 15
SVG 16
WebGL 16
Conveying Information with Microdata 16

Chapter 2 Setting Up Your Development
Environment 19
Development Tools 19
Installing Java 19

11

Installing the Eclipse IDE and Google Plugin
Google Web Toolkit 22
Web Server Tools and Options 23
Google App Engine 23
Opera Unite 23
Node.js and RingoJS 23
Browser Tools 24
Inside the Chrome Developer Tools 24
Chrome Extensions 25
Safari Developer Tools 26
Firebug 26
HTML5 Tools 27
Processing)S 27
Inkscape 27
SVG-edit 27
Raphaél 28
3D Modeling Tools 29
Blender 29

Chapter 3 Learning JavaScript 31

What Is JavaScript? 31
JavaScript’s Basic Types 31
Understanding Arithmetic Operators 32
Understanding JavaScript Functions 32
Functions as First-class Objects 33
Comparison Operators 34

Conditional Loops and Statements 35
Controlling Program Flow with Loops 36

Contents

20

Delayed Execution with setTimeout and setinterval 38

Creating Complex Objects with Inheritance and
Polymorphism 38

Making Inheritance Easier with the Prototype
Library 39

Learning JQuery 41
Manipulating the DOM with Selectors 42
JQuery Events 43
AJAX with JQuery 43
Cross-Site Scripting 44

Vii

viii Contents

JSON: The Other JavaScript Format 44
JavaScript Outside of the Browser 45
Mobile Platforms 45
JavaScript as an Intermediary Language 45
JavaScript on the Desktop 46
Server-Side JavaScript 48

Chapter 4 How Games Work 51
Designing a Game 51
Writing a Basic Design Document 51
Deciding on a Game Genre 52
The Game Loop 53
Getting Input from the User 53

Representing Game Objects with Advanced
Data Structures 54

Making Unique Lists of Data with Sets 54
Creating Object Graphs with Linked Lists 56
Understanding the APIs in Simple Game Framework 57
Core APl 57
Components APl 58
Resources APl and Networking APIs 58
Building Pong with the Simple Game Framework 59
Setting Up the Application 59
Drawing the Game Pieces 61

Making Worlds Collide with Collision Detection and
Response 63

Understanding Newton’s Three Laws 63
Making the Ball Move 64

Advanced Collision Detection and Particle Systems
with Asteroids 66

Creating Competitive Opponents with Artificial
Intelligence 67

Adding Al to Pong 68
Advanced Computer Al with Tic-Tac-Toe 68

Chapter 5 Creating Games with the Canvas Tag 71
Getting Started with the Canvas 71
Drawing Your First Paths 72
Drawing Game Sprites for Tic-Tac-Toe 73

Contents ix

Drawing Objects on the Canvas with Transformations 75

Ordering Your Transformations 76

Saving and Restoring the Canvas Drawing State 77
Using Images with the Canvas 78

Serving Images with Data URLs 78

Serving Images with Spritesheets 78

Drawing Images on the Canvas 78
Animating Objects with Trident.js 79

Creating Timelines 80

Animating with Keyframes 81

Creating Nonlinear Timelines with Easing 81

Animating Game Objects with Spritesheets 83
Simulating 3D in 2D Space 84

Perspective Projection 84

Parallaxing 85

Creating a Parallax Effect with JavaScript 85
Creating Copy Me 87

Drawing Our Game Objects 87

Making the Game Tones 88

Playing MIDI Files in the Browser 89

Playing Multiple Sounds at Once 90

Playing Sounds Sequentially 91

Drawing Our Game Text 91

Styling Text with CSS Fonts 92

Chapter 6 Creating Games with SVG and
RaphaélJS 95

Introduction to SVG 95

First Steps with RaphaéllS 97
Setting Up Our Development Environment 97
Drawing the Game Board 98
Drawing Game Text 99

Custom Fonts 100
Specifying Color 103
Loading Game Assets 104
Converting SVG Files to Bitmap Images 105

Contents

Creating Our Game Classes 105
Shuffling Cards 107
Drawing and Animating Cards 107
Creating Advanced Animations 110
Paths 110
moveto and lineto 110
curveto 111
Exporting Paths from an SVG File 112
Animating Along Paths 113
Extending Raphaél with Plugins 113
Adding Functions 113
SVG Filters 113
Speed Considerations 114

Chapter 7 Creating Games with WebGL and
Three.js 117
Moving to Three Dimensions 118
Giving Your Objects Some Swagger with Materials and
Lighting 119
Understanding Lighting 120
Using Materials and Shaders 120
Creating Your First Three.js Scene 122
Setting Up the View 123
Viewing the World 128
Loading 3D Models with Three.js 129
Programming Shaders and Textures 131
Using Textures 134
Creating a Game with Three.js 136
Simulating the Real World with Game Physics 137
Revisiting Particle Systems 140
Creating Scenes 141
Selecting Objects in a Scene 142
Animating Models 142
Sourcing 3D Models 143
Benchmarking Your Games 144
Checking Frame Rate with Stats.js 144
Using the WebGL Inspector 145

Contents Xi

Chapter 8 Creating Games Without JavaScript 147
Google Web Toolkit 147
Understanding GWT Widgets and Layout 148
Exposing JavaScript Libraries to GWT with JSNI 149
RaphaélGWT 150
Adding Sound with gwt-html5-media 151
Accessing the Drawing APIs with GWT 151
CoffeeScript 153
Installing CoffeeScript 153
Compiling CoffeeScript Files 153
A Quick Guide to CoffeeScript 154
Basics 154
Functions and Invocation 154
Aliases, Conditionals, and Loops 156
Enhanced for Loop and Maps 156
Classes and Inheritance 157
Alternate Technologies 158
Cappuccino 158
Pyjamas 158

Chapter 9 Building a Multiplayer Game Server 161
Introduction to Node.js 161
Extending Node with the Node Package Manager 162
Managing Multiple Node Versions 162
Making Web Apps Simpler with ExpressJS 163
Serving Requests with URL Routing 163
Managing Sessions 165

Understanding the ExpressJS Application
Structure 165

Templating HTML with CoffeeKup 166
Persisting Data with Caching 168
Managing Client/Server Communication 169
Communicating with Socket.I0 169

Setting Up a Simple Socket.|O Application with
Express 170

Making Web Sockets Simpler with NowJS 171
Debugging Node Applications 172

Xii Contents

Creating a Game Server 173
Making the Game Lobby 173
Creating Game Rooms with NowJS Groups 174

Managing Game Participants and Moving Between
Game Rooms 175

Managing Game Play 175

Chapter 10 Developing Mobile Games 179
Choosing a Mobile Platform 179
i0S 179
Android 180
Web0OS 180
Windows Phone 7 180

Flick, Tap, and Swipe: A Quick Guide to Mobile
Gestures 181

Deciding Between an Application and a Website 181
Storing Data on Mobile Devices 183

Relaxing in Your Lawnchair: An Easier Way to
Store Data 183

Getting Started with Lawnchair 184

Client-Side Scripting Simplified with JQuery and
Zepto 185

Using JQuery Variants 185
Using Zepto.js 187
Architecting Your Applications with JoApp 187
Choosing an Application Framework 188
PhoneGap 188
Diving into the PhoneGap APIs 189
Appcelerator Titanium 191
Diving into the Appcelerator Titanium APls 191

Packaging Android Applications with Titanium and
PhoneGap 191

Packaging an Application with Titanium 193
Packaging an Application with PhoneGap 195

Contents

Chapter 11 Publishing Your Games 199
Optimizing Your Game’s Assets 199
Minification with Google Closure Compiler 199

Running Applications Offline with Application
Cache 201

Hosting Your Own Server 203
Deploying Applications on Hosted Node.js Services 204
Publishing Applications on the Chrome Web Store 205
Describing Your Application’s Metadata 206
Deploying a Hosted Application 207
Deploying a Packaged Application 208
Testing Your Applications Locally 208

Uploading Your Application to the Chrome Web
Store 208

Configuring Your Application 210

Deciding Between Packaged and Hosted
Chrome Apps 212

Publishing Applications with TapJS 212
Creating a TapJS Application 213
Packaging an Application for TapJS 215
Publishing a TapJS Application to Facebook 215
Publishing Games with Kongregate 217
Publishing HTML5 Applications to the Desktop 217

Index 219

Xiii

Preface

I wrote this book to scratch an itch, but also because I could see the potential in the (at
the time) nascent HTML5 gaming community. I wanted to help developers navigate the
wilderness of HTMLS5 and learn about Canvas, WebGL, and SVG, along with best prac-
tices for each.

It sometimes took a bit of discussion to convince developers that HTML5 wasn’t just
a plaything. They were surprised to learn they could have rich content with all the
niceties of a desktop application—such as double buffering, hardware acceleration, and
caching inside the confines of the browser without a plugin. Many of them considered
Flash as the sole option. It was interesting to watch the tides turn from “Flash for every-
thing” to “Use Flash only where there are HTML5 gaps.”

During my writing of this book, the ecosystem around HTML5 game programming
has rapidly evolved and matured. I am sure the technologies will continue to evolve, and
I look forward to the advances the next year brings.

Key Features of This Book

This book covers areas contained in the “loose” definition of HTML5, meaning the
HTMLS5 specification, WebGL, SVG, and JavaScript as they pertain to game program-
ming. It includes sections on the math behind popular game eftects, teaching you the
hard way before providing the one to two lines of code solution. For those who are still
getting accustomed to JavaScript, there is a chapter on alternative languages that can be
used to produce games. These include languages that run directly in the JavaScript
engine, those that compile to JavaScript, or those that are a combination of the two.
Server-side JavaScript has taken the programming world by storm in recent months. For
games, it presents an extra level of flexibility to structure games. Logic can start in a self-
contained client instance and then progress to a scalable server instance with few changes
in code. The book closes with a discussion of how and where you might publish your
games. You have a multitude of choices for game engines and libraries. All the libraries
used in this book are unobtrusive in their handling of data, and you could easily take the
lessons learned and apply them to other libraries. This book does not discuss the low-
level details of WebGL, instead opting for the use of a high-level library that permits
low-level API access when needed. The goal of this book is to get you quickly up and
running, not to teach you all there is to know about WebGL, which could be a book all
by itself.

Target Audience for This Book

This book is intended for application developers who use or would like to learn how to
use HTML5 and associated web technologies to create interactive games. It assumes
knowledge of some programming languages and some basic math skills.

Code Examples and Exercises for This Book

The code listings as well as the answers for the exercises included in this book are avail-
able on the book’s website.You can download chapter code and answers to the chapter
exercises (if they are included in the chapter) at http://www.informit.com/title/
9780321767363. The code listings are also available on Github at https://github.com/
jwill/html5-game-book.

http://www.informit.com/title/9780321767363
http://www.informit.com/title/9780321767363
https://github.com/jwill/html5-game-book
https://github.com/jwill/html5-game-book

Acknowledgments

I have several people to thank for this book. The Pearson team (including Trina
MacDonald, Songlin Qiu, and Olivia Basegio) has been invaluable during the project.
Their goal is to make one’s work that much more awesome, and I think they succeeded.
‘Writing a book on a topic that’s evolving rapidly involves a certain measure of guessing
where the market will go. 'm glad to have had technical reviewers (Romin Irani, Pascal
Rettig, and Robert Schwentker) who shared my passion for the subject matter, gave me
speedy and precise feedback, and validated my predictions when I was right, yet got me
back on track when I veered slightly off course. And lastly, to my family and friends who
listened patiently without judgment, let me off easy when I flaked, and other times
forced me to take a break; thanks, I needed that.

About the Author

James L. Williams is a developer based in Silicon Valley and frequent conference speak-
er, domestically and internationally. He was a successful participant in the 2007 Google
Summer of Code, working to bring easy access to SwingLabs UI components to
Groovy. He is a co-creator of the Griffon project, a rich desktop framework for Java
applications. He and his team, WalkIN, created a product on a coach bus while riding to
SXSW and were crowned winners of StartupBus 2011. His first video game was Buck
Rogers: Planet of Zoom on the Coleco Adam, a beast of a machine with a blistering
3.58MHz CPU, a high-speed tape drive, and a propensity to erase floppy disks at bootup.
He blogs at http://jameswilliams.be/blog and tweets as @ecspike.

http://jameswilliams.be/blog

This page intentionally left blank

1

Introducing HTML5

H TMLS5 is a draft specification for the next major iteration of HTML. It represents a
break from its predecessors, HTML4 and XHTML. Some elements have been removed
and it is no longer based on SGML, an older standard for document markup. HTML5
also has more allowances for incorrect syntax than were present in HTMLA4. It has rules
for parsing to allow different browsers to display the same incorrectly formatted docu-
ment in the same fashion. There are many notable additions to HTML, such as native
drawing support and audiovisual elements. In this chapter, we discuss the features added
by HTMLS5 and the associated JavaScript APIs.

Beyond Basic HTMIL

HTML (Hypertext Markup Language), invented by Tim Berners-Lee, has come a long
way since its inception in 1990. Figure 1-1 shows an abbreviated timeline of HTML from
the HTML5R ocks slides (http://slides.html5rocks.com/#slide3).

Although all the advancements were critical in pushing standards forward, of particular
interest to our pursuits is the introduction of JavaScript in 1996 and AJAX in 2005. Those
additions transformed the Web from a medium that presented static unidirectional data,
like a newspaper or book, to a bidirectional medium allowing communication in both
directions.

JavaScript

JavaScript (née LiveScript and formally known as ECMAScript) started as a scripting lan-
guage for the browser from Netscape Communications. It is a loosely typed scripting
language that is prototype-based and can be object-oriented or functional. Despite the
name, JavaScript is most similar to the C programming language, although it does inherit
some aspects from Java.

The language was renamed JavaScript as part of a marketing agreement between Sun
Microsystems (now Oracle Corporation) and Netscape to promote the scripting language
alongside Sun’s Java applet technology. It become widely used for scripting client-side

http://slides.html5rocks.com/#slide3

2

Chapter 1 Introducing HTML5

Rough Timeline of Web Technologies

1991 ‘WML

1994 ‘wtmi2

1996 css1 + Javascript
1997 ‘wtMLa

1998 css2

2000 ‘xHTML1

2002 Tableless Web Design
2005 niax

2009 v

Figure 1-1 HTML timeline

web pages, and Microsoft released a compatible version named JScript, with some addi-
tions and changes, because Sun held the trademark on the name “JavaScript.”

AJAX

AJAX (Asynchronous JavaScript and XML) started a new wave of interest in JavaScript
programming. Once regarded as a toy for amateurs and script kiddies, AJAX helped
developers solve more complex problems.

At the epicenter of AJAX is the XMLHttpRequest object invented by Microsoft in the
late 1990s. xXMLHttpRequest allows a website to connect to a remote server and receive
structured data. As opposed to creating a set of static pages, a developer was empowered to
create highly dynamic applications. Gmail, Twitter, and Facebook are examples of these
types of applications.

We are currently in the midst of another JavaScript renaissance, as the major browser
makers have been using the speed of their JavaScript engines as a benchmark for compar-
ison. JavaScript as a primary programming language has found its way into server-side
web components, such as Node.js, and mobile application frameworks, such as WebOS
and PhoneGap.

Bridging the Divide
Even the best of standards takes a while to gain uptake. As a means to not let the lack of

features limit innovation, Google created Chrome Frame and Google Gears (later, simply
Gears) to bring advanced features to older browsers.

Bridging the Divide

Google Gears

Google Gears, which was initially released in May 2007, has come to define some of the
advanced features of the HTMLS5 draft specification. Before the advent of HTML5, many
applications used Gears in some way, including Google properties (Gmail, YouTube, Doc,
Reader, and so on), MySpace, Remember the Milk, and WordPress, among others. Gears
is composed of several modules that add functionality more typical of desktop applica-
tions to the browser. Let’s take a moment and talk about some of its features.

In its first release, Gears introduced the Database, LocalServer, and WorkerPool mod-
ules. Gears’ Database API uses an SQLite-like syntax to create relational data storage for
web applications. The data is localized to the specific application and complies with gen-
eralized cross-site scripting rules in that an application cannot access data outside its
domain. The LocalServer module enables web applications to save and retrieve assets to a
local cache even if an Internet connection is not present. The assets to serve from local
cache are specified in a site manifest file. When an asset matching a URL in the manifest
file is requested, the LocalServer module intercepts the request and serves it from the
local store.

The WorkerPool module helps address one of the prevalent problems with JavaScript-
intensive websites: long-running scripts that block website interaction. A website by
default has a single thread to do its work. This is generally not a problem for very short,
bursty actions (such as simple DOM manipulation) that return quickly. Any long-running
task, such as file input/output or trying to retrieve assets from a slow server, can block
interaction and convince the browser that the script is unresponsive and should be force-
fully ended. The WorkerPool module brought the concept of multithreading computing
to the browser by letting your WorkerPool create “workers” that can execute arbitrary
JavaScript. Workers can send and receive messages to and from each other, provided they
are in the same WorkerPool, so they can cooperate on tasks. Workers can work cross-
origin but inherit the policy from where they are retrieved. To account for the fact that
several properties such as Timer and HttpRequest are exposed by the window object,
which is not accessible to workers, Gears provides its own implementations.

Another API of interest is the Geolocation API. The Geolocation API attempts to get a
fix on a visitor by using available data such as the IP address, available Wi-Fi routers with
a known location, cell towers, and other associated data.

Google ceased principal development of Gears in November 2009 and has since
shifted focus to getting the features into HTML5. Thankfully, all these features we’ve dis-
cussed found their way into HTMLS5 in some shape or form.

Chrome Frame

Chrome Frame is a project that embeds Google Chrome as a plugin for Internet Explorer
6 and higher versions, which have weak HTMLS5 support. Chrome Frame is activated
upon recognition of a meta tag. Chrome Frame currently does not require admin rights
to be installed, thus opening opportunities on systems that are otherwise locked down.

Chapter 1 Introducing HTML5

You can find more information about Chrome Frame at http://code.google.com/
chrome/chromeframe/.

Getting Things Done with WebSockets and Web
Workers

One of the additions to HTMLS5 is APIs that help the web application communicate and
do work. WebSockets allow web applications to open a channel to interact with web
services. Web Workers permit them to run nontrivial tasks without locking the browser.

WebSockets

WebSockets allow applications to have a bidirectional channel to a URI endpoint. Sock-
ets can send and receive messages and respond to opening or closing a WebSocket.
Although not part of the specification, two-way communication can be achieved in sev-
eral other ways, including Comet (AJAX with long polling), Bayeux, and BOSH.

Listing 1-1 shows the code to create a WebSocket that talks to the echo server end-
point. After creating the socket, we set up the functions to be executed when the socket is
opened, closed, receives a message, or throws an error. Next, a “Hello World!” message is
sent, and the browser displays “Hello World!” upon receipt of the return message.

Listing 1-1 WebSocket Code for Echoing a Message

var socket = new WebSocket (ws://websockets.org:8787/echo);
socket.onopen = function(evt) { console.log("Socket opened");};
socket.onclose = function(evt) {console.log("Socket closed");};
socket.onmessage = function(evt){console.log(evt.data);};
socket.onerror = function(evt) {console.log("Error: "+evt.data);};

socket.send("Hello World!");

Web Workers

Web Workers are the HTML5 incarnation of WorkerPools in Google Gears. Unlike
WorkerPools, we don’t have to create a pool to house our Web Workers. Listing 1-2 shows
the code to create a simple worker and set a function for it to execute upon receipt of a
message. Listings 1-2 and 1-3 show the HTML code for creating a web page with a Web
Worker that displays the current date and time on two-second intervals.

Listing 1-2 Web Page for Requesting the Time

<!DOCTYPE HTML>
<html>
<head>
<title>Web Worker example</title>

http://code.google.com/chrome/chromeframe/
http://code.google.com/chrome/chromeframe/

Application Cache

</head>

<body>
<p>The time is now: </p>
<script>
var worker = new Worker('worker.js');
worker.onmessage = function (event) {

document.getElementById('result').innerText = event.data;

bi
</script>

</body>

</html>

The associated JavaScript worker.js file is shown in Listing 1-3.

Listing 1-3 Worker.js File for Getting a Date and Time

setInterval (function() {w
postMessage(new Date());
}, 2000);

In the two listings, we see that workers can send messages using postMessage () and
can listen for messages on the closure onmessage. We can also respond to errors and termi-
nate workers by passing a function to onerror and executing terminate (), respectively.

Workers can be shared and send messages on MessagePorts. As with other aspects of
the Web Worker spec, this portion is in a state of flux and somewhat outside the needs of
the examples in this book. Therefore, using SharedWorkers is left as an exercise for the
reader to investigate.

Application Cache

Application Cache provides a method of running applications while offline, much like the
LocalServer feature in Gears. A point of distinction between the two features is that
Application Cache doesn’t use a JSON file, using a flat file instead to specify which files
to cache. A simple manifest file to cache assets is shown in Listing 1-4.

Listing 1-4 Sample Application Manifest

CACHE MANIFEST

above line is required, this line is a comment
mygame/game.html

mygame/images/imagel.png
mygame/assets/sound2.ogg

The Application Cache has several events it can respond to: onchecking, error,
cached, noupdate, progress, updateready, and obsolete.You can use these events to

Chapter 1 Introducing HTML5

keep your users informed about the application’s status. Using the Application Cache can
make your game more tolerant to connectivity outages, and it can make your users happy
by letting them start game play quicker (after the assets are cached). Also, if you choose,
Application Cache can be used to allow users to play your game offline. Don’t worry too
much about it right now. In Chapter 11, “Publishing Your Games,” we discuss using the
Application Cache in more detail.

Database API

At present, there are multiple ways to store structured data using HTML5, including the
‘WebSQL API implemented by Webkit browsers and the competing IndexedDB API
spearheaded by Firefox.

WebSQL API

WebSQL provides structured data storage by implementing an SQL-like syntax. Currently,
implementations have centralized around SQLite, but that isn’t a specific requirement.

There isn’t a “createDatabase” function in WebSQL. The function openDatabase opti-
mistically creates a database with the given parameters if one doesn’t already exist. To cre-
ate a database name myDB, we would need to make a call in the form

var db = openDatabase("myDB", "1.0", "myDB Database", 100000);

where we pass "myDB" as the name, assign the version "1.0", specify a display name of
"myDB Database", and give it an estimated size of 100KB. We could have optionally spec-
ified a callback to be executed upon creation. Figure 1-2 shows the content of the
Chrome Developer Tools Storage tab, which we will cover in more detail in Chapter 2,
“Setting Up Your Development Environment,” after executing the preceding line of code.

Figure 1-2 Storage tab showing a created database

In the window to the right, we can run arbitrary SQL code, as shown in Figure 1-3,
where we created a table, inserted some information, and ran a query.

DATABASES

Figure 1-3 Storage tab showing SQL statements

Web Storage

Although not universally supported, the specification does call out the existence of
both asynchronous and synchronous database connections and transactions. Our current
example creates an asynchronous connection; to create a synchronous one, we would call
openDatabaseSync with the same parameters. After the initial connection, there is no dis-
tinction when it comes to database transactions besides calling transaction(...) for
read/write transactions and readTransaction for read-only transactions.

A word of caution: Synchronous connections are not well supported and, in general,
you should structure your code to run asynchronously.

IndexedDB API

IndexedDB stores objects directly in object stores. This makes it easier to implement
JavaScript versions of NoSQL databases, like those of the object databases MongoDB,
CouchDB, and SimpleDB. At the time of this writing, the implementations of the APIs
weren’t synchronized and used different naming schemes and strictness to the specifica-
tion. The Internet Explorer implementation requires an ActiveX plugin. I encourage you
to check out http://nparashuram.com/trialtool/index.html#example=/ttd/Indexed DB/
all.html to see some examples in action on Firefox, Chrome, and Internet Explorer. The
Chrome code in most cases will work seamlessly on Safari.

Web Storage

Web Storage provides several APIs for saving data on the client in a fashion similar to
browser cookies. There is a Storage object for data that needs to persist between restarts
named localStorage and one for data that will be purged once the session ends named
sessionStorage. The data is stored as key/value pairs. These two objects implement the
functions listed in Table 1-1.

Table 1-1 Web Storage Functions
Function Name Description

setItem(key:String, value) Creates a key/value pair given the specified values.
Some implementations require the value to be a string.

getItem(key:String) Returns the item specified by the given key.
removeItem(key:String) Removes the item identified by the given key.
clear() Clears all key/value pairs from the Storage object.
key (index:long) Returns the key for the specific index.

Each Storage object also has a length property indicating the number of present
key/value pairs.

http://nparashuram.com/trialtool/index.html#example=/ttd/IndexedDB/all.html
http://nparashuram.com/trialtool/index.html#example=/ttd/IndexedDB/all.html

Chapter 1 Introducing HTML5

Web Storage offers a more fluent API we can use in lieu of the getItem and setItem
functions listed in Table 1-1.The alternate API uses an array-like means of referencing a
key.To set a localStorage key/value pair with the values of 2 hometown newspaper, we
could use the following, for example:

localStorage['newspaper'] = 'The Baltimore Sun';

Likewise, we could retrieve that value with just the left half of the preceding expression:

localStorage['newspaper'];

In the context of game programming, we could use Web Storage to store user high
scores as well as data for saved games.

Geolocation

The Geolocation API doesn’t have an explicit function to ask for the user’s permission to
track his or her position. Instead, the browser handles this transparently for us. When the
Geolocation API first requests position information from a website for which it doesn’t
have permission, a contextual pop-up appears to request permission from the user.

We can check to see if the browser supports the Geolocation API by checking for the
following object:

navigator.geolocation
If it resolves to a non-null value, we have the ability to geolocate.
The calculated position of a user is defined by the Position object, which contains a

Coordinates object named coords and a timestamp indicating when the fix was retrieved.
Table 1-2 shows the properties of the coords object.

Table 1-2 Coordinates Object Properties

Property Name Return Value Description

latitude double The latitude of the position fix.
longitude double The longitude of the position fix.
altitude double The altitude of the position fix in meters.

If this is unavailable, the value will be null.
accuracy double The margin of error of the lat-long fix in meters.

If this is unavailable, the value will be null.
altitudeAccuracy double The margin of error of the altitude value.

If this is unavailable, the value will be null.
heading double The direction in which the device is traveling

in degrees (0° to 360°, inclusive). If this is

unavailable, the value will be NaN.

speed double The speed in meters that the device is traveling.
If this is unavailable, the value will be null.

Geolocation

After we have verified that geolocation is available, obtaining a position fix on a device
is simple. We just call getCurrentPosition with either one, two, or three parameters,
corresponding to the functions to run if getting a fix is successful, if it fails, and the
options on the request, respectively.

Listing 1-5 shows the code needed to retrieve a location, draw it on a map with a
marker, and draw a proximity circle around the marker.

Listing 1-5 Drawing a Map with Geolocation

if (navigator.geolocation) {
navigator.geolocation.getCurrentPosition(function(pos) {
var latitude = pos.coords.latitude;
var longitude = pos.coords.longitude;

var options = {
position:new google.maps.LatLng(latitude, longitude)
,title:"Your location"};

var marker = new google.maps.Marker (options);

var circle = new google.maps.Circle({
map:map, radius:pos.coords.accuracy

)i

circle.bindTo('center', marker, 'position');

marker.setMap(map);

map.setCenter(new google.maps.LatLng(latitude, longitude));
b
function(error) {

console.log(error.message);

)i

After verifying that geolocation is available, we first attempt to retrieve a fix on the
position of the device. In this example, we are passing in the two parameter functions of
getCurrentPosition to execute if successful, an error occurs, or if the user declines
geolocation. After getting the latitude and longitude portions, we create a marker cen-
tered at that position with the title “Your location.” To the marker, we attach a circle
whose radius is equivalent to the accuracy of the position fix. Lastly, if there is an error,
our error-handling function prints out the error message to the console. Figure 1-4 shows
a sample position fix using the OpenStreetMap tile set.

Although we did not use it, we could have also specified an options object that indi-
cates several preferences on the retrieved data. We could also set up a listener to execute
every time there is a position change returned from the watchPosition function. Geolo-
cation is an expensive APIL. Use it judiciously and don’t be afraid to cache the location.

10

Chapter 1 Introducing HTML5

Figure 1-4 Geolocation from the browser

We could use geolocation to create localized leader boards, or on a multiplayer server
to match players who are physically close to one another.

Getting Users’ Attention with Notifications

In HTMLA4, the options to communicate messages to the user were limited. You could
show the user an alert window or show a message in a div element. Showing an alert
window is well supported on all browsers, but it is highly disruptive. It is something that
requires immediate attention and doesn’t let you move on until you have handled it. One
sure way to annoy a user is by making him lose a life because some message obscured his
view. Showing a message in a div element fares slightly better, but there isn’t a standard
way to add them.These types of messages can be easily ignored. On one side we have
notifications that crave attention, and on the other we have notifications that can be easily
ignored. There has to be a middle ground. Enter web notifications.

On the Mac OS X and Ubuntu platforms natively, and with a plugin on Windows, an
application can send configurable messages to users and notify them of events or changes
it deems important. An example of such a notification is shown in Figure 1-5.

Test Message

Figure 1-5 Desktop notification message

Like their desktop counterparts, web notifications can contain an image along with a
contextual message.

Getting Users’ Attention with Notifications

Requesting Permission to Display Notifications

Before we can display notifications to users, we first have to get their permission. Explicit
permission protects the users from being bombarded with unwanted notifications. We can
request permission to display notifications by executing the following:

window.webkitNotifications.requestPermission();
This will show a contextual message in the browser to allow the user to approve or

deny access, as shown in Figure 1-6. Instead of a no-argument function call, we can also
pass a function to execute when the user responds to the prompt.

@ Allow www.google.com to show desktop notifications? ‘Al[nw‘ | Deny | x ‘

Figure 1-6 Web notification permissions message

We can likewise verify permission by running the following command:

window.webkitNotifications.checkPermission();

In this case, checkPermission() returns an integer that indicates the permission level,
as shown in Table 1-3.

Table 1-3 Notification Permission Level

Constant Name Value
PERMISSION_ALLOWED 0
PERMISSION_UNKNOWN 1
PERMISSION_DENIED 2

Looking at the name, you would expect notifications to work in at least the major
Webkit browsers, namely Chrome and Apple Safari. Although Safari uses Webkit, it
doesn’t implement the Notification API. If the spec is implemented globally, the name-
space could presumably change from webkitNotifications to simply notifications.

Creating Notifications

You can create two types of notifications: simple and HTML. Simple notifications display
a simple message with an optional title and icon image, whereas HTML notifications dis-
play an arbitrary URL. For example, we can create a simple notification by executing the
following;:

var msg = window.webkitNotifications.createNotification(
'', 'Test Notification', 'Hello World'
)i

11

12

Chapter 1 Introducing HTML5

Our notification will have the title “Test Notification” with the message “Hello
World.” Because we passed an empty string for the icon image, the API omits it. We can
do this for any other parameter. Do this to hide parameters you don’t want displayed.
Passing no value to the function will cause a text message of “undefined” or a broken
image link. Figure 1-7 shows our notification running in the browser. As you can see, it
is pretty Spartan, and we have no control over the design besides the parameters we
passed it.

Test Notification
Hello World

Figure 1-7 Simple web notification

As mentioned before, HTML notifications can get their content from an arbitrary
URL such as a website or an image. The function just takes the desired URL to display in
the form:

var msg =window.webkitNotifications.createHTMLNotification(
'http://example.com’
)i

HTML notifications give you no means to resize them, and unless the URL has code
to optimize the notification for small screens, scroll bars will probably be included. On a
1680x1050 screen, the default size seems to be approximately 300 pixels wide by 50 pix-
els high, but because the notifications API is still a draft at the time of this writing, that is
certainly subject to change. Until fine-grained height and width attributes are added, stick
with simple notifications.

Interacting with Notifications

The resulting notification has two basic functions for controlling it: show(), which sur-
faces the notification to the user, and cancel (), which hides the notification if it’s cur-
rently visible or prevents it from being displayed if it is not visible. Web notifications can
also execute functions in response to notification events. Table 1-4 shows a list of the
applicable functions you can specify to respond to events.

Table 1-4 Web Notification Functions

Function Description
Name
onclick This function will execute if the notification is clicked and the underlying plat-

form supports it. Avoid this event if at all possible.

onclose This function will execute after the close event is fired. This could be when
the user closes the notification or if it is closed programmatically.

Media Elements

Table 1-4 Web Notification Functions
Function Description
Name

ondisplay This function will execute after the show() function is called and the notifica-
tion is visible to the user.

onerror This function executes after show() is called in the event of an error.

You can check the current status of the draft specification at http://dev.chromium.
org/developers/design-documents/desktop-notifications/api-specification.

Media Elements

When HTML was originally designed, it was concerned with mostly textual links. Native
display of images would come much later. It is not hard to understand why you would
need a plugin or browser extension to play audio or video. In most cases, this meant
Flash. HTMLS5 has tried to address that issue with the inclusion of the audio and video
tags.

The audio and video tags allow us to play media in the browser natively. Also, a group
of properties can be set to control playback. Here is the most basic HTML form for
embedded media (in this case, an audio file):

<audio src="song.mp3" autoplay />
This creates an audio HTML element, assigns the source to song.mp3, and instructs
the page to “autoplay” the content. It is equivalent to the following JavaScript code:

var song = new Audio();
song.src = "song.mp3";
song.autoplay = true;
song.load();

Controlling Media

In addition to the autoplay attribute listed in the previous example, several other attri-
butes can be used to control our media. For example,

<video src="vid.avi" controls />

or

var vid = new Video();
vid.src = "vid.avi";
vid.controls = true;

tells the browser to provide a default set of controls for starting and pausing playback, set-
ting the volume level, and seeking in the stream. In the absence of such a property, the

13

http://dev.chromium.org/developers/design-documents/desktop-notifications/api-specification
http://dev.chromium.org/developers/design-documents/desktop-notifications/api-specification

14

Chapter 1 Introducing HTML5

developer can provide a custom set of controls using the JavaScript functions and proper-
ties listed in Tables 1-5 and 1-6.

Table 1-5 Media Tag Functions

Function Description

Name

play() Starts playing the media from the current position and sets the paused prop-
erty to false

pause() Halts playing the media and sets the paused property to true

load() Resets the element and applies any settings, such as pre-fetching

Table 1-6 Media Element Properties

Property Accepted Description

Name Values

currentTime integer Sets the position in the media stream for playback

duration N/A (read-only) Indicates the length of the source media in seconds

loop true or false Specifies whether or not to play the media from the
beginning when the end of the stream is reached

autoplay true or false Specifies whether or not to play the media as soon as
possible

muted true or false Specifies whether or not to set the volume at 0.0

The list of properties has been truncated for brevity and usefulness. To see a full list of
available properties, check out the HTMLS5 draft spec at http://dev.w3.org/html5/spec.

Handling Unsupported Formats

At the time of this writing, the audio and video elements in different browsers don’t nec-
essarily all support the same types of audio and video.The reason a particular browser
doesn’t support a particular format might be due to the age of the format, competition
with an endorsed format, or patent restrictions that the browser’s parent company doesn’t
want to deal with. Media tags have several methods to deal with this.

Listing Multiple Sources
Instead of specifying a single source, the developer can choose to list multiple sources to
let the browser choose the appropriate one to use. The following snippet lists two sources

http://dev.w3.org/html5/spec

HTML5 Drawing APIs

for a video tag and the fallback message if neither format is supported or the browser
doesn’t support the video tag.

<video>
<source src="video.ogv" />
<source src="video.avi" />
<!— Neither is supported, can show message or fallback to Flash —>
<div>Use a modern browser</div>
</video>

Although listing multiple sources is an option for a static page, it’s not great for appli-
cations with dynamic content. For those instances, using the tool Modernizr is recom-
mended. We’ll discuss Modernizr in more detail in Chapter 2, but consider this a primer.

Using Modernizr
Modernizr (www.modernizr.com) inspects browser capabilities at runtime and injects the
properties into a JavaScript object.To see whether the browser can play audio or video,
we would check the value of Modernizr.audio or Modernizr.video to see if it evaluates
to true.

Checking support for a particular format is slightly difterent. Verifying support for
MP23 files is done by checking the value of Modernizr.audio.mp3, but the value returned
isn’t true or false. The HTML5 spec states that the browser should return its confidence

99 ¢¢

level that it can play the format. The return value will be “probably,” “maybe,” or an
empty string. When we use Modernizr.audio.mp3 in a conditional clause, any non-

empty value is treated as true and the empty string is treated as false.

CSS3

CSS3 doesn't fit the scope of this book, and readers are encouraged to explore the specifi-
cation if they are interested in it. Like HTML5, CSS3 extends its predecessor (CSS2) by
adding new features and codifying previous proposals, such as web fonts and speech, which
were introduced in previous versions but not widely supported. A useful website for further
information is http://www.css3.info.

HTML5 Drawing APIs

An interesting area of the HTML5 spec is the new drawing APIs. Canvas, SVG, and
WebGL provide bitmapped, vector, and three-dimensional drawing capabilities, respec-
tively.

Canvas

The canvas element started its life as an Apple extension to Webkit, the layout engine
powering Safari and Chrome, to display Dashboard gadgets and additions to the Safari
browser. It was later adopted by Opera, Firefox, and related browsers, eventually becoming
a component of the HTMLS5 specification. The beta release of Internet Explorer 9 (IE9)

15

www.modernizr.com
http://www.css3.info

16

Chapter 1 Introducing HTML5

has brought native support to all major browsers, although support in IE9 is not as com-
plete as the aforementioned browsers.

The canvas element can be most simply described as a drawable region with height
and width attributes using JavaScript as the medium to draw and animate complex graph-
ics such as graphs and images. A full set of 2D drawing functions is exposed by the
JavaScript language. Given the close relationship between JavaScript and ActionScript, a
Flash drawing or animation using ActionScript can be easily ported to JavaScript with
only moderate effort. Canvas will be covered in more detail in Chapter 5, “Creating
Games with the Canvas Tag.”

SVG

SVG (Scalable Vector Graphics) is a mature W3C specification for drawing static or ani-
mated graphics. The ability to inline SVG without the use of an object or embed tag was
added in HTML5.Vector graphics use groupings of mathematics formulas to draw primi-
tives such as arcs, lines, paths, and rectangles to create graphics that contain the same qual-
ity when rendered at any scale. This is a marked benefit over images whose discernible
quality degrades when they are displayed at a scale larger than that for which they were
designed.

SVG takes a markedly different approach from the canvas element in that it represents
drawings in XML files instead of purely in code. XML is not the more concise represen-
tation of data, so a file may contain many repeated sections. This can be addressed by
compressing the file, which can greatly reduce its size. As with the canvas element, inter-
action can be scripted using JavaScript. Prior to IE9, IE supported an incompatible vector
format called VML. As of IE9, all major desktop browsers support a fairly common feature
set of SVG 1.1. Chapter 6, “Creating Games with SVG and RaphaélJS,” puts SVG front
and center.

WebGL

WebGL is a JavaScript API for 3D drawing that enables the developer to assess graphics
hardware and control minute details of the rendering pipeline. It is managed by the
Khronos group and shares much of its syntax with OpenGL 2.0 ES. At the time of this
writing, WebGL is not supported in Internet Explorer 6+ or the stable branches of Opera
and Safari. It is available in the stable builds of Firefox and Chrome/Chromium and in
development builds of Opera and Safari. Chapter 7, “Creating Games with WebGL and
Three js,” dives into WebGL.

Conveying Information with Microdata

A web application or API parsing a page can interpret HTML marked up with microdata
and respond to it. For instance, a search engine that returns results marked up with micro-
data could be parsed by a browser extension or script to better present the data to a visu-

ally impaired or colorblind user. Microformats are a preceding concept that serves the

Summary

same goal. One key difference between microformats and HTML5 microdata is the way
that the data is denoted. As shown in Listing 1-6, microformats use the class property of
an object to indicate the fields on an object.

Listing 1-6 hCard Microformat Example

<div class="vcard">

<div class="fn">James Williams</div>

<div class="org">Some Company</div>

<div class="tel">650-555-3055</div>

http://example.com/
</div>

Microdata uses the same concept with slightly different notation. Instead of marking
properties using classes, the itemprop keyword is used. The keyword itemscope marks an
individual unit. At its core, microdata is a set of name/value pairs composed into items.
Listing 1-7 shows a microdata example. The itemtype property indicates a definition of
the object and specifies valid properties.You could use microdata to encode the names
and scores on a leader board page or instructions and screenshots from a game.

Listing 1-7 Microdata Example

<p itemprop="address" itemscope
itemtype="http://data-vocabulary.org/Address">

1600 Amphitheatre Parkway

Mountain View,
CA

94043

USA

</p>

Summary

HTMLS5 marks a groundbreaking change in how we interact with the browser. This
chapter highlighted the major additions that apply to our needs.You learned how Google
Chrome Frame brings HTMLS5 features to IE browsers as well as the multiple ways to
draw assets.

In exploring HTMLS5, in addition to its drawing APIs, you learned about features that
allow you to run computationally heavy tasks without blocking the browser, setting up

17

18 Chapter 1 Introducing HTML5

bidirectional communications channels between applications, and enabling offline execu-
tion of applications.
You can download chapter code at www.informit.com/title/9780321767363.

www.informit.com/title/9780321767363

2

Setting Up Your Development
Environment

One of the great things about HTMLS5 is that having a computer with a reliable Inter-
net connection is the main barrier to starting development. All the other tools you will
need can be obtained freely on the Internet. Some specialized applications require a
license, but we will focus on their free counterparts.

In this chapter, you will install the tools needed to make applications for HTML5
games. We will also examine some of these tools in detail.

Development Tools

Some developers swear by a bare-bones command-line editor, such as emacs, vim, and
(one of my personal favorites) Redcar. However, for medium to large projects, as the
number of files increases, using an Integrated Development Environment (IDE) brings
numerous advantages, including easier file management and renaming, code-hinting and
syntax checking, and automated builds. Because of its great extensibility and because we
will be using it for our Java-specific examples, we will be installing the Eclipse IDE and
the Java platform upon which it runs. Although installing Java and Eclipse is optional for
the basic examples, our examples involving the Google Web Toolkit (GWT) will require
Java to be installed. Feel free to substitute your own preferred tool chain.

Installing Java

As mentioned before, Eclipse and GWT run on Java. They require Java 5 SDK or higher.
Generally, most people will have a fairly recent version of Java on their machines.You can
find out if you have the proper Java SDK installed by running the following at a com-
mand prompt:

$ javac -version

20

Chapter 2 Setting Up Your Development Environment

If that command fails, you don’t have the Java SDK installed. However, if you get a
response similar to the following snippet, with a number of 1.5 or higher, you are good
to go:
javac 1.6.0_17

For the Mac platform, the Java SDK comes preinstalled on versions prior to OS X 10.7
(codenamed Lion). Computers using OS X version 10.5 (codenamed Leopard) already
have Java 1.5, and those with version 10.6 (codenamed Snow Leopard) have Java 1.6.

Windows users can download an executable of the Java SDK from http://java.sun.
com/javase/downloads/index.jsp, making sure to select a download that includes the
“JDK.” Once the file is downloaded, executing it will install Java.

Java installation on Linux is a bit trickier. Although installation differs slightly from dis-
tribution to distribution, Java 6—compatible binaries are available in the package managers
of all major distributions. Failing that, you can install Java using the downloads on
Sun/Oracle’s website.

Installing the Eclipse IDE and Google Plugin

Eclipse is a multipurpose IDE primarily used by Java developers. Eclipse is modular in
design and has a plugin architecture that exposes new features to the IDE. Due to this
plugin architecture, there is support for other programming languages, including C++,
Python, Ruby, and PHP. It also forms the basis for many specialized IDEs, some of which
we will explore later in this chapter.

The installation of the Eclipse IDE is rather straightforward on all platforms. Figure
2-1 shows the Eclipse loading screen. Instead of an installer application, the Eclipse foun-
dation (the makers of Eclipse) ships a self-contained archive file.You download the
archive and extract it somewhere on your machine, and you are ready to go.You can
download the latest version of Eclipse at http://www.eclipse.org/downloads/. Make
sure you grab the package “Eclipse IDE for Java Developers.”

GALILEO

F .
ecHpse

Figure 2-1 Eclipse loading screen

http://www.eclipse.org/downloads/
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp

Development Tools

After you have Eclipse installed, double-click the executable file (possibly eclipse.exe
or simply eclipse) to open it. If you have come back to this section from one of the later
chapters dealing with the App Engine, you might want to change the perspective to the
Java Perspective by selecting Window | Open Perspective | Java.To get App Engine inte-
gration in Eclipse, you have to install several packages. Here are the steps to follow:

1. Select Help | Install New Software. There might be an option titled “Software
Updates” instead.

2. Click the Add button to add a new software site.You can alternatively install the
package from your hard drive, but adding a site allows Eclipse to routinely check
for software updates.

3. You can name the site anything you want because it is just an identifier for house-
keeping purposes. I titled it “Google App Engine Plugin” in Figure 2-2. Add one of
the following URLs to the Location text box and click OK (check
code.google.com for versions higher than 3.5):

= For Eclipse 3.5 (Galileo): http://dl.google.com/eclipse/plugin/3.5
= For Eclipse 3.4 (Ganymede): http://dl.google.com/eclipse/plugin/3.4
= For Eclipse 3.3 (Europa): http://dl.google.com/eclipse/plugin/3.3

4. Check the boxes next to “Google Plugin for Eclipse” and “Google Web Toolkit,” as
shown in Figure 2-3, and then click Next.You can install support for Google Web
Toolkit at this time as well. Your versions might be higher.

5. Confirm that the two plugins appear in the list under Install Details and then click
Next.

6. Review the licenses and indicate that you agree to the terms by clicking the appro-
priate radio button. The Google Plugin has several Eclipse dependencies, so don’t
be alarmed if you see several other plugins listed. After you have downloaded the
required packages, Eclipse will prompt you to restart it. When it returns, you’ll be
all set.

Add Site
Name: Coogle App Engine Plugin (Local...)
Location: http://fdl.google.com/eclipse/plugin/3.5 (Archive...)
@;l (cancel) (OK

Figure 2-2 Eclipse Add Site dialog panel

21

http://dl.google.com/eclipse/plugin/3.5
http://dl.google.com/eclipse/plugin/3.4
http://dl.google.com/eclipse/plugin/3.3

22

Chapter 2 Setting Up Your Development Environment

ano Install
Available Software
Check the items that you wish to install. _
)~
work with: | Google - http://dl.google.com/eclipse/plugin/3.6 L] (Add. Y

Find more software by working with the “Available Software Sites" preferences.

type filter text

Name Version
™ v 000 Plugin
M {prouglc Plugin for Eclipse 3.6 2.3.1.r36v201105191508
M {prougchpu Engine Java SDK 1.5.0 1.5.0.r36v201105191508
M L Google Web Toolkit SDK 2.3.0 2.3.0.r36v201105191508

(Selectall) (DeselectAll) 3items selected

Details
Thisis a set of SDKs that can be used with the plugin.

4 Show only the latest versions of available software (] Hide items that are already installed
™ Group items by category What is already installed?

™ Contact all update sites during install to find required software

@ <ok (Ganesl) (_nish

Figure 2-3 Eclipse Available Software dialog panel

Google Web Toolkit

The Google Web Toolkit (GWT) is a set of libraries that allows developers to write rich
Internet applications in the Java programming language and have them converted into
cross-platform Asynchronous JavaScript and XML (AJAX) applications without worrying
about the individual quirks or incompatibilities of the target browsers. This allows devel-
opers to write an application from front to back in the same language.

If Java isn’t your cup of tea, open-source ports of GWT are available for Python and
Ruby called Pyjamas and Ruby]S, respectively. The ports tend to lag quite a bit behind
the most recent version of GW'T, so we won't be using them directly in any examples.
However, much of the core GWT code will have similar Pyjamas code.You can find
more information about Pyjamas and Ruby]S at http://code.google.com/p/pyjamas and
http://rubyforge.org/projects/rubyjs/, respectively.

GWT requires at least Java 1.5 to be installed on the target machine.You can install
GWT by downloading it from http://code.google.com/webtoolkit/download.html and
extracting it somewhere on your machine. The Google Plugin for Eclipse supports GWT,
so revisit the previous section to see the instructions for installing the plugin.

Chapter 8, “Creating Games Without JavaScript,” will cover using GWT with Canvas,
WebGL, and SVG in more detail.

http://code.google.com/p/pyjamas
http://rubyforge.org/projects/rubyjs/
http://code.google.com/webtoolkit/download.html

Web Server Tools and Options 23

Web Server Tools and Options

Unless you plan to keep your game all to yourself or to package it as a mobile applica-
tion, chances are that you will need a web server of some shape or form. In this section,
we will discuss some of the options for deploying your game.

Google App Engine

Google App Engine is a hosting environment for Java and Python that permits you to
host your application on Google’s infrastructure. In theory, your application can scale
almost infinitely. To operate in this way, there are some trade-offs, such as the use of an
untraditional data store, limited access to the file system, and special APIs for authentica-
tion, mail, and fetching. One of the other benefits of the App Engine is that you can
write applications using Rhino, the Java platform implementation of JavaScript, so that
you can run JavaScript from back to front. Using App Engine also gives you a little extra
value from installing Eclipse. The Google plugin lets you deploy to App Engine with just
a couple button clicks.

You can install Google App Engine or read about the plugin for Eclipse at
http://code.google.com/appengine/.

Opera Unite

The Opera browser, since version 10.0, has packaged an embedded web service called
Opera Unite. Unite has built-in applications for streaming files and sharing photos, chat-
ting, and hosting a site. To host a website, you would normally have to register a domain,
find a web host, and upload your files. Unite lets you do this all with the click of a but-
ton. When you start the Unite service, it registers your computer with a proxy server run
by Opera. Thus, visitors to

http:// your_device.your_username.operaunite.com/

(where your_device 1s the name of your computer)

get routed correctly. The proxy server allows you to set up a service without having to
punch a hole through your router. Unite’s web server runs using server-side JavaScript
and allows file system access.You can even package and publish your game so that others
can install it without needing to connect to your Unite instance.

Unite is great for putting something out there to share with friends or testers, but it
requires the browser to be running, so it isn’t a great option for anything that needs 24/7
uptime. We will discuss packaging applications for distribution in Chapter 11, “Publishing
Your Games.”

Node.js and RingoJS

Ringo]S is a web framework that runs on Rhino and implements specifications and pro-
posals from the Common]JS API. Given that JavaScript evolved into being without a dis-
crete spec, Common]S seeks to set standards for things that may have been originally
outside the scope of a JavaScript application—such as access to the local file system.

http://code.google.com/appengine/
http://your_device.your_username.operaunite.com/

24

Chapter 2 Setting Up Your Development Environment

Node.js and Ringo]S both implement parts of Common]S, with Ringo]S being a bit
more API-compliant. One major point of divergence is that Node.js runs on Google’s
V8-engine, which powers JavaScript support in Google Chrome and is implemented in
C++.

We will discuss server-side JavaScript, specifically Node.js, in more detail in Chapter 9,
“Building a Multiplayer Game Server.”

Browser Tools

An important piece in developing HTMLS5 applications is a browser that implements
most of the spec and has decent debugging tools. Google Chrome, Mozilla Firefox (and
its derivatives), Apple Safari, and Opera have outstanding HTML5 compliance and
debugging tools. Internet Explorer 9, which was released in March 2011, is much more
HTMLS5 standards-compliant than its predecessor, but it lags in terms of support com-
pared to the aforementioned browsers.

Inside the Chrome Developer Tools

Using Chrome’s debugger tools, we can dynamically inspect the page’s DOM, view
resource loading times, and run arbitrary JavaScript. We can view the Developer Tools
console for any page by selecting View | Developer | Developer Tools. Figure 2-4 shows
the console window for Google.com. With the Elements tab selected, we have a nested
view of the DOM with associated styles for the document elements. Hovering over an
element tag will highlight it in the browser window. This is really useful when trying to
figure out which element is the one that is off by several pixels.

| L | - mesmeres | g oo (et | moses | Swoge g | Cemoe e Bowrts_

2
0
-3

Figure 2-4 Chrome Developer Tools Elements tab

The other two tabs in the Developer Tools console that are incredibly useful to game
developers are the Resources and JavaScript Console tabs. The Resources tab, shown in
Figure 2-5, allows you to track on an asset-by-asset basis what exactly is slowing your
gadget from showing in Waves quickly. The first time you run it on a new site, you can
decide to activate it just for this session or forever. Resource tracking does a bit of over-
head to page loading times, so it is best to use it sparingly.

Browser Tools 25

2D | Documests Sayleshorts mages Aerigts XHA fosts Other

) e
i

< | Wit o goaghe ol

<) ik

A
| e e e e,

. | e legallany
5| i
Bamet. © =

[T - 1 -
@ 1 ¥ 15 Sert by Newpame Tems § z

Figure 2-5 Chrome Developer Tools Resources tab

The last tab I'll highlight in this section is the JavaScript Console tab, as shown in
Figure 2-6. For those of us who aren’t exactly JavaScript gurus, it’s a godsend because it,
along with the console.log() command, frees us from the most dreaded acts in pro-
gramming: println (or in this case, alert) debugging.You can also use it to inspect the
DOM programmatically or run arbitrary JavaScript.

e

@ Tha page an b e gaagie.cam

Figure 2-6 Chrome Developer Tools Console tab

Chrome Extensions

Similar to the Eclipse IDE, the functionality of Google Chrome can be enhanced and
extended with extensions. Extensions range in purpose from RSS readers and site-specific
enhancements or notifiers to games. A full list can be found at https://chrome.google.
com/extensions. Let’s take a moment to call out a couple that will make our lives a little
bit easier in creating gadgets.

We can install these extensions in Chrome by clicking the Install button from the
Chrome Extensions page, as shown in Figure 2-7, and following the prompts. Two useful
plugins for developers are JSONView and YSlow. JSONView allows you to view JSON
data formatted to increase readability. YSlow analyzes web pages and gives tips on how to
improve performance.

https://chrome.google.com/extensions
https://chrome.google.com/extensions

26 Chapter 2 Setting Up Your Development Environment

Install Chrome Editor?

This extension needs access to:

Your data on interactivedesignr.com and
www.interactivedesignr.com

Your browsing history

(" Cancel) (Install)

Figure 2-7 Installing a Chrome extension

Safari Developer Tools

The Developer tools in Apple’s Safari are quite similar to their counterparts in Google
Chrome. By default, they are hidden to the end user.

To enable them, select Preferences in your title or icon bar and navigate to the
Advanced tab. As shown in Figure 2-8, make sure that “Show Develop menu in menu
bar” is checked.Visit the previous section on the Chrome Developer tools for an
overview of what is present.

800 Advanced

)@ e 7 S e

General Appearance Bookmarks Tabs RSS AutoFill Security

Universal Access: || Never use font sizes smaller than 9~

[l Press Tab to highlight each item on a webpage
Option-Tab highlights each item.

Style sheet: | None Selected =]

g [>
Proxies: [Change Settings... |

Eshuw Develop menu in menu bar ®

Figure 2-8 Enabling the Developer menu

Firebug

Firebug is an extension for Mozilla Firefox that allows developers to debug a website’s
HTML, CSS, and JavaScript. Although originally designed for Firefox, Firebug also has a
“Lite” version that will run in Google Chrome and complements the tools already pres-
ent in that browser.

You might have noticed that the core components and tabs of Firebug look very
similar to those of Chrome and Safari. As in Chrome, there are add-ons for Firefox and
Firebug to expose more developer capabilities (such as DOM manipulation and intro-
spection) for several programming languages (such as PHP and Python).You can find
instructions on installing Firebug or Firebug Lite by visiting http://getfirebug.com.

http://getfirebug.com

HTML5 Tools

HTML5 Tools

In this section, we will discuss some tools that allow us to easily create assets for our
games. In the case of Raphaél and Processing]S, these are lightweight graphics libraries.

ProcessinglJS

Processing]S is a JavaScript library that can act as an abstraction layer over the canvas tag
to draw primitives, respond to user interaction, and draw and manipulate images. Process-
ing]S was created in the summer of 2008 by John Resig, the creator of the popular
JavaScript library jQuery, who ported it from of the similarly named Processing Java
Library. As a result, the functions and API calls are syntactically identical to the Java ver-
sion. Likewise, many of the Java samples can be ported with no code changes. It must,
however, be noted that Processing]S doesn’t implement the full Java API. This doesn’t
matter that much for our purposes because most of those features would be things we
would rather do with WebGL.

You can view some examples and the API reference at http://processingjs.org.

Inkscape

Inkscape is a mature cross-platform vector graphics editor using SVG. It is comparable to
the commercial applications Adobe lustrator and Core] DRAW. Although the most
recent release is only 0.48, there has been a vibrant community dating back to its incep-
tion in 2003.The version number is more of an indication of how much of the SVG 1.1
spec the application implements. Although it doesn’t support the complete SVG spec, and
some might argue that no application does, the Inkscape community has made up for this
with plugins that enhance the platform.

You can download the application at http://inkscape.org.

SVG-edit

SVG-edit is a web-based, JavaScript-powered, SVG creation tool. SVG-edit is great for
simplified drawings that will have a limited amount of effects applied to them.The inter-
face, as shown in Figure 2-9, has controls for creating text and simple primitives as well as
embedding images.

If you have to create, say, a checkerboard in a pinch, SVG-edit would be great for that.
It doesn’t include file management and is only able to display the raw SVG code for you
to copy and paste into a text editor, as shown in Figure 2-10.

You can download the source or try it online at http://code.google.com/p/svg-edit/.

27

http://processingjs.org
http://inkscape.org
http://code.google.com/p/svg-edit/

28 Chapter 2 Setting Up Your Development Environment

P @ @l 9] @

. |
Q[0 6 -|| & M e[o -]
oMz ¢~

Figure 2-9 SVG-edit interface

G4’ nlm hnp a’.rn- i, nrgﬂm.r:ug s
crutn vnn M t http://svg-edit.googlecode. con/ -
P
<titlesLayer l=/titles
<rtct ide”svg 1" height="159" widthe"176" y="101" u="43" stroke-widthe"5" stroke="#S00000 fills"eFrocea-/»
<
“fsvg

Figure 2-10 SVG-edit code view

Raphael

In the two previous sections, we discussed lightweight and advanced tools for creating
SVG files using a user interface. Those are appropriate for games where all the assets are
pre-fabricated—for a chess game, for example. For SVG games where assets would need
to be created dynamically or for those developers who prefer to use code to create SVG
graphics, there is Raphaél. Raphaél is a JavaScript library that provides primitive shape,
font, and animation support and is evaluated to embedded SVG at runtime. There is also a

3D Modeling Tools 29

compatibility layer that renders using Vector Markup Language (VML) if the browser
implements VML in lieu of SVG (namely, IE browsers prior to IE9). Raphaél can be
downloaded at http://raphaeljs.com/.

We will take advantage of these tools in Chapter 6, “Creating Games with SVG and
Raphaél]S.”

3D Modeling Tools

In Chapter 7,“Creating Games with WebGL and Three.js,” we will discuss creating games
using WebGL. We need tools to create assets for those games. In the games industry, that
usually means applications such as 3D Studio Max and Maya. With prices ranging from
just south of a thousand dollars to more than several thousand dollars, these applications
can be cost prohibitive for the hobbyist game programmer. As is the case with commercial
vector graphics applications, very capable open-source applications are available to fill this
need for the hobbyist or professional.

Blender

Blender, shown in Figure 2-11, is a cross-platform open-source 3D modeling, rendering,
and animation application. Among its features are cloth, skeletal, and rigid body simula-
tion, texturing, particle dynamics, and compositing. Blender can import and export to
many different graphics file formats. It also has a Python API that can be used to extend
the application. Blender has been used in pre- and post-production on several television
commercials, television shows, and feature films.

You can find out more information about Blender and download it at http://blender.
org.

[§ |~ Fir Add Timeline Gamo Fender Holp [=[58.2-Model | | 1% orgedsE Vo | Fah | O83-1|Lan |

|3 o] = view 5ot ovioct |12 oojectwove <[[= | iAo |

I e [k

Figure 2-11 Blender interface

http://raphaeljs.com/
http://blender.org
http://blender.org

30

Chapter 2 Setting Up Your Development Environment

Summary

In this chapter, we identified some of the tool and frameworks that will best serve our
needs in creating HTML5 games. We installed the Java SDK and the Eclipse IDE and also
discussed the SVG and 3D modeling tools and libraries we will use throughout the book

to create assets for our games.
You can download chapter code at www.informit.com/title/9780321767363.

www.informit.com/title/9780321767363

3

Learning JavaScript

Although the title of the book explicitly calls out SVG, HTML5 Canvas, and WebGL,
they wouldn’t be able to do much without the help of JavaScript. SVG, Canvas, and
WebGL need JavaScript to drive the interactions between the user and the game.
JavaScript also provides the basis for libraries and languages such as GWT and Coftee-
Script, which are referenced later in the book. Nodejs, also covered later in the book,
uses JavaScript to run server-side code. In this chapter, we will cover the basics of
JavaScript, along with some useful utilities and libraries that will aid in creating games,
and use a JavaScript library to create your first game.

What Is JavaScript?

JavaScript is a loosely typed dynamic language that began its life as a Netscape Commu-
nications project named LiveScript. It was renamed to JavaScript roughly around the time
plugin support for the Java programming language was added to Netscape, much to the
chagrin of developers everywhere. Despite the name, JavaScript and Java are only loosely
related in that both of them are influenced by C and share some of the same keywords
and structures.

JavaScript’s Basic Types
Certain types of objects are guaranteed to exist in every JavaScript implementation. They
can also be thought of as the building blocks to create other types of objects. The
JavaScript basic types are as follows:

= Array—A collection of things.

= Boolean—A value of true or false.

= Function—A piece of code that does some work.

= Number—Examples include 42, 3.54¢-3, and 3.14159.

= String—A collection of characters in single or double quotes, such as “Hello”.

= Object—The base type from which all other types descend.

32

Chapter 3 Learning JavaScript

= undefined—The referenced object doesn’t exist.

= null—The object exists with no value, but JavaScript makes a specific distinction as
to if the object exists and has no value or if it doesn’t know about the object. If you
execute the code

var X = null;

you are telling JavaScript that you are defining an object that doesn’t have a value at
this time but might be used in the future. On the other hand, if you just execute

var x;

the value of x, in this case, would be undefined.

Understanding Arithmetic Operators

We learned in the first grade that the basic arithmetic operators are +,—, /,*, and = for
adding, subtracting, dividing, multiplying, and assigning values. Although the first four are
generally used for numeric values, some programming languages allow you to redefine
how they interact with user-defined objects. JavaScript isn’t one of those languages.You
should stay away from using the operators on your objects unless they are Numbers; this
way, you'll avoid unexpected results. For example, given that adding two Strings together
concatenates them, you might expect that subtracting them will remove an instance of the
second String from the first. That’s how it works in some other languages, but not in
JavaScript. JavaScript throws Exceptions after trying to evaluate them as Numbers.

Understanding JavaScript Functions

Let’s begin by looking at the simple JavaScript function shown in Listing 3-1. In the code,
we first declare a function named HelloWorld (which prints “Hello, World!” to the con-
sole) and then we execute it.

Listing 3-1 Hello World JavaScript

function HelloWorld() {
console.log("Hello, World!");

}
HelloWorld();

The function keyword tells the application running the code that the enclosed code will
do some task. In this case, our function doesn’t take in any parameters to manipulate or
use to do its work or return anything. Some other programming languages require speci-
fying a return type for the object the function will return. In JavaScript, however, regard-
less of whether the function returns anything, we always start its declaration with the
function keyword. Listing 3-2 shows a function that takes two values and adds them
together.

What Is JavaScript? 33

Listing 3-2 Adding Two Objects

function add(one, two) {
return one + two;

This listing introduces two new concepts: function parameters and the return keyword.
Function parameters give us a way to provide data that the function needs to do its work,
and the return keyword sends us an object after the work is completed. If we call the
function

add(23, 43);

it returns 66. We can also call it with any other object, such as a String, and it concate-
nates the String values that describe those objects.

Functions as First-class Objects

Functions in JavaScript not only can be executed, they can also be constructed and modi-
fied at runtime, assigned to variables, and returned by other functions. Objects with the
latter capabilities (everything but the ability to be executed) are known as first-class
objects. These capabilities give us a structure that roughly approximates the class key-
word from other programming languages such as Java and C#. In those languages, classes
define a prototype for the variables and functions that objects of those classes will contain.
Also, functions, even if they have some first-class citizen properties, are not allowed to be
nested in one another. In this capacity, JavaScript straddles the line between classes and
functions, so some refer to a function that returns the same type as itself as a class. Listing
3-3 shows a car “class” that contains functions to start, accelerate, and apply the brakes.

Listing 3-3 JavaScript car “Class”

function Car() {

var self = this;

self.speed = 0;

self.start = function() {
console.log("Car started.");

}

self.accelerate = function() {
self.speed = self.speed + 10;
console.log("Speed is now:"+self.speed+ " mph");

}

self.applyBrakes = function() {
self.speed = 0;
console.log("Brakes applied.");

34

Chapter 3 Learning JavaScript

One thing to note from this listing is that we are using an alternate form to declare our
function by defining variables that will hold the functions and then assigning anonymous
functions to them.We can create a instance of Car and start it by executing the following:

myCar = new Car();
myCar.start();

The key difference from before is that instead of executing the function directly, we are
requesting to have an instance, or copy, of it stored into the global variable mycar. This
allows us to call member functions on the object. Another new concept is assigning vari-
ables using the var keyword. Using var is generally optional, but it does affect variable
scope. A variable’s scope determines the visibility, and as a result, the value held in it. Let’s
say that outside of the car function we had a variable named self declared using the fol-
lowing code:

self = "me

The self variable with the value "me" is declared with a global scope and is viewable
anywhere; however, the self that car uses is only visible to functions inside car.The
object that the this keyword points to can change based on where it is called from.
Using a local self variable gives us assurance that the calls within the object will func-
tion properly.

Comparison Operators

Comparison operators test whether two objects are equal or their relative value. For
example, we could use the operators shown in Table 3-1 to test whether the String "abc"”
is equal to "def" by executing

"abc" == "def"

The result would be false.

Table 3-1 Comparison Operators

Operator Description

! Reverses the result of a logic operator, making a true value false and vice versa.
&& Both sides of the expression must resolve to true in order for true to be returned.

| If either side of the expression resolves to true, then true will be returned.

, Returns true if the two objects are equal. == attempts to forcefully convert both
objects into the same type and then compares them. === requires that the objects
be the same type.

Conditional Loops and Statements

Table 3-1 Comparison Operators

Operator Description

1=, 1== Returns true if the two objects are not equal. ! = attempts to forcefully convert
both objects into the same type and then compares them. !== requires that the
objects be the same type.

< Returns true if the object on the right is greater than that on the left.

> Returns true if the object on the right is less than that on the left.

<= Returns true if the object on the right is greater or equal to that on the left.

Here are several peculiarities when testing things that aren’t numbers:

» True, often evaluated to 1, is always greater than false, which evaluates to 0.

» A String is less than another String if it occurs lexicographically before it in the
dictionary.

» Comparisons on Arrays compare the indexes of both arrays, and all values must sat-
isty the condition.

» Undefined == null returns true, but undefined === null returns false because unde-
fined and null are two different types.

In most cases, using ==, ===, 1=, and !=== for types that aren’t Strings, Numbers, or
Booleans will yield unexpected results, so if we need to test identity (which is whether
the two objects point to the same instance) or equality, we’ll write our own explicit
equals function.

Conditional Loops and Statements

Comparison operators and expressions give us a means to compare objects, and condi-
tional loops and statements give us a way to use that information to execute code.The
first we’ll cover is the if-else statement, which allows us to make a set of comparisons,
one by one. Listing 3-4 shows a couple if statements in practice.

Listing 3-4 if-else Statements

if (name == "John") {
if (age < 18)
console.log("Age is less than 18");
else if (age < 35)
console.log("Age is somewhere between 18 and 35");
else console.log("Age is greater than 35");
} else {
console.log("User is not named John");

35

36

Chapter 3 Learning JavaScript

In the listing, we first check to see if the value stored in the variable name is equal to
John. If not, an appropriate message is printed to the console. If the variable name is equal
to John, we execute a series of comparisons to determine the age range, preemptively
stopping when the expression evaluates to true. Each subsequent else only executes if
the preceding if statement has failed. This switch-case statement is a fancier type of i
statement that checks the value of a single variable for equality with a range of values. We
could use a bunch of if statements to do the same thing, but switch-case is more con-
cise. Listing 3-5 shows the general form of a switch-case statement.

Listing 3-5 General Form of a switch-case Statement

switch (<expression>) {

case valuel:
codeToExecutel();
break;

case value2:
codeToExecute2();
break;

default:
codeToExecute3();
break;

The values listed in the case statements can be strings, numbers, or Booleans. The break
keyword prevents subsequent case statements from being evaluated and prevents their
code from being executed. default provides the code to execute when the expression
doesn’t match any case.

Controlling Program Flow with Loops

Eventually we will need to run blocks of code over and over again. Although copying and
pasting the code blocks over and over again does work, it becomes fairly messy when you
have to change that code. And it looks very amateurish. Loops allow you to run specific
blocks of code given some pre- or post-conditions.

while Loops

while loops run a specific block of code until some expression is no longer true. For
example, we could create the variable count with an initial value of 0, printing the count
to the console and incrementing count until it is equal to 10. Listing 3-6 shows the code
for that while loop.

Listing 3-6 Sample while Loop

var count = 0;
while (count < 10) {
console.log("The count is now:"+count);

Conditional Loops and Statements

count++;

It is useful to note that if the condition tested by the while loop evaluates to false on the
first attempt, the code block never runs. The do-while loop, on the other hand, is a vari-
ant of the traditional while loop that ensures the code block executes at least once.
Listing 3-7 shows a do-while loop that executes exactly once due to a nonsense compar-
ison. As opposed to starting the expression with the while keyword and expression to
evaluate, we start with the do keyword and the while clause comes at the end.

Listing 3-7 Sample do-while Loop

do {
console.log ("This loop executes only once.");
} while (1 != 1);

for Loops

while and do-while loops allow us to test a single condition. for loops give us a way to
control the flow a bit more. JavaScript for loops mirror the form of Java for loops, start-
ing with the for keyword followed by initialization expression(s), test condition(s), and
the looping interval. Listing 3-8 shows the while loop shown in Listing 3-7 adapted to a
for loop.

Listing 3-8 Sample for Loop

for (var count = 0; count < 10; count++) {
console.log("The count is now:"+count);

Each of the expressions in the for loop are optional. We could break out the initialization
expression as we did in the while loop, increment the count in the code block, or omit
all three to create an infinite loop. Listing 3-9 shows these variants in code.

Listing 3-9 More for Loops

/* Loop 1 */
var count = 0;
for (; count<10;) {
console.log("The count is now:"+count);

count++;
}
/* Loop 2 */
for (7 ;) {

/* For demonstration purposes only, don’t ever do this. */

37

38

Chapter 3 Learning JavaScript

Delayed Execution with setTimeout and setInterval

The fact that JavaScript runs in a single thread drives many design choices in the lan-
guage.You'll see later in this chapter how various libraries use events to notify applica-
tions that something notable has happened. Another means to accommodate this
single-threadedness is to use the setTimeout function to kick off some arbitrary code
sometime in the future. Listing 3-10 shows the code to print the current date and time to
the console after a 1,000 milliseconds.

Listing 3-10 Example of setTimeout

setTimeout (function() {
console.log(new Date());
}, 1000
)i

setTimeout executes once and it’s done. If we need to repeatedly run the same code over
and over again, we can have each setTimeout create a new setTimeout. However, a
more concise way would be to use setInterval. Besides using setInterval in place of
setTimeout, the method calls are identical. setInterval will attempt to run the code
every X milliseconds. JavaScript will make its best effort to honor the requests to execute
code.The code within setInterval needs to perform reasonably well. Long-running
tasks set to a short interval could delay execution of subsequent iterations until the first
one 1s done. clearTimeout and clearInterval cancel the next execution of
setTimeout and setInterval, respectively. They do not affect the code that might be
currently running.

Creating Complex Objects with Inheritance and
Polymorphism

As mentioned earlier in the chapter, JavaScript uses functions to expose the concept of
object-oriented programming language classes. Another set of features for programming
languages that use classes includes the ability to create classes that derive properties and
functions from other classes and the ability for objects of multiple classes to respond to
the same method signatures. These features are known as inheritance and poly-
morphism.

The easy way to decipher inheritance is the “is-a” relationship. Continuing our exam-
ple from earlier in the chapter, a Toyota is a (inherits from) car. JavaScript adds properties
or functions to objects using the dot syntax. Using the prototype keyword, we can mod-
ify all instances of a particular type. Listing 3-11 shows the declaration of two classes: car
and Toyota. After declaring the car object, we next assign its prototype (its functions and
properties) to Toyota. Next, the constructor for the Toyota type is created and overrides
the versions provided by car. If we call go on a Toyota object, it uses the Toyota version

Creating Complex Objects with Inheritance and Polymorphism

instead of the one from car.That is polymorphism at work. As long as the object extends
from car, we can be guaranteed that functions and properties created in the base type will
have some sort of value. As shown in the last few lines of the listing, we can use the key-
word instanceof to determine what type of object we have. Given the code we wrote, it
will evaluate to true when checked against car and Toyota.

Listing 3-11 JavaScript Inheritance

function Car() {
var self = this;
self.type = "Car"
self.go = function() {
console.log("Going...");
bi
bi
Toyota = function() {};
Toyota.prototype = new Car();
Toyota.prototype.constructor = function() {
var self = this;
self.type = "Toyota";
self.go = function() {
console.log("A Toyota car is going...");

}i

Toyota.prototype.isJapaneseCar = true;

var t = new Toyota();
console.log(t instanceof Toyota);
console.log(t instanceof Car);

Making Inheritance Easier with the Prototype Library

Prototype (www.prototypejs.org) is a library for JavaScript that makes object-oriented
programming a little bit easier. The inheritance and polymorphism support it provides
isn’t all that much different from what you have learned by using the prototype keyword
directly. Prototype does give us a more concise and readable way of doing inheritance.
Using the class object and its function create is the principal way we will interact with
Prototype. Listing 3-12 revises our inheritance example for use with Prototype. The ini-
tialize function is where we put any setup code we would like to execute when the
object is instantiated. Even if it will be empty, we must specify one in our classes. When
we create the Toyota class, we add an extra parameter to the function signature to indi-
cate the class from which the child will inherit.

39

www.prototypejs.org

40

Chapter 3 Learning JavaScript

Listing 3-12 Inheritance with Prototype

var Car = Class.create({
initialize: function() {
this.type = "Car";
Iy
go: function() {
console.log("Going...");

i

var Toyota = Class.create(Car, {

initialize: function() {
this.type = "Toyota";
this.isJapaneseCar = true;

Iy
go: function() {

console.log("A Toyota car is going...");
}

i

In neither our raw prototype nor the more spiffy Prototype version can we call the
function in the parent that we overloaded in the child. That’s because when you modify
the prototype, you don’t keep a copy of what it used to point to. Although sometimes it
might be useful to totally handle the inputs and outputs in the child layer, there are occa-
sions when you might want a parent class to handle some basic common data before
sending the rest to the specific child class to finish up. In object-oriented programming
languages such as Java and C#, you would use an object named super or base to refer-
ence the parent class. In those languages, the reference to the parent class is transparently
created for you, and you can use it without any modifications to function signatures. In
Prototype, however, for any function that we want to call the parent class, we need to add
$super to the beginning of its parameter list. Thankfully, this doesn’t change how the
function is called by your code. One key change that should be noted is that unlike in the
languages that get this capability for free, the $super object is a link to the parent func-
tion and not the parent object. A child’s go function can only call the parent’s go function
explicitly; all other parent functions are hidden if they are overloaded. Listing 3-13 shows
how we would modify our Toyota class to call the go function of car before calling its
own. Executing the go function on the Toyota class will print “Going...” and then “A
Toyota car is going...” to the console.

Listing 3-13 Calling a super Function with Prototype

var Toyota = Class.create(Car, {

initialize: function() {
this.type = "Toyota";
this.isJapaneseCar = true;

Learning JQuery

b
go: function($super) {

$super();

console.log("A Toyota car is going...");
}

Learning JQuery

An important utility in your JavaScript toolset is JQuery (http://jquery.com/) and its
variants. That’s not to say that a comparable JavaScript framework won't serve our needs,
but JQuery boasts a very active development community with a multitude of plugins,
some of which, as you will see in Chapter 10, “Developing Mobile Games,” are targeted
toward mobile development. It is also widely recognized as the most popular JavaScript
framework. JQuery uses a global object, $, that exposes functions to inspect and alter the
Document Object Model (DOM), handle events, and process AJAX requests. There is
even a plugin that exposes a 2D game engine called gameQuery (http://gamequery.
onaluf.org/).

One of the most important functions you will learn in JQuery is the ready function,
which delays execution of the enclosed JavaScript until the document is fully loaded.
Listing 3-14 shows the code to print “Hello World!” to the console when the document
has finished loading. The ready function ensures that we don’t try to reference any DOM
elements before they are instantiated.

Listing 3-14 JQuery ready Function

<html>
<head>
<script type="text/javascript">
$ (document) .ready(function () {
console.log ("Hello World!");
i
</script>
</head>
<body></body>
</html>

41

http://jquery.com/
http://gamequery.onaluf.org/
http://gamequery.onaluf.org/

Chapter 3 Learning JavaScript

Manipulating the DOM with Selectors

Another important concept of JQuery is selectors. Selectors give us a way to reach deep
into the object graph with commands as simple as retrieving all the anchor tags in a doc-
ument or as complex as retrieving the third td element inside a table that is inside a div.
The selector syntax melds those of CSS and XPath (a language for querying XML docu-
ments) with some JQuery-specific syntax. Table 3-2 shows some common selectors.

Table 3-2 Some Common JQuery Selectors

Selector
#id
element

.class

[attribute="value"]

teq(n)

reven
:odd
parent descendants

parent > child

Description
Returns the element that matches the given ID
Returns all elements of the given type

Returns all elements that have the CSS class applied to
them

Returns all elements that have a matching attribute value.

Returns the element in the set that equals index n (zero-
indexed)

Returns even-numbered elements in the given set
Returns odd-numbered elements in the given set
Returns the descendents of the parent element or selector

Returns only the first-level children of the parent element or

selector

Returns a combined list of the results from all the given
selectors

selectorl,selector2,
selector3

Selectors can be chained together, so we could find the div element with the id
“header” by executing the selector for an element and then the selector for an attribute:

$("div[id="'header']")
Alternatively, we could simply execute the following:
$ (#header)

After we have an element or set of elements returned by a selector, we can manipulate
them in several ways, including but not limited to the following:

» Adding, removing, or modifying CSS styles and attributes
= Adding or removing child elements

» Adding animated transitions and effects

Learning JQuery

JQuery Events

Instead of busily waiting for something to happen, JavaScript uses events to notify us of
changes. This frees up the application to do other things while there are no events to
process and to not lose cycles constantly checking for input. It’s more of a “don’t call us,
we’ll call you” model. Because you can’t usually predict where or when these events will
be fired, the way to be notified of changes is to bind, or attach, a function to be called
whenever the event is fired. JQuery has a generalized bind function that can generically
handle any event type and a set of specific functions for common event types such as
click, double-click, key up, and so on. Listing 3-15 shows two equivalent methods of
binding (or attaching) a click handler to an element with the id “menuBar,” which
might be represented in HTML code as follows:

<div id="menuBar>/* Stuff here */</div>

We will revisit this concept in Chapter 10.

Listing 3-15 Examples of JQuery Event Binding

/* Method 1 */

$("#menuBar").bind("click", function() {
console.log("Clicked on menu bar.");

b

/* Method 2 */

$("#menuBar").click(function() {
console.log("Clicked on menu bar.");

)i

AJAX with JQuery

Eventually every web application is going to need to retrieve assets of some sort that
don’t reside on the local server. AJAX (Asynchronous JavaScript and XML) allows you to
send a request for a document and be notified when the data has been fully retrieved or
sent. As was the case with browser events, JQuery has several diftferent forms. For the sake
of simplicity, we will assume that there isn’t a need for any advanced features such as
authentication, headers, and cross-domain requirements. JQuery’s API provides options
for AJAX requests that rival full-blown server-side frameworks and languages. Listing 3-
16 shows a generalized method to execute an AJAX request. In it, we pass off a map of
key/value pairs to the ajax function indicating the specifics of our AJAX request. There
are shortcut methods for common GET (get) and POST (post) as well as for retrieving
data as JSON (getJSON) or as a script (getScript). JQuery also fires events for the differ-
ent portions of the AJAX request life cycle.

43

44

Chapter 3 Learning JavaScript

Listing 3-16 JQuery AJAX: POST and GET

$.ajax({
type: "GET",
url:"request.html",
success: function(data) {
console.log(data);
}
})i

Cross-Site Scripting

Generally, websites are prevented from making AJAX calls that didn’t originate from the
same domain, which is known as the same-origin policy. Cross-site scripting is a type
of injection attack where a malicious user exploits a flaw in a website’s design to inject
code that executes as if it came from the same domain. The ability to retrieve assets from
other websites and web services becomes extra important when sending and receiving
data from them.

JSON: The Other JavaScript Format

JSON, or JavaScript Object Notation, is a data exchange format that is less verbose than
XML and as a result is more lightweight and easier to transfer. [SON is more human
readable and writeable than XML and less prone to errors. Every JSON object can be
composed of five types:

= null

= Number

= String

= Array

= Object (a set of key/value pairs bounded by curly braces)

Table 3-3 shows some sample JSON and its corresponding XML code.You can see

that the JSON code reduces the amount of repetition caused by all the greater-than and
less-than symbols while keeping a sense of structure.

Table 3-3 Comparing JSON and XML

JSON Code XML Code

{ <car>
"make":"Chevrolet", <make>Chevrolet</make>
"model":"Cavalier", <model>Cavalier</model>
"year":2002 <year>2002</year>

} </car>

JavaScript Outside of the Browser

Although the name of the technology hasn’t changed, JSON is a return type or has
replaced XML in many AJAX requests. Being a text-based file format, JSON does share
some of the drawbacks of XML—namely that it isn’t efficient at storing binary data.
There are ways to accommodate this particular drawback, such as passing URIs to binary
data instead of the data itself or base64-encoding the data, if possible.

JSONP, or JSON with padding, is a workaround for AJAX’s same-origin policy. The
source field of the <script> tag in HTML is one place where the same-origin policy
doesn’t apply. With JSONP, we construct a URI to retrieve not data, but arbitrary
JavaScript for the browser to evaluate. Properly formatted JSON can also be valid
JavaScript code. The returned content is generally wrapped in a function call and can
contain a mix of JSON and explicit JavaScript code or no JSON at all. Listing 3-17 shows
a JSONP request written in HTML code. The jsonp portion usually indicates the name
of the function call that encapsulates the returned data. The query parameter could
instead be callback or not specified at all. The important thing is that the requesting
website has an idea of how the function will be named.

Listing 3-17 JSONP Example

<script type="text/javascript"
src="http://www.example.com/GetTimeLine?UserId=johndoe&jsonp=getData">
</script>

JSONP exploits a necessary loophole to the same-origin policy and is itself open to
being exploited. Any content could be injected into a site if it uses JSONP, possibly
exposing sensitive data.

JavaScript Outside of the Browser

JavaScript began its life as a tool that lived in the confines of browser web pages. In recent
years, it has expanded its reach to platforms outside its usual stomping grounds. Let’s
briefly discuss a few of them.

Mobile Platforms

WebOS, created by Palm for its Pre devices and now led by Hewlett-Packard, has the dis-
tinction of being the only mobile device operating system that uses JavaScript as its pri-
mary programming language. Titanium Appcelerator, which we will discuss in Chapter
10, uses JavaScript to create native Android and 1OS applications.

JavaScript as an Intermediary Language

A new crop of languages and libraries use alternative languages that can be compiled or
converted into JavaScript, making it a sort of bytecode or intermediate language for the
browser. Some of these tools and languages include CofteeScript and Google Web Toolkit
(GWT), a Ruby/Python inspired scripting language and a web framework for creating

45

46

Chapter 3 Learning JavaScript

AJAX applications with Java, respectively. Both CofteeScript and GWT will be covered in
Chapter 8, “Creating Games Without JavaScript.” Here’s a list of some of the languages
and tools that won’t be covered in this book but I encourage interested developers to
check out:

= Cappuccino/Objective-] (http://cappuccino.org)
= Echo3 (http://echo.nextapp.com)

= Vaadin (http://vaadin.com)

= OpenLaszlo (http://www.openlaszlo.org)

= Pyjamas (http://pyjs.org)

JavaScript on the Desktop

Since the creation of the Mozilla Firefox web browser, JavaScript desktop applications
have been in mainstream use. They are now primed to make a play for the desktop, as
they have already conquered the browser space. In this section, we’ll cover some of the
notable frameworks from a high level.

XULRunner (https://developer.mozilla.org/en/xulrunner) is a runtime environment
created by Mozilla that most notably powers the Firefox web browser and many of
Morzilla’s suite of applications, including the Mozilla Sunbird (calendar/scheduling) and
Morzilla Thunderbird (e-mail). XULRunner uses some C++ code to run the JavaScript
engine named SpiderMonkey, but all interaction with the user is conducted via
JavaScript. There is also a plugin format called XPI that allows developers to extend the
capabilities of their application with packaged JavaScript and assets. XUL and XBL (XML
User Interface Language and XML Binding Language, respectively), which determine the
layout, look, and interactivity of applications, round out the core features in XULRunner.
Several other companies and open-source projects are using XULRunner to package
cross-platform applications. Some of the more popular ones are Miro, the Internet TV
application, and Songbird, a media library management application whose feature set
rivals that of iTunes.

GLUEscript (http://gluescript.sourceforge.net) is a desktop framework that is an evo-
lution of a port of wxWidgets to JavaScript. wxWidgets is a C++-based cross-
platform desktop framework that has bindings for many different programming lan-
guages. The reasoning is that once you learn the structure of a wxWidgets application in
one language, you will be able to use wxWidgets in other languages with less of a learn-
ing curve. GLUEscript uses Mozilla’s SpiderMonkey engine for its JavaScript layer. Above
that layer, all user interface code and logic is in pure JavaScript.

XULJet (http://code.google.com/p/xuljet) is a desktop framework that runs on top of
XULRunner. Although the code calls XUL on the backend, developers use a domain-
specific language that is based on XUL. This allows developers to co-mingle Ul code and
logic. Whether that is the most appropriate thing to do—versus having a clear separation

http://cappuccino.org
http://echo.nextapp.com
http://vaadin.com
http://www.openlaszlo.org
http://pyjs.org
https://developer.mozilla.org/en/xulrunner
http://gluescript.sourceforge.net
http://code.google.com/p/xuljet

JavaScript Outside of the Browser 47

of Model-View-Controller—is outside the scope of this book. However, it does make for
less-verbose and more-readable user interfaces. Listings 3-18 and 3-19 show equivalent
XUL code and XULJet DSL code.

Listing 3-18 XUL Code

<vbox>
<toolbox>
<menubar>

<menu label="File" accesskey="f">

<menupopup>

<menuitem label="Close" oncommand="window.close() />

</menupopup>
</menu>
</menubar>
</toolbox>
<vbox align="center" pack="center", flex="1">

<description id="descId" >Press the button</description>
<button label="OK" oncommand='this["desc"].value = this.message’ />

</vbox>
<statusbar>
<statusbarpanel flex=1 label="Ready" />
</statusbar>
</vbox>

Listing 3-19 XULJet DSL Code

vbox ({flex: 1},
toolbox (
menubar (
menu({label: "File", accesskey: "f"},

menupopup (
menuitem({label: "Close", oncommand: "window.close()"}))))),

vbox({align: "center", pack: "center", flex: 1},

description({bind: "desc"}, "Press the button"),

button({label: "OK", oncommand: function() {

this["desc"].value = this.message}})),

statusbar (

statusbarpanel({flex: 1, label: 'Ready...'})))

48

Chapter 3 Learning JavaScript

Server-Side JavaScript

JavaScript is supported in many browsers, but unlike other programming languages, no
single organization steered or shaped it for much of its life. As a result, although many
applications claim JavaScript support, their implementations might not always be compat-
ible. Also, as a browser technology, there 1sn’t support for things such as interacting with
the file system, package management, and creating desktop applications. The goal is to
provide a common set of specifications that developers can implement so that compliant
applications and frameworks can interact with each other and share code.

In the past few years, server-side JavaScript (or JavaScript run outside the browser) has
become more popular as a means to run web applications. Thanks in part to the Rhino
programming language, which is a version of JavaScript built to run on the Java Virtual
Machine (JVM), there are many runtimes for server-side JavaScript. Most of these run-
times tap into the web server support in Java and allow the user to call them using
JavaScript-like code.

Ringo]S is a fairly mature JVM-based runtime that uses Rhino as its main program-
ming language. Node.js is another popular server-side JavaScript runtime that uses
Google’s V8 JavaScript engine to execute code.

Modules provide a way to encapsulate functionality into a single file or namespace so
that it can be used across many applications. Unlike functions written for the browser that
attach to the window object, Ringo]S and Node js functions attach to the exports object.
Listing 3-20 shows a simple function to reverse a string.You can see that as far as the dec-
laration of the function is concerned, nothing has changed. We have merely added a line
to say that in the exports namespace, the function will have the name reverseString.

Listing 3-20 Example Module

function reverseString(text) {
var reversed = "";

for (var i = text.length-1; i>=0; i-) {
reversed += text[i];

}

return reversed;

}

exports.reverseString = reverseString;

Summary

In this chapter, we discussed JavaScript and its accompanying ecosystem. No longer is the
language relegated to running client scripts in the browser. It is being used as a server-side
language, as an intermediary language, and to create mobile applications. The ever-
increasing speed of JavaScript engines means that JavaScript will continue to permeate

Exercises 49

more areas of development. A proper foundation in JavaScript is the key to making
HTML5 games. Even if you use an alternate language, that language will compile down
to JavaScript. JavaScript is the lingua franca of the Web.

Exercises

What keyword allows you to extend objects in JavaScript?
What does the $super object in Prototype have access to?

Explain the difference between == and ===.

b=

Write a function that checks every five seconds if it is 12 midnight. Hint: Use
getHours () and getMinutes().

You can download chapter code and the answers to the chapter exercises at
www.informit.com/title/9780321767363.

www.informit.com/title/9780321767363

This page intentionally left blank

A

How Games Work

Trying to define exactly what a game is and isn’t is much more difficult than it seems.
Although we may think of games as being purely for competition or entertainment, they
actually encompass a lot more. A simulation that determines whether a building is con-
structed soundly could be thought of a game, as can trying to predict how people will
react to certain stimuli. The best all-inclusive definition I could come up with is that a
game is a form of interaction with goals and structure. Building upon the lessons we
learned about Prototype and its approach to object-oriented programming, we will be
using the Prototype-based Simple Game Framework (SGF) to create the games in this
chapter. SGF was chosen because the API is complete yet small, hiding enough low-level
details for us to build up easy wins before we delve into more complex topics later in
the book. SGF mustn’t be thought of as the end-all and be-all of game engines. After all,
a quick visit to http://devmaster.com shows that dozens if not hundreds of options are
out there.

Designing a Game

One of the most important things you can do before you sit down to code a game is to
plan out what it does. For a large game such as World of Warcraft, this design document
would be many pages long and discuss different areas, worlds, and scenarios. But for our
purposes, the design documents will be fairly short. In some cases, they could fit on a
sticky note. However, they are nevertheless important to create. With an undefined goal,
you never know when you have met it.

Writing a Basic Design Document

The design document is a contract for how your game will work and allows you to have
a record for the future of all your thoughts when beginning the project. How else will
you remember why the Whosits are green and the Whatsits are blue and how they each
respond to power-ups? If you are creating a game that includes characters, you could also
include character studies that outline their motivations and back story. At minimum, the
design document should contain the following elements:

http://devmaster.com

52

Chapter 4 How Games Work

= The rules of play
= The tagline
= The title or working title of the game

These elements should be prioritized in that order as well. Game play rules form the
basis of a good game. A great title and tagline can only go so far to help out a crappy
game. The game play rules describe how play begins, how it ends, and how any positive
and negative actions are rewarded and penalized, respectively. For the game Pong, which
will incidentally be the first game we create, the design document might be something
like this:

= Two players are represented by rectangular paddles that can move only up and down.

= A ball can be hit between the two paddles and can bounce oft the top and bottom
walls of the playing area.

= The left and right bounds of the playing area do not make the ball bounce off them
as the top and bottom walls do.

= The player must defend his area by hitting the ball into the other player’s area.

= A point is scored for the other competitor when a paddle doesn’t prevent the ball
from moving off the playing area bounds.

A tagline describes your game succinctly for people who have never seen it before. It
can also draw upon familiar experiences of the prospective user while also introducing
something new—for example, “Soccer in space.” Besides some tiber-rich people, some
astronauts, and some cosmonauts, we can’t claim to have experienced what it feels like to
be outside Earth’s atmosphere. But many of us have played soccer (or football for the non-
U.S. readers). We can understand some of the conditions arising from the familiar experi-
ence of soccer played in an unknown setting. There might be the lack of gravity to
contend with, possible differences in how the ball moves because of the lack of an atmos-
phere, or maybe the need for temporary power-ups to counteract the bulkiness of the
flight suits.

Deciding on a Game Genre

Games generally fall into a particular genre or type that describes some of its basic char-
acteristics. The video game industry has dozens if not hundreds of genres and subgenres.
The games in this book will fall into the casual game genre. Casual games in many cases
have less processor-intensive graphics and effects, shorter levels, and a smaller learning
curve. The major subgenres of the casual gaming space in the past couple of years have
been as follows:

= Puzzle games

= Hidden object games

Designing a Game

= Adventure games

» Strategy games (including click/time management, such as Diner Dash and
Farmville)

» Arcade and action games
= Word and trivia games

» Card and board games

The lower processor and graphics thresholds make it easier for a newcomer to break
into this area.You don’t need a sea of 2D and 3D artists. You can get by on some pro-
gramming skill, an idea, and a friend who can draw a little.

The Game Loop

Excuse the cliché, but the game loop is where the magic happens. Much of the time the
user will spend interacting with your game will be inside the game loop. Each run of the
game loop may execute any of the following limited list of actions:

» Retrieving user input, such as pressing buttons or directional keys
= Receiving input from opponents (computer or human)

» Updating player and enemy positions and alive state

= Starting or stopping sound effects and background music

» Drawing the world with the updated positions and states of the players

These actions are often completed many times a second and sometimes at different
intervals. The human eye has a limit as to the number of frames it can see, so we might
only redraw the screen 30 to 60 times a second, but for we might check for user input
100 times a second. It all depends on the conditions of the game.

Getting Input from the User

User input will usually be transmitted via the keyboard, mouse, or possibly a game con-
troller. Our applications will receive the status as numeric values corresponding the ASCII
codes for letters and numbers. JavaScript can also tell us if modifier keys such as Ctrl and
Shift were pressed at the same time. In Chapter 3,“Learning JavaScript,” we talked briefly
about how you can capture these events using JQuery. Because input is very important to
them, many game engines and libraries provide some helper functions to encapsulate get-
ting input from the player.You will see this first hand when we create games for this
chapter.

53

54

Chapter 4 How Games Work

Representing Game Objects with Advanced Data
Structures

You learned in Chapter 3 that JavaScript provides us with several core object types. We
will use all of them, but in many cases they won’t be enough. Most importantly, in addi-
tion to specific game objects such as Rectangles, Circles, and Sprites, we need more com-
plex structures to hold them. Arrays allow us to hold a list of things, but their functions
are pretty basic. What if we wanted a Set class that only stores unique objects? What
about a class that stores an object graph between different points? For each of these we
will have to roll our own.

Making Unique Lists of Data with Sets

Sets are collections that have no duplicate values. The object that holds a single deck of
playing cards or a grocery list could be implemented as a set. At the core of our imple-
mentation is an array, which works behind the scenes to store our objects. Enforcing
uniqueness means that if we use types that aren’t Strings, Numbers, or Booleans, we
should make sure the object we insert into the set implements its own equals method.
Listing 4-1 shows the code for a set class and for adding an equals method to Number so
that you can use Numbers seamlessly in sets. If you want to use Strings, the same thing
would have to be done.

Listing 4-1 JavaScript Set Class

var Set = Class.create({
initialize: function () {
this.rawArray = [];
Iy
add: function (object) {
if (this.contains(object) == undefined) ({
this.rawArray.push(object);
}
b
get: function (index) {
return this.rawArray[index];
Iy
remove: function (object) {
var index = this.contains(object);
if (index != undefined)
this.rawArray.remove(index);
Iy
contains: function (obj) {
for (var i = 0; i < this.rawArray.length; i++) {
var obj2 = this.rawArray[i];
if (obj.equals(obj2))
return i;

Representing Game Objects with Advanced Data Structures

}
return undefined;
}
i
Number.prototype.equals = function (obj) {
return this == obj;

}

Now that we have a way to store unique values, it would be nice to be able to sort
them. Trick-based card games, such as Hearts and Spades, are some examples that jump to
mind where a sorted set might be desired. JavaScript doesn’t allow us to use operations
such as <, >, >=and so on, with our custom types also known as operator overload-
ing. We can get around this limitation by using a concept from Java called Comparator,
which is a contract, or interface, that requires any class implementing it to have a function
that takes two objects as parameters and returns a negative number, zero, or a positive
number if the first object is less than, equal to, or greater than the other parameterized
object. Whereas in Java, the function would have to be named “compare,” we don’t have
that requirement in JavaScript, and the function doesn’t even need to be a member of the
class. We can see in Listing 4-2 how this might be implemented for a card class that’s
sorted by suit and rank. Like we saw earlier with the equals method, primitive types
don’t have their own compare methods. primitiveCompare works for all primitive types
(Booleans, Numbers, and Strings).

Listing 4-2 JavaScript Comparator

primitiveCompare = function (sl, s2) {
if (sl == s2)
return 0;
else if (sl < s2)
return -1;
else return 1;

}
compare = function (obj, obj2) {
if (primitiveCompare(obj.getSuit(), obj2.getSuit()) == 0){
return primitiveCompare(obj.getOrd(), obj2.getOrd());
} else
return primitiveCompare(obj.getSuit(), obj2.getSuit())
}

With all the components in place, we can now sort our objects. We can sort an array
by executing this:

set.sort (compare)

To sort another object that is backed by an array, simply provide a pass-through
method to invoke the sort. The default sort algorithm in most JavaScript engines will

55

56

Chapter 4 How Games Work

serve your needs well for the amount of data you’ll probably be sorting. If you notice
your sort becoming slow, you can always implement your own. Many resources can be
found online that explain the different sort algorithms along with what conditions are the
best for each one.

Creating Object Graphs with Linked Lists

Linked lists are another common advanced data structure consisting of objects that each
contain a reference, or link, to the next one of more objects in list. Singly linked lists will
only link from parent to child, so you have to traverse all the objects (commonly called
“nodes”) until you reach the one you want. A node in a doubly linked list contains both a
reference to the preceding and next nodes. Linked lists are useful for objects that have
some sort of implicit hierarchy. For example, you could use a linked list to hold the com-
ponents of a robotic arm. The upper arm is the parent of the lower arm, just as the lower
arm is the parent of the hand, and so on. Listing 4-3 shows the code to create a singly
linked list.

Listing 4-3 JavaScript Linked List

var Node = Class.create({
initialize: function (val) {
this.value = val;
this.next = null;
b
addChild: function(node) {
this.next = node;

}

})i

var LinkedList = Class.create({
initialize: function () {

this.root = new Node(null);
this.size = 0;
s
add: function (object) {
obj = this.root
while (obj.next!= null) {
obj = obj.next;

obj.next = new Node(object)
}
i

Linked lists are used extensively for artificial intelligence (AI), which we will discuss
later in this chapter. With a linked list, you can represent all the possible states of a game,

Understanding the APIs in Simple Game Framework

and in evaluating each one, the computer can backtrack and try other paths, eventually
coming to the optimal solution.

Understanding the APIs in Simple Game
Framework

As mentioned before, SGF builds on the Prototype JavaScript framework to create its
game objects. Another interesting feature is that SGF can use the same game logic and
assets as well as execute in the browser or on desktop Java. It does this by taking advantage
of the Rhino programming language, JavaScript on the Java platform, and a Java backend
API mirroring the HTML version. It is able to run anywhere that has a JavaScript engine.
One key difference between SGF and the techniques we will examine later in the book is
that SGF doesn’t use the canvas tag in any way. It instead uses div and img elements
along with CSS styles to create game play. Even though this is a book about HTML5,
having backward compatibility is an important consideration, and there will be occasions
when you might want to mix techniques. For your convenience, SGF has been bundled
with the source code for this chapter. but you can also download a possibly newer version
at http://sgfjs.org/. Let’s briefly discuss its APIs.

Core API

The Core API is where the magic happens. It manages the interactions between the key-
board, mouse, and our games, renders our frames, and provides an interface for adding
new events to subscribe to using the Observer pattern (http://en.wikipedia.org/wiki/
Observer_pattern). The classes and namespace are listed here:

» Game

= Input

= SGF (namespace)
= EventEmitter

m Screen

Game and Input are the two classes in this area that we will use the most. The Game
class is a container for all our game objects and manages our game loop by calling the
render and update functions on the objects. We can also set our frames per second,
which is the number of times we’d like the game to update its state. The Game class also
exposes functions to load fonts, other JavaScript files, and sounds.

The Input class, as you might guess, gives us a means to get the mouse clicks, mouse
movement, and key presses at any given time. isKeyDown is the only instance function we
need to worry about and is incidentally the only instance function. We can use it with the
preset class properties for common keystrokes, such as the mouse and directional keys, or
with key codes from other buttons on the keyboard.

The sGF namespace provides only two (but very important) functions. The first is the
log function, which is an alias for the native logging function on the platforms that SGF

57

http://sgfjs.org/
http://en.wikipedia.org/wiki/Observer_pattern
http://en.wikipedia.org/wiki/Observer_pattern

58

Chapter 4 How Games Work

supports. In the case of JavaScript, it is console.log. The second function the SGF name-
space provides is require, which is a method that only imports the components you
need into your application. In a basic SGF game, all classes are hidden by default and you
must use require to make them available for use. EventEmitter and Screen won'’t be
used directly in any of this chapter’s games, so learning about them will be left as an exer-
cise for the interested reader.

Components API

Whereas the Core API controls how the objects interact with each other, the Compo-
nents API specifies how they are drawn. Here are the classes in this API:

= Component
= Container
= Shape

= Rectangle
= Sprite

= DumbContainer

Component is a class from which all SGF-viewable game objects extend. It can’t be
instantiated directly but rather represents a contract that the objects must follow.
Component contains properties to specify an object’s dimensions, orientation, depth (z-
index), and its own render and update functions. The container class is a concrete sub-
class of Component. It implements all of Component’s methods and can hold other
Component objects and their subclasses. Container could be used to animate many differ-
ent objects at once to create interesting simulations. Shape is another class that exists only
to provide a contract, giving its children access to a color property in addition to the
ones available in Component. Rectangle is a child of Shape. Sprite is a class that repre-
sents a single rendered image in a game. These images usually come in what are called
spritesheets, providing all the images to create an animation—similar to a flipbook. We
will talk about the nuts and bolts of sprites in Chapter 5, “Creating Games with the
Canvas Tag.” Figure 4-1 shows the Components API classes and their descendants.

Resources APl and Networking APIls

Games would look rather boring if we were stuck with the default system font and solid
colors for objects. SGF’s Resources API gives you the ability to load custom fonts and
images to use with your games. Because we will be covering much of this content in
greater detail in Chapter 5, we will defer talking about this for now.

SGF has the capability to connect to other clients or servers using its built-in Client
class and either the corresponding Server class or another WebSocket server. Mentioned
for sake of completeness when talking about SGE we won'’t cover any of the networking
capabilities in this chapter. The API documentation has some sample code, and it might

Building Pong with the Simple Game Framework

Component
Sprite Container Shape
\4 \ 4
DumbContainer Rectangle

Figure 4-1 Components API classes and descendents

be beneficial to review the networking material in Chapter 9, “Building a Multiplayer
Game Server,” that specifically deals with socket. 10 before trying to make SGF games
“network capable.”

Building Pong with the Simple Game Framework

Pong is often thought of as the game programming version of “Hello, World!” It is a 2D
form of ping-pong (table tennis). The game that helped launch the video game industry
has a retro look that hides its complexity. In coding Pong, we have to manage game state,
track scoring, track game components, and perform collision detection and response.

Setting Up the Application

Listing 4-4 shows the scaffolding HTML code we need to embed our application in a
web page. The stylesheet designation, the contents of which are shown in Listing 4-5, are
extra important. SGF uses HTML div elements to draw its graphics. This element has an
intrinsic desire to take up as little space as possible. The stylesheet tells the browser to allo-
cate the indicated dimensions for our game, whether we are using it or not. Another
notable piece of code is the following in the script tag:

data-screen="screen"

It tells SGF which div will hold the game. If we omit it, the game is added to the
body of the page.

Listing 4-4 Pong HTML Host Page Code

<!DOCTYPE HTML>
<html>
<head>

59

60

Chapter 4 How Games Work

<title>Pong</title>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<!-- For IE. Force the browser to the most current rendering mode. -->
<meta http-equiv="X-UA-Compatible" content="IE=edge" >

<!-- A few basic styles. These are NOT mandatory for SGF... -->

<link href="styles.css" type="text/css" rel="stylesheet" />

<script type="text/javascript" src="js/SGF.js"

data-debug="true"
data-prototype="1lib/prototype.js"
data-swfobject="1lib/swfobject.js"
data-screen="screen"
data-game="Pong"></script>

</head>

<body>

<div id="screen"></div>
</body>
</html>

Listing 4-5 Pong CSS Code

body {
margin:0 0 0 0;
width:100%;

height:100%;
text-align:center;

}

#screen {
width:400px;
height:400px;
border:Solid 1px #000000;
margin:0 auto;

}

Listing 4-6 shows the beginnings of our game. All SGF games require a main.js file
that contains the outermost logic to run the game. In the listing, we can see that we are
retrieving several objects from the SGF namespace and are setting up game properties
such as the height, width, and input instance. Lastly, we retrieve a script for our Paddle
class and draw a paddle on the screen at (0,150). After you understand this bit of code, we
can move on to creating our game pieces.

Listing 4-6 Pong main.js

// Import required classes
var Game = SGF.require("Game");

Building Pong with the Simple Game Framework

var Input = SGF.require("Input");
var Rectangle = SGF.require('Rectangle");
var Label = SGF.require("Label");
// Get a reference to our Game instance
var myGame = Game.getInstance();
// Get a reference to our game's Input instance
var myInput = myGame.input;
var game height = 400;
var game width = 400;
myGame.getScript("Paddle.js", function(){
// left paddle
myGame.leftPaddle = new Paddle();
myGame.leftPaddle.setPosition(0, 150);
myGame .addComponent (myGame.leftPaddle);

Drawing the Game Pieces

Our easiest game pieces to draw are the paddles. We begin with the Rectangle class and
extend it with a couple of methods. In our constructor (initialize), we set up the
width, height, and color of the paddle. We have convenience functions for getting and set-
ting the position, but the real stars are the checkInput and update functions. checkInput
looks for key presses of the up- and down-arrow keys from the keyboard. When a key
press is detected, it adjusts the paddle’s y position by 10 pixels to the north or south. There
are conditions to keep the paddle within the bounds of the game board. Finally, our
update function fires many times every second to see if there has been input from the
user. Pong is a two-player game, so we created our paddles to respond to the up- and
down-arrow keys or the A and Z keys. The code for the full Paddle class is shown in
Listing 4-7.

Listing 4-7 Paddle.js

// Paddle.js
var Paddle = Class.create(Rectangle, {

initialize: function($super)
$super();
this.height = 100;
this.width = 20;
this.color = "0011FF";
this.isPlayerOne = true;

H

setPosition: function(x, y){
this.x = x;
this.y = y;

}I

61

62 Chapter 4 How Games Work

getPosition: function(){
return {
'x': this.x,
'y': this.y

b
setIsPlayerOne: function(bool){
this.isPlayerOne = bool;

b
checkInput: function(){
if (this.isPlayerOne == false) {
if (myInput.isKeyDown(Input.KEY UP)) {
if (this.y > 0) {
this.y = this.y - 10;
}
}
else
if (myInput.isKeyDown(Input.KEY DOWN)) {
// x,y are taken from the left corner
if (this.y < game_height - this.height)
this.y = this.y + 10;
}
}
else {
if (myInput.isKeyDown(65)) { // 'A'
if (this.y > 0) {
this.y = this.y - 10;
}
}
else
if (myInput.isKeyDown(90)) { // 'Z'
// %,y are taken from the left corner
if (this.y < game_height - this.height)
this.y = this.y + 10;
}
}
b

update: function(){
this.checkInput();
}
i

You might have noticed that our check for the lower bounds does an adjustment for
the height of the paddle. That is because, as shown in Figure 4-2, screen coordinates start

Making Worlds Collide with Collision Detection and Response 63

with (0,0) in the upper-left corner and extend the right and bottom of the screen with
positive x and v, respectively.

(0,0 positive x

Y

positive y

Figure 4-2 Screen coordinate system

Making Worlds Collide with Collision Detection
and Response

Before we get to adding our Ball object and making it bounce around the screen, let’s
take a slight detour and talk about what makes it actually work. As you are reading this,
even if you sitting relatively still, there are many forces acting upon you. This isn’t meant
to be an exhaustive discussion but seeks to be just enough to explain the concepts. Isaac
Newton—that’s right, the falling apple guy—described the laws of universal gravitation
and motion that shape our understanding of how objects interact with each other in the
physical world.

Understanding Newton’s Three Laws

Newton’s first law deals with inertia and states that an object at rest will stay at rest and
that an object in motion will stay in motion at the same velocity (speed and direction)
and direction until an unbalanced force is acted upon it. In the context of our Pong
game, our ball wants to continue moving and will do so until it encounters a force (for
example, a paddle or wall) that is too great to permit the ball from continuing on the
intended path.

Newton’s second law deals with momentum. Momentum is the product of mass (the
matter present in an object) and its velocity. The equation you might have heard of is

F=ma

64

Chapter 4 How Games Work

or Force = mass times acceleration (rate of velocity change over time). Put another way,
applying a net force to an object will proportionately affect the object’s acceleration. Even
though it may be coming at you fast, a soccer ball that you kick with your foot involves
applying enough force on the ball to overcome its momentum toward you and cause it to
move in the opposite direction.

Newton’s third law states that for every action, there is a equal and opposite reaction.
There is no such thing as a unidirectional force. If you are pushing a ball, it is exerting the
same force upon you, but the momentum (second law) might be different for you and
the ball.

You may not have realized it, but the hit game Angry Birds uses physics for all of its
game play. For the few of you may have not encountered it yet, Angry Birds involves using
a slingshot to launch different types of birds toward targets and enemies. When you
launch a bird, you are putting a net force on it. From the time a bird leaves the slingshot
until it hits the target, gravity is constantly acting upon it. Eventually the upward momen-
tum and acceleration imparted by the slingshot succumbs to gravity and the bird begins
to descend. The path of its motion is a parabolic arc, as shown in Figure 4-3.When you
jump in the air, you are moving in a parabolic arc.

Figure 4-3 Parabolic movement

Some of the Angry Birds characters have different characteristics, such as being able to
increase velocity mid-flight, thus causing more destruction. Another bird is armed with a
fairly heavy egg that, when dropped, causes the bird to soar into the sky (its upward accel-
eration is affected by the drop in mass).

To keep things simple for our Pong game, we won't be doing realistic physics for our
collisions. If we chose to do so, we would have to take the preceding laws and some oth-
ers (such as the Law of Reflection) into account. I don’t know about you, but making a
100% realistic Pong game is effort I'd rather conserve for a cooler idea. However, the lack
of real physics doesn’t mean that we won’t make a fun game.

Making the Ball Move

Our ball is constrained to four diagonal directions: NW, NE, SW, and SE. In the
Direction class, we have a map of the directions the ball can move, one pixel either
north or south and one pixel either east or west, as shown in Listing 4-8. Our game

Making Worlds Collide with Collision Detection and Response

updates itself 30 times per second, so we can think of our velocity as 30 pixels/sec in one
of the four directions.

Listing 4-8 Ball Directions

this.directions = [
{code:'SE','x"':-1,"'y"':-1},
{code:'sw','x"':1,'y"':-1},
{code:'NE', 'x"':-1,"'y":1},
{code:'NW','x":1,'y"':1},

The Ball class uses the “velocities” in that map to move the object on the screen, as
shown in Listing 4-9. Using a multiplier for the x or y displacement allows us to simulate
a greater range of motion and dynamism with the ball’s movement.

Listing 4-9 Ball Class update Function

update: function(){
this.checkCollisions();
pos = this.getPosition()

this.setPosition(pos.x - 2 * this.direction.getX(),
pos.y - 3 * this.direction.getY())

if (this.x < 0) {
myGame.ScoreBoard.scoreRight.incrementScore();
this.resetBall();

}

else if (this.x > game_width) {
myGame.ScoreBoard.scoreLeft.incrementScore()
this.resetBall();

To simulate the ball bouncing off a wall or paddle, we check the Ball’s x and y posi-
tions relative to other objects in space. If a collision is detected, the appropriate vector is
reversed. We are giving up a little bit of the precision to make the code simpler. Therefore,
when the conditions are just right, collisions may fail to fire. This mainly occurs around
the other edges of the paddles, but is rare. The collision-detection code for the game is
shown in Listing 4-10.

Listing 4-10 Ball Collision Detection

checkCollisions: function(){
// Collisions with paddles
//check left

65

66

Chapter 4 How Games Work

var leftPaddleX = myGame.leftPaddle.getPosition().x;
var leftPaddleY = myGame.leftPaddle.getPosition().y;
var rightPaddleX = myGame.rightPaddle.getPosition().x;
var rightPaddleY = myGame.rightPaddle.getPosition().y;

if (this.y >= leftPaddleY && this.y <= leftPaddleY +
wmyGame.leftPaddle.height)

if (this.x == leftPaddleX + myGame.leftPaddle.width)
this.direction.flipEastWest();
// check right

if (this.y >= rightPaddleY && this.y <= rightPaddleY +
wmyGame.leftPaddle.height)

if (this.x == rightPaddleX - myGame.rightPaddle.width)
this.direction.flipEastWest();
// Collisions with walls
if (this.y <= 0 || this.y >= game_height - 20)
this.direction.flipNorthSouth()

Advanced Collision Detection and Particle Systems with
Asteroids

Particle systems are a type of simulation that animates many objects based on forces in
nature. Explosions, confetti cannons, and pellets from a shotgun are all particle systems at
work. They can also use some of the advanced data structures we discussed earlier in the
chapter. World forces can act on the particles individually or as a group. Let’s begin by
looking at a particle system inspired by something from everyday life—a water faucet. We
learned in Chemistry class that the smallest thing we can label as water is a molecule of
two hydrogen atoms and one oxygen atom. When you turn on the faucet, hundreds of
thousands of water molecules, which are under pressure (thus giving them enough energy
to make it to your home), rush into your sink. Once in the sink, they might move up the
sides or spill over onto the floor. We can ignore or highlight forces in particle systems as
we please.

Asteroids is an arcade game where the player controls a spaceship floating out in space
in an asteroid field. The player must use his rockets to break up and destroy asteroids
hurtling toward him. This gives us a great opportunity to make some limited particle sys-
tems. After the first hit, our larger asteroids split into three smaller pieces. A further hit to
those asteroids yields two more of the smallest asteroids. The smallest asteroids disappear
from the game after being hit. Listing 4-11 shows the code to spawn or destroy asteroids
when they are hit. To increase code reuse, we encapsulated the creation of each genera-
tion of asteroids into a separate function. Not shown in the snippet is the
pickSpeedandDirection function. It picks a random change in x and y to be applied for
the lifetime of the asteroid.

Creating Competitive Opponents with Artificial Intelligence

Listing 4-11 Spawning New Asteroids

explodeOrDestroy: function() {
if (this.generation == 0) {
// remove this asteroid and create 3 smaller ones
this.spawnAsteroids(1l, 75, 3);
myGame . removeComponent (this) ;
} else if (this.generation == 1) {
// remove this asteroid and create 2 smaller ones
this.spawnAsteroids(2, 50, 2);
myGame . removeComponent (this);
} else myGame.removeComponent (this);
}
spawnAsteroids: function (generation, size, num) {
for (var i = 0; i<num; i++) {
var asteroid = new Asteroid();
asteroid.width = size;
asteroid.height = size;
asteroid.x = this.x;
asteroid.y = this.y
asteroid.generation = generation;
asteroid.pickSpeedAndDirection();
myGame .addComponent (asteroid) ;

Creating Competitive Opponents with Artificial
Intelligence

Artificial intelligence (Al), as it pertains to gaming, is the ability for applications to simu-
late sentience by using code to interact and possibly analyze surroundings and competi-
tors. Whether you have realized it or not, you've encountered a bit of Al in even the most
ancient games. Take, for instance, the Super Mario franchise. In the original Super Mario
game, Goombas were about as dumb as you could get; they make their way from point A
to point B, reversing course if they bumped into another object or enemy that wasn’t
Mario or Luigi. Left to their own devices, they would walk off cliffs into the great abyss.
A little bit higher on the Al food chain are level bosses, such as Bowser, at the end of the
castle levels. He can do rudimentary tracking of your position and attempt to attack you.
One of the most intelligent enemies in the Super Mario franchise are Boos. Boos are
ghost-like creatures that can chase and attack you when your back is turned and, in some
cases, can evade you.

67

68

Chapter 4 How Games Work

Adding Al to Pong

For our simple Pong game, we can create Al opponents with multiple levels of complexity
pretty quickly. We can do that by giving the computer player periodic access to the ball’s
position or by giving it a range of values, and it has to guess where the ball might be.
Listing 4-12 shows some code that allows the computer player to “sense” the ball’s posi-
tion. In it, we retrieve the ball’s current y position and calculate a target y position by sub-
tracting half the height of the paddle. This is an attempt to make the ball strike the middle
of the paddle. Remember that coordinates are computed from the top left, so we need
this adjustment to avoid a mis-hit. To make the computer movement smoother, the incre-
ments are reduced from 10 to 3. Given that the computer player gets the ball’s position 30
times a second, it can easily defend its area.

Listing 4-12 Pong Computer Al

update: function() {
if (this.isPlayerOne == true) {
var y = myGame.ball.y;
var currentY = this.y

targetY = y - this.height/2

if (targetY > this.y)
this.y = this.y + 3;
else if (targetY < this.y)
this.y = this.y - 3;
} else this.checkInput();
}

Advanced Computer Al with Tic-Tac-Toe

To avoid having to use images or fancy CSS effects to represent the X’s and O’ in a game
of tic-tac-toe, we are going to use solid colors: red for O’ (the lighter hue in the figure)
and blue for X’s. Figure 4-4 shows a game board where a player has just won.

One thing that tic-tac-toe has in common with some other two-player games, such as
chess, Othello, and checkers, is that they are all zero-sum finite deterministic games. That’s
a really spiffy way to say the following:

= For any move, what benefits Player A will come at some cost to Player B.

All possible game states are known to both players.

= There is a limited number of game states/decisions/moves to be made and they can
be enumerated.

= There are no variables that introduce randomness to the game.

Creating Competitive Opponents with Artificial Intelligence 69

Tic-Tac-Toe

Figure 4-4 Tic-tac-toe winning game

Given the processing power to do so, a computer can calculate all possible moves that a
player might take (like the Deep Blue chess-playing computer that beat a chess grandmas-
ter). This method is known as “brute force.” It’s similar to trying to crack someone’s pass-
word by trying every word in the dictionary. It is very effective but also time consuming.

Knowing the moves a player might take means nothing if you can’t evaluate them.The
Al algorithm for these types of games calculates several (up to thousands of) combinations
of moves that the computer and player could make. It gives each move a score based on
whether it helps it to win or lose. When choosing a possible move for the opponent, it
assumes that the opponent will always choose the best move. This algorithm is known as
Minimax. Without any constraints on it, 2 Minimax algorithm will try to brute force its
way to a solution—and JavaScript doesn’t like it. When trying to evaluate a game with
few moves, it can easily use up all the space that the browser gave it to run. One method
to combat this is to set a depth limit. After some testing, I settled on 200.This gives the
algorithm a chance to evaluate a bunch of boards but doesn’t have a perceptible lag.
Because it can’t evaluate all boards, sometimes it makes suboptimal moves.

Our miniMax function begins by seeing if we can evaluate the current board for a
score. We have three designated scores: 1 for a win by the current player, -1 for an oppo-
nent win, and 0 for either no perceptible best move or depthLimit is reached. If we
can’t decide on a score and haven’t reached the depthLimit, we make a copy of the
game board and find the possible moves. Next, we iterate over that list of moves and
recursively call miniMax again, this time from the opponent’s viewpoint. When we
receive a score, we compare it to the best score, saving it if need be. When the function
has completed, the computer player will play the best move for it to take from all the
possibilities it has attempted. The code for the Minimax algorithm is shown in Listing
4-13. Although we leave it in the main code file, the miniMax function would be a great
candidate for a Worker.

Listing 4-13 Minimax Algorithm

miniMax: function(board, currentPlayer) {
if (this.currentDepth == this.depthLimit)
return 0;

70 Chapter 4 How Games Work

if (TTT.checkForWin(board) == currentPlayer)
return 1;

if (TTT.checkForWin(board) == this.getOtherPlayer(currentPlayer))
return -1;

this.currentDepth++;

var best = -10;

var bestMove = null;

var clone = TTT.cloneGameBoard(board);

var moves = TTT.generateMovesFromBoard(clone, currentPlayer);

for (var i = 0; i<moves.length; i++) {
var m = moves[i]
clone[m[0]][m[1]] = currentPlayer;
var value = -this.miniMax(clone, this.getOtherPlayer(currentPlayer));
//reset board
clone[m[0]][m[1]] = "";
if (value > best) {
best = value;
bestMove = m;

}

}

if (best == -10)
return 0

return bestMove;

Summary

In this chapter, we created our first game using the Simple Game Framework. We also
dove into the fundamentals of what makes games tick, touching on the process of plan-
ning our games. The lessons learned in this chapter will serve us well for the duration of
the book.

Exercises
1. Why are 2D games easier to code than 3D?

2. How is a game of checkers or tic-tac-toe different from a game of poker?

3. Are leaves on a tree a particle system? Explain why or why not.

You can download chapter code and answers to the chapter exercises at www.
informit.com/title/9780321767363.

www.informit.com/title/9780321767363
www.informit.com/title/9780321767363

5

Creating Games with
the Canvas Tag

The Canvas (that is, the canvas tag) is what many think about when HTMLS5 is men-
tioned. Instead of creating a bunch of div elements with contained images with CSS to
simulate movement and game play, you can use canvas to provide a surface to draw
objects on the screen. Neither method is easier or harder, but each has different consider-
ations. The Canvas has some built-in translation, rotation, scaling, and clipping, whereas
with divs you have to handle transformations yourself. However, one advantage that
games using div and CSS have over the Canvas is that older browsers, such as Internet
Explorer 6, are supported. Hopefully, as more browsers become HTML5 compliant, this
will become less of an issue.

Getting Started with the Canvas

Unlike with some other technologies, you don’t need to include any extra libraries to use
the Canvas. As long as you have an HTML5-compliant browser and a text editor, you
have all you need to get up and running. As mentioned before, the Canvas is a drawing
area on a web page. The first thing that we need to do is to create that area. We can do
that by creating a canvas tag and setting the height, width, and (optionally) the ID:

<canvas id="c" height="400" width="400"></canvas>

As you probably have guessed, this line of code draws a 400-pixel-by-400-pixel square
Canvas with an ID of “c.” Your next guess might be that we could start using the Canvas
by running something like

var canvas = document.getElementById("c");

and then drawing with the canvas object. Close, but not quite. What is not apparent at
first glance is that the Canvas acts as a container for drawing APIs, which we will actually
use directly. WebGL, which we discuss in Chapter 7,“Creating Games with WebGL and
Three.js,” uses the same HTML tag but a difterent drawing API. Continuing with our

72

Chapter 5 Creating Games with the Canvas Tag

code example, to retrieve the 2D context (or the interface for drawing), we need to call
getContext on the Canvas:

var context = canvas.getContext(“2d”);

Now we can begin drawing graphics.

Not all of the world’s graphics are driven by rectangles. No matter how little artistic
ability you have, you will eventually need a way to create complex shapes. Paths are how
we can create shapes using lines and arcs. The concept of paths pops up several times in
the different technologies in this book. Let’s take the time to learn about them with a
simple example, and the next occasions with be total child’s play.

Although they can be as simple as a straight line, paths form complex shapes by accu-
mulating instructions one after another until the final shape is drawn. Any path consists of
three primitive types:

= Lines
= Arcs

= Curves

If you think about objects in real life, they are composed of these three types. As I'm
writing this chapter, I'm looking out the window at a street lamp and some tree planters.
If you take a cross-section of these items, you will see those primitive path components,
which can be spun around a center point or repeatedly drawn along a path to create a
three-dimensional shape. Engineers using Computer Aided Design (CAD) employ these
primitives to prototype the parts for the car you drive or the bike you ride.

Drawing Your First Paths

After creating a canvas object and retrieving the context, the first thing we need to do to
draw a path is to call the aptly named beginPath() function, which clears the stack of
any other paths we might have been drawing. This is important to do because path
instructions are cumulative, and all paths for a given canvas tag draw using the same con-
text. The next thing we need to do is to move to the point where we would like to begin
drawing. Calling moveTo () with an x position and y position does just that.You can think
of this as picking up the pen from the paper in order to draw another shape. Once the
“pen” is in place, calling 1ineTo() with x and y positions places the pen down on the
paper and draws a line to that point. The last thing we need to do is to stroke the lines we
have drawn.You can think of the moveTo and lineTo instructions as tracings on the
paper, and the stroke instruction is for going back and filling in the lines now that we
know where we want them. We can use this knowledge to draw our game board for the
tic-tac-toe game, as shown in Listing 5-1. It consists of two parallel vertical lines and two
parallel horizontal lines to form a grid of nine spaces.

Listing 5-1 Drawing the Game Board for Tic-Tac-Toe

Getting Started with the Canvas

self.drawGameBoard = function() {

var

ctx.

ctx.
.1ineTo(200,600);

ctx

ctx.
.1ineTo(400,600);

ctx

ctx.
ctx.

ctx.
ctx.

ctx.

ctx = self.context;

beginPath();

moveTo(200,0);

moveTo(400,0);

moveTo(0,200);

1lineTo(600,200);

moveTo(0,400);
1lineTo(600,400);

stroke();

Drawing Game Sprites for Tic-Tac-Toe

Now that the game board is squared away, we need to draw the sprites to play the game.
Let’s start with the Xs.
‘We can again use paths for X’s. They are drawn by starting at a point, drawing a line

indicated by an offset to the right and down, picking up the “pen,” moving up by that

same number of units, and then drawing a line that is down and to the left this time.

To make things simple for our game sprites, the game board was set at 600 by 600 pix-

els. That gives us a 200-pixel square for each space. We don’t want to the sprites to touch

the dividing lines, so all the lines are drawn just short of the edges. Listing 5-2 shows the

code to draw an X on the canvas.

Listing 5-2 Drawing an X for Tic-Tac-Toe

ctx.
ctx.

ctx.
ctx.
ctx.
ctx.

ctx

lineWidth = 2;
beginPath();

moveTo(10,10);
lineTo(190,190);

moveTo(190,10);
lineTo(10,190);
.stroke();

73

74

Chapter 5 Creating Games with the Canvas Tag

Drawing our O’ requires using arcs. The most simple arc is a shape that we see every
day—a circle. A circle is defined by a center point and a given distance (or radius) from
that center point; the line that is drawn about that center point keeps the same radial dis-
tance. The arc function can draw a segment of a circle as well as a full circle, so we have
to indicate the starting and ending angles along with an optional clockwise or counter-
clockwise flag.

You might have learned in Geometry class a little of the math used to calculate the
surface area of shapes, the area and circumference of circles, and things like that. If you've
forgotten it all, rest assured. We will only be using the fundamentals for now. One impor-
tant concept from Geometry class is the calculation of angles. Instead of using degrees, we
use radians. So for a full revolution about a point, we say that we are rotating 27 (or 2
times pi) as opposed to 360 degrees. Pi is a mathematical constant representing the ratio
of any circle’s circumference, or the distance of the line around a circle’s edge to its diam-
eter, which is twice the distance from any point on the edge to the center point. Pi,
which equals roughly 3.14159... can’t be represented cleanly as a decimal number, so it is
much simpler to denote the approximation by using the symbol. Table 5-1 shows some
common angles in both their degree and radian representations.

Table 5-1 Common Angles in Degrees and Radians

Number of Degrees Representation in Radians
0° 0]

45° /4

90° /2

180° I

270° 3n/2

360° 2n

If you need an angle that isn't listed in the chart, you can convert from degrees to radi-
ans by using the following formula.You don’t have to worry about remembering pi
because JavaScript stores the value in the Math.PI.

angle in radians = (angle in degrees) * (pi / 180)

The following snippet shows the code needed to draw our O’s. The circle is drawn by
selecting a center point and radius and drawing from 0 to 2*T radians. In keeping with
the size of our X’s and game board, the radius is 90 pixels, giving a diameter of 180 pixels.
It looks nicer than 190 pixels, and that’s what programming is about. In other words,
sometimes the mathematically correct solution isn’t always the most pleasing.

ctx.linewWidth = 2;
ctx.beginPath();

ctx.arc(100,100, 90, 0, 2*Math.PI);
ctx.stroke();

Drawing Objects on the Canvas with Transformations

Drawing Objects on the Canvas with
Transformations

On a traditional Tic-Tac-Toe game board, there are nine possible spots where an X or an
O could go. We could just create functions that explicitly draw the objects in each spot,
but that wouldn’t be efficient. Instead, we can use translation to move the entire drawing
plane from the origin to our desired point, draw our object, and then move the drawing
plane back. This allows us to reuse the same code if we decided to make a 4x4 grid
instead of a 3X3 grid.

A matrix is a collection of rows and columns of numbers that define the location,
scale, and orientation of an object in space. For anything but translation, we would use a
2X2 matrix to represent transformations. But before we get to the more complex exam-
ples, let’s start out with translation.

To translate an object currently located at (x,y) by (xr, yr) relative units, we would add
two 2X1 matrices together, as shown in Figure 5-1. In this figure, we have a point located
at (0,5) that we want to move 5 units to the left and 5 units down.

0 -5 -5
+
5 5 10
Figure 5-1 Translation of an object
For scaling, shearing, and rotation, we have to multiply matrices. This is also where our

2X2 matrices come into play. Figure 5-2 shows the role of each position in the matrix.

scale-x skew-y
skew-x scale-y

Figure 5-2 Definitions of the positions in
a 2x2 matrix

The most basic matrix we could use is the Identity matrix, as shown in Figure 5-3.
The interesting property about the Identity matrix is that for any other matrix, multiply-
ing it by the identity will return the original matrix. We can see from the figure that it
represents a scale of 1 on the x and y axes with no skewing.

1 0
0 1

Figure 5-3 Identity matrix

75

76 Chapter 5 Creating Games with the Canvas Tag

Let’s put the Identity matrix to the test by demonstrating multiplication. To multiply a
2X2 matrix by a 2X1 matrix, we would follow the order indicated in Figure 5-4.You can
also see in this figure that the Identity matrix’s property holds true.

A BI|E AE + BF
C D||F CE + DF

Figure 5-4 Matrix multiplication

Looking again at Figure 5-2, we can easily discern how to do scaling or skewing by
placing our scale or skew constants in the proper slots. Rotation, however, is a bit more
complicated.

Figures 5-5 and 5-6 show the matrixes needed to multiply by the vector representing
some point to rotate it theta degrees about its center.

cos 0 sin 6
-sin 0 cos 0

Figure 5-5 Counterclockwise rotation

cos 0 -sin 0
sin cos 0

Figure 5-6 Clockwise rotation

Ordering Your Transformations

Similar to the order of operations mnemonic device “Please Excuse My Dear Aunt Sally”
(which represents parentheses, exponents, multiplication, division, addition, and subtrac-
tion), transformations have to be applied in a specific order; otherwise, unexpected results
will occur. The issue at hand is that each subsequent matrix that is multiplied builds upon
and distorts the result of the final position. The general order is scaling, rotation, and then
translation.

For example, let’s say you want to draw a box at location (10,10) and you want to
rotate it 2 radians around its center. The current matrix is located at (0,0), as is the box’s
center. You would rotate the box using the desired amount and then translate it to
(10,10). To move it a further 3 radians, you use the inverse order, translating the object
back to the origin and applying the rotation before translating it to its desired location.

Drawing Objects on the Canvas with Transformations 77

When a person does a back flip in real life, he is rotating about his current position. To
account for this in a game, we must move the object to the origin, do the rotation, and
then translate the object back to its original position.

The Canvas allows us to set the transformation matrix directly by calling
setTransform and transform. setTransform sets the matrix to the identity before set-
ting the transformation, whereas transform creates a product of the current matrix and
the developer-provided matrix. Luckily for us, canvas has first-class support for transla-
tion, rotation, and scaling using translate, rotate, and scale. Both translate and
scale take x and y parameters, whereas rotate takes an angle to rotate the matrix in
radians.

Saving and Restoring the Canvas Drawing State

The last thing we need to properly transform objects is a way save and restore the Canvas
state. We need to save and restore the transformation matrix so that we properly isolate
transformations from one object affecting those that are drawn after it. save and restore
do just that. Their combined functionality is similar to hitting a save point in a game,
going down a fork in the road to retrieve some sort of power-up, being able to restore the
state to return to the fork, and keep the power-up.

These functions save and restore not only the current transformation matrix but also
the clipping region and several properties, including strokestyle, fillStyle,
globalAlpha, lineWidth, lineCap, lineJoin, miterLimit, shadowOffsetX,
shadowOffsetY, shadowBlur, shadowColor, font, textAlign,
globalCompositeOperation, and textBaseline. Listing 5-3 shows our updated function
for drawing O sprites and properly handling translation.

Listing 5-3 Drawing Several O’s

self.drawOSprite = function(x, y) {
var ctx = self.context;

// Save the canvas state and translate
ctx.save();
ctx.translate(x,y);

ctx.lineWidth = 2;
ctx.beginPath();

ctx.arc(100,100, 90, 0, 2*Math.PI);
ctx.stroke();

// Restore canvas state
ctx.restore();

78

Chapter 5 Creating Games with the Canvas Tag

Using Images with the Canvas

For every image your game uses, another hit is incurred against the server to retrieve it.
‘We already know from basic HTML how to use the img tag. In this section, we look at a
couple more ways to use images in our applications.

Serving Images with Data URLs

Data URIs provide a way to include the data for a file inline in HTML code.The contents
of the file then get retrieved when the HTML is downloaded, thus reducing the number
of hits to the server and theoretically the wait time. The general format is as follows:

data:[<mime type>][;charset=<charset>][;base64],<encoded data>

Here is a simple data URI inside an image tag:

<img src= “
wAAACWAAAAAD wAOAAACGISPCaG9rhhEcppg8dSQO9+AUUCWpOVOBQA” />

Let’s examine this URI. The original file is a GIF so mime type is set to image/gif.
The MIME type would be image/png, for example, to reflect that the source file is PNG.
charset refers to the character set of the file if the source is a text file. The source file
isn’t text, in this case, so we omit charset. If both the MIME type and character set are
omitted, the default values will be text/plain for the MIME type and us-asc1I for the
character set. The next component, ;base64, indicates whether the data is Base64
encoded. Base64 is used when you need to transmit binary data over a medium that is
more tailored to transmitting text. It is also used sometimes to do basic password encod-
ing for web services. Base64 encoding formats data using A—Z, a—z, and 0-9, plus two
additional printable characters, generally + and /. Many tools on the Web will convert
image files to data URIs. The website www.sveinbjorn.org/dataurlmaker offers a
web-based application along with links to desktop applications.

Serving Images with Spritesheets

Trying to load a bunch of image files, even if they are small in size, can be very taxing on
a server and cause your users to wait a really long time. Spritesheets solve this by packag-
ing the images for many files into one. They are generally used for a large number of
small images of a similar size. Images are padded to have uniform dimensions and can be
retrieved using the images’ calculated coordinates. Image-editing applications such as
GIMP, ImageMagick, and Photoshop can create them for you, and certain web services
can create them as well. Spritesheets can be combined with data URIs.

Drawing Images on the Canvas

Now that we have our images loaded, we need a way to draw them.The Canvas has a
function appropriately named drawImage with several variants. All our examples assume
we have retrieved an image from an image tag using document.getElementById, pulled

www.sveinbjorn.org/dataurlmaker

Animating Objects with Trident.js 79

it from the document.images collection, or created the image directly in JavaScript using
Image() and adding a src URI to it.
The simplest variant is

drawImage(image, x, y)

which draws the image in its entirety with its current size with its left-upper corner at

xy)-
The second variant is

drawImage(image, x, y, width, height)

which, like the first variant, draws the entire image. The last two parameters scale the
drawn image in the Canvas.
The last variant is the most powerful and has the most parameters:

drawImage(image, sx, sy, sWidth, sHeight, dx, dy, dwidth, dHeight)

This one allows you to use only parts of the source image and do scaling on the Canvas.
sx and sy refer to the left-upper corner of the image slice. All data in the bounds of (sx,sy)
and (sx+sWidth, sy+sHeight) is drawn. On the Canvas, the image is drawn in the area of
(dx,dy) and (dx+dWidth, dy+dHeight).

Animating Objects with Trident.js

Trident.js (https://github.com/kirillcool/trident-js) is an animation library for JavaScript
created by Kirill Grouchnikov that was ported from his Java library of the same name.
The main focus of the library comes from the timeline, not that much unlike one in a
video-editing program, allowing us to transition between different states with keyframes.
Easing functions allow objects to move in a more life-like manner. Many timelines with
different functions can operate simultaneously or in a specific order, one at a time. This is
the main reason Trident.js was selected over the myriad of possibilities when it comes to
JavaScript animation libraries.

Trident, at present, uses setTimeout instead of requestAnimationFrame.
requestAnimationFrame determines whether to draw an object based on if the browser
window is obscured of if the page is currently rendering, and it caps the refresh rate to
60Hz. setTimeout does none of this. It tries to render as much as possible even if the app
is still rendering or not in view. Trident is a multipurpose animation library. setTimeout
can be applicable to both DOM- and Canvas-based animation. requestAnimationFrame
cannot. It might seem that the use of setTimeout disqualifies Trident before it even gets
out of the gate. The feature that redeems it is the ability to pause a timeline. This, along
with the other features, temper the disadvantages of using setTimeout.

https://github.com/kirillcool/trident-js

80

Chapter 5 Creating Games with the Canvas Tag

Creating Timelines

The most basic timeline in Trident.js has a duration over which it will run and an object
and property to interpolate. The interpolator tells Trident.js how to make intermediary
values and optional starting and ending values. Timelines work by periodically waking up,
or pulsing, to check how much time has passed and adjusting values appropriately.
Although there is no guarantee on the frequency or time period of timeline pulses, for
most applications, they perform reasonably well and regularly. These attributes are affected
by the load on the client machine and what is being run on each pulse. Listing 5-4 shows
some code to create a timeline.

Listing 5-4 A Timeline to Interpolate Text Size

var rolloverTimeline = new Timeline(myspan.style);
rolloverTimeline.addPropertiesToInterpolate([
{ property: "font-size", from:16, to: 36,
interpolator: new IntPropertyInterpolator()}

1)i

rolloverTimeline.duration = 2000;

First, we instantiate a timeline, assigning the element and property that will be modi-
fied. In this case, it is the style field of an element with the ID “myspan.” Next, we added
the properties that will be modified. In the code, we state that the font size will range
from 16 to 36 units and to interpolate the values as integers. Lastly, we set the duration of
the animation to be 2 seconds (in milliseconds).

As opposed to constantly monitoring the state of the interpolated properties, which
could cause the page to become unresponsive anyways, Trident.js fires a timeline pulse
or an instant in time in which wakes up, checks the state, and modifies it as needed.
Unlike the Java version of Trident, which has a pulse rate of once every 40 ms, the pulse
rate of Trident.js depends on the system load and the runtime environment. That being
said, JavaScript engines in browsers are getting faster and faster with every iteration.
Given the proper load, I wouldn’t expect it to get too bogged down. We can also use a
timeline to control our game loop.You can see this in action in this chapter’s Copy Me
game source code.

The last thing we need to do is to add a way to start our animation. I decided to put
the start and reverse functions on onmouseover and onmouseout in a span element, as
shown in Listing 5-5. Thanks to timeline pulses, the reverse action starts relatively quickly
after onmouseout is fired. In addition to play and playReverse, there is also a replay
function we could use as well to interact with the timeline.

Listing 5-5 Starting and Reversing a Timeline

<span id="myspan"
onmouseover="rolloverTimeline.play();"
onmouseout="rolloverTimeline.playReverse();">Some text

Animating Objects with Trident.js 81

In addition to integers, we could also interpolate over floating-point numbers or even
R GB color values. We just need to set the appropriate “from” and “to” values with a dif-
ferent interpolator: IntPropertyInterpolator, FloatPropertyInterpolator, or
RGBPropertyInterpolator, respectively. We aren’t limited to HTML elements. Trident
can also interpolate properties on JavaScript objects.

Animating with Keyframes

Normal timelines transitions between the beginning and ending points without any con-

trol over any intermediary value. Keyframes provide a way to indicate what a value should
be at a given point on the timeline. A new field called goingThrough is where you would
specify the values on the range from 0 (beginning of timeline) to 1 (end of timeline).You

can see keyframes in action in Listing 5-6.

Listing 5-6 Animating a Timeline with Keyframes

var keyframeTimeline = new Timeline(keyframespan.style);
keyframeTimeline.addPropertiesToInterpolate([
{ property: "font-size", from:16, to:36,
interpolator: new IntPropertyInterpolator()

}l
property:"color",
goingThrough: {
0: "rgb(0,0,0)",
0.4:"rgb(0,255,0)",
1:"rgb(200,140,140)"
}l
interpolator: new RGBPropertyInterpolator()
}

1)i

keyframeTimeline.duration = 3000;

Creating Nonlinear Timelines with Easing

By default in Trident.js, object and transitions happen at an equal rate of speed from start
to finish. This is not what we usually see in real life. Friction, inertia, and other forces are
in play that will cause an object to accelerate, decelerate, or bounce. Although doing pre-
cise physics calculations is outside the scope of this chapter, we can use easing functions to
bring our animations somewhat close to what is expected. Given a ball that moves up and
down on the y-axis, Figure 5-7 shows regular linear motion where every unit of time
passed corresponds to one unit of movement on the y-axis. Figure 5-8 shows a bounce
effect. We can see a couple of rebounds along the y-axis. Also notice the sharp decline on
some of the segments, which corresponds to a faster speed.

82 Chapter 5 Creating Games with the Canvas Tag

Figure 5-7 Graph of linear motion

Figure 5-8 Graph of a bounce easing function

Trident.js, at the time of this writing, has 31 easing functions. Rather than list them
here, I encourage you to download the source and try out the testBallLoop page for
yourself. We will cover easing functions again when we discuss SVG in Chapter 6, “Creat-
ing Games with SVG and Rapha&l]S.”

Animating Objects with Trident.js

Animating Game Objects with Spritesheets

After learning how to slice and dice our images to draw on the Canvas, we can use some
Trident.js timelines to create animations. The sprites for this demo were sourced from
OpenGameArt (http://opengameart.org). All of the game assets listed on the site have
very permissive licenses and are free to use in games. The spritesheet I selected for the
demo is of a walking zombie that is subsequently shot in the head. All of the individual
frames are 128 pixels by 128 pixels. Let’s begin by setting up our timeline to control the
animation. Given a JavaScript function named Sprites, Listing 5-7 shows the code from
the initialization function that sets up the timeline.

Listing 5-7 Setting Up the Timeline for an Animation

self.init = function() {
// Truncated for brevity
var self = this;
self.current = 0;
self.spriteTimeline = new Timeline(this);
self.spriteTimeline.addPropertiesToInterpolate ([
{ property: "current", from:0, to: 36,
interpolator: new IntPropertyInterpolator()}

1)i

self.spriteTimeline.duration = 5000;
self.spriteTimeline.addEventListener("onpulse,
function (timeline, durationFraction, timelinePosition) {
self.drawSprite();
}i
self.spriteTimeline.play();

One notable difference between this and the other examples so far is that the parame-
ter for a new timeline is this, referring to the current object. The other difference is how
we handle drawing on the Canvas. Unlike with CSS properties, which are automatically
propagated to HTML elements, we have to make the changes in two steps. First, we set
up a listener to fire every time the timeline position is updated. When the timeline is
played, it modifies the current property, which is used by drawsprite function to calcu-
late the proper slice to draw. Listing 5-8 shows the code to draw an individual sprite.

83

http://opengameart.org

84

Chapter 5 Creating Games with the Canvas Tag

Listing 5-8 Drawing an Individual Sprite

self.drawSprite = function() {
var ctx = self.context;
var row = 3;
ctx.clearRect(0, 0, 128, 128);
ctx.drawImage(self.sheet, self.current *128,
row*128, 128, 128, 0, 0, 128, 128);

Simulating 3D in 2D Space

Starting back in the arcade and early console days, the ability to simulate three dimensions
in 2D space made for a more pleasing game experience. At that time, real 3D wasn’t pos-
sible, and simulated 3D (called 2.5D) was the only option. In a way, the more things
change, the more they stay the same. At this time of writing, the 2D Canvas API was
more widely supported, with WebGL being regulated to experimental status. As a result, a
2.5D game in Canvas will have more potential users that one in WebGL. Another advan-
tage of 2.5D is that it can potentially take less computing power than a true 3D game. In
this section, we discuss some of the options to create a 2.5D experience.

Perspective Projection

Perspective projection seeks to mimic how the human eye sees objects. What our eyes see
is a 2D projection of a scene in 3D. Several things are happening in concert that give us a
perception of depth. For example, distant objects appear smaller and with less detail than
closer objects. The simplest form and most appropriate for 2D games is one-point per-
spective. This point is known as the vanishing point, and it is the point where parallel lines
appear to converge. Figure 5-9 shows an example of this in action with a graphic created
in the 3D modeling application Blender. Orthographic projection is a way to represent a
3D object in 2D space. Images are created for the top, bottom, left, right, front, and back
of the object. Often, just the information from the front, top, and right views are enough
to recreate the object. The views on the right side of the figure are the top and side
views, respectively. In the perspective view on the left, we can see the edges of the
rectangles appear to be slowly converging toward a point on the horizon. We could
heighten the effect by texturing closer objects in more detail than distant object.

Simulating 3D in 2D Space

Figure 5-9 Perspective projection rendered in Blender

Parallaxing

One technique that is often used in side-scrolling video games such as Super Mario Broth-
ers and Sonic the Hedgehog to simulate three dimensions and create a more immersive
experience is parallaxing. We can create the effect by making different components of the
background exist as separate, independently movable layers that move at different speeds.
It is similar to what you would experience if you were a passenger in a car riding across a
bridge. The cars and barriers around you would move relatively fast compared to a city
skyline you might see far in the distance. Let’s dig a little deeper by creating a parallax
effect ourselves.

Creating a Parallax Effect with JavaScript

For this demo, I have created some rudimentary graphics, including a sky dome layer rep-
resenting the sky and clouds, a mountain range layer, and a layer showing the ground and
other near objects. These are PNGs, but any image format that allows transparency will
do. Each is like a sheet of paper with cutouts that let you see through to the sheet below
it. This concept is known as z-ordering.

85

86

Chapter 5 Creating Games with the Canvas Tag

To keep things simple, our animation will continuously move. However, in a real side-
scrolling game, motion would respond to player input such as a key press or move of the
mouse. Besides the backmost layer, which is usually stationary, each layer moves at a rate
100% faster than the one behind it. We can start by setting up our timeline as shown in
Listing 5-9. Because we’ll be using multiple layers of images, we will use the
timelinePosition value directly and draw our layers every time there is a pulse.

Listing 5-9 Setting Up the Parallax Timeline

self.setupTimeline = function() {
self.parallaxTimeline = new Timeline(this);

self.parallaxTimeline.duration = 5000;
self.parallaxTimeline.addEventListener("onpulse",
function (timeline, durationFraction, timelinePosition) {
var ctx = self.context;
ctx.clearRect(0, 0, 320, 200);
// background layer is stationary
ctx.drawImage (document.images[0], 0, 0);

self.drawLayer(timelinePosition, document.images[1]);

self.drawLayer(timelinePosition, document.images[2]);

self.drawLayer(timelinePosition, document.images[3]);
i
self.parallaxTimeline.playInfiniteLoop(RepeatBehavior.LOOP);

We begin by clearing the Canvas and drawing our background. We are drawing it
whole with no transformations, so we can use the simplest drawImage function. Its size is
320 pixels by 200 pixels. Each of our other layers will have a width that is some multiple
of 320 pixels. Doing so frees us from having to perform much calculation for the speed of
the layers. Layer 1 has a width of 320 pixels, so a full cycle of the timeline will only move
it that far. However, layers 2 and 3, which are 640 pixels wide and 960 pixels wide, respec-
tively, have to cover a greater distance in the same amount of time.

You won't be able to escape a little bit of math. The scrolling effect doesn’t come for
free, but luckily it requires only a minimal amount of arithmetic. Listing 5-10 shows our
function for drawing a layer given a position in the timeline.

Listing 5-10 Drawing a Layer

self.drawLayer = function(position, image) {
var ctx = self.context;

var startX = position*image.width;
var pixelsLeft = image.width - startX;
var pixelsToDraw;

Creating Copy Me 87

ctx.drawImage(image, startX, 0, pixelsLeft, 200, 0, 0, pixelsLeft, 200);
if (pixelsLeft < 320) {
pixelsToDraw = image.width - pixelsLeft;
ctx.drawImage(image, 0, 0, pixelsToDraw, 200,
pixelsLeft-1, 0, pixelsToDraw, 200);

Based on the timeline position, we can calculate where in the source image to start
retrieving pixels to draw. If there aren’t enough pixels to fill the viewport, we calculate
how many pixels we need to draw (pixelsTobraw) and we draw a portion from the
beginning of the source image to fill that space.To avoid having a 1-pixel gap between
the seams of the image, we decrement the destination x position in the Canvas by 1 to
cleanly stitch everything together.

Creating Copy Me

To put some more of what you’ve learned so far into practice, we will create a clone of
the old electronic memory game Simon called Copy Me. The game’s name is a play on
children’s game Simon Says, where the players must do everything that Simon says to do.
In the game Simon, the computer creates a sequence of tones for the player to mimic. As
each tone is played, a corresponding light—either red, green, blue, or yellow—illuminates.
With each passing round, the sequence is increased by one. Game play continues until the
player makes a mistake.

Drawing Our Game Objects

Instead of making our game look just like the traditional Simon game, we will instead use
rectangles and drop shadows, thus taking advantage of some other features of the Canvas
Path API. Listing 5-11 shows the code to create one of the rectangles.

Listing 5-11 Drawing a Rectangle with a Shadow

ctx.save();

ctx.fillStyle = "rgb(150,150,0)";
ctx.shadowOffsetX = yellowOffset.x;
ctx.shadowOffsetY = yellowOffset.y;
ctx.beginPath();

ctx.rect (400,200, 200,200);
ctx.fill();

ctx.restore();

88

Chapter 5 Creating Games with the Canvas Tag

The rect function takes the x and y coordinates of the left corner—in this case
(400,200)—followed by the width and height. Creating drop shadows is easy as well. It is
important to note that the shadowColor needs to be set on the context before a shadow
can be drawn. Figure 5-10 shows the completed game board.

Copy Me

Round 2

Figure 5-10 The Copy Me game board

Making the Game Tones

‘When I think of a game from the 1970s, I immediately think of the 8-bit sound board
that was melodic yet electronic. To duplicate that effect, we could try to find tones or we
could create them ourselves using MIDI, the Musical Instrument Digital Interface. The
advantage that MIDI gives us is that software packages are available that allow use to create
our tones using a text file. MIDI also gives us the flexibility of using the files as is, depend-
ing on the instruments available on the client machine, or converting to WAV or MP3 to
bring obscure and unique instruments to our games. We only need four tones, so this is
very manageable for our needs. Convention states that tones be organized as follows:

Creating Copy Me 89

» Red button: An A note
= Green button: An A note one octave up from the red button
= Blue button: A D note, a fourth above the green button

= Yellow button: A G note, a fourth above the blue button

Several software projects are available that can generate MIDI files (GarageBand, for
instance) and several can even use text files to do it. Because I didn’t have a musical key-
board handy, I went the text route. Two of the more popular text-to-MIDI applications
are Lilypond and ABC notation. However, both are more suited to creating long-form
compositions and are overkill for our four-note “score.” What’s more, their notation styles
are a bit complicated. I instead went with JFugue, a Java API for programming sequences
without the complexity of MIDI. With about ten lines of code, I was able to hear all the
tones together to determine whether they sounded right. It’s not JavaScript, but you can’t
really argue with concise code. After creating the MIDI file with Java, we can use a MIDI
editor/sequencer such as GarageBand to chop up the “score” into one-note pieces and
convert them to WAV or MP3 files.

Listing 5-12 shows our tones, starting at the fourth octave, with a half~note duration
and played as a harpsichord. Include just a single note after the instrument designation,
and we have a single-note MIDI file. Easy peasy.

Listing 5-12 Generating MIDI Tones with JFugue

import org.jfugue.Player;
public class TestMidi {
public static void main(String [] args) {
Player player = new Player();
String musicString ="I[Harpsichord] A4h A5h D5h G5h";
player.play(musicString);
player.saveMidi (musicString,
new File("/Users/jwill/Desktop/test.mid"));

Playing MIDI Files in the Browser

Now that we have our MIDI files, we have a slight problem. We don’t have a means to
play them. Some browsers do have plug-ins to play .mid files, but they don’t give us the
programmatic control we need for our game. Lucky for us, the jasmid (https://github.
com/gasman/jasmid) project fills that need. It can parse and play MIDI files using the
HTML5 Audio API with a fallback to Flash. At runtime, the .wav files are generated and
piped to the Audio API. A fair bit of work is involved in retrieving the file and assigning
an instrument, so it will be an exercise for the intrepid to venture down that path. I fully
expect browsers to eventually have native MIDI support as they currently support other

https://github.com/gasman/jasmid
https://github.com/gasman/jasmid

90

Chapter 5 Creating Games with the Canvas Tag

sound file formats. In the meantime, some of the effort can be cut by preprocessing MIDI
into another sound format such as WAV, MP3, or OGG.The open-source project Audac-
ity does a fairly good job of this task, along with fulfilling other audio-editing needs.

Playing Multiple Sounds at Once

You saw in Chapter 1,“Introducing HTML5,” how we could use the Audio API to write
HTML or JavaScript code to play sound. One thing that we didn’t cover in that chapter
was playing multiple sounds at once. It’s a bit more complicated than just piping multiple
sounds at once to an Audio object and executing play().

Each audio object can only do a single thing at once. When you call play on some-
thing that is already playing, it silently ignores the request. If you wait until slightly after it
has finished playing to try and play it again, it will probably work. If your sounds some-
times don’t play, it could ruin the game experience and make people think your game is
wonky. The way we can solve this is instead of creating a Audio object for each sound, we
create a pool of Audio objects that we can iterate through, looking for one that isn’t cur-
rently playing. We can check the status by comparing the duration and the
currentTime. If they are equal, the sound has finished playing and we can use the chan-
nel. If not, the sound is either playing or cueing up to play.You can see this code in action
in Listing 5-13.

Listing 5-13 Playing Multiple Sounds

var numChannels = 10;
channels = new Array();
for (var i = 0; i<numChannels; i++) {
channels[i] = new Audio();
}
var play multi_channel = function(id) {
for (var i = 0; i<channels.length; i++) {
if (isNaN(channels[i].duration) ||
channels[i].duration == channels[i].currentTime) {
channels[i].src = document.getElementById(id).src;
channels[i].load();
channels[i].play();
console.log("Playing on Channel: "+i);
break;

This code assumes that the sounds will be enclosed in audio tags, but we could just as
easily pass in the URLs to the files.

Creating Copy Me 91

Playing Sounds Sequentially

Although the method described in the previous section would be great for a side-
scroller, it doesn’t serve us that well for the Copy Me game. One sound shouldn’t play until
the other one has finished playing. We can do this by registering listeners for the ended
event on Audio objects. We need an array of objects, self.audios, to which we have
added objects containing an Audio object and a timeline like in the following snippet:

self.audios.push(
{audio: new Audio(self.sounds.red), timeline: self.timelines.red});

When the audio plays, the timeline will also be executed to simulate a color pulse. On
every Audio element except the last on in the sequence, we need to execute

self.audios[i].audio.addEventListener('ended', self.playNext, false);

self.playNext very simply increments the counter, noting the current position, plays
the sound, and starts the timeline to blink the proper rectangle, as shown in Listing 5-14.

Listing 5-14 Playing the Next Sound

self.playNext = function() {
var j = self.currentPosition++;
self.audios[j].audio.play();
self.audios[j].timeline.play();

Drawing Our Game Text

The Canvas 2D contex gives us some basic functions to draw text. We can draw filled or
stroked (outlined) text, set font attributes, and set text alignment. Listing 5-15 shows the
code to draw a couple strings in our game. The £i11Text and strokeText functions take
as parameters the text string to draw and x and y coordinates from which to start drawing
text. An optional parameter, maxwidth, scales the font size to fit in that width. Our font
string is composed of the attributes we specify, such as the weight (bold or italic), the font
size, and the desired font with fallback options.

Listing 5-15 Drawing the Copy Me Game Text

var ctx = self.context;

ctx.font="bold 24px Arial, sans-serif";
ctx.fillText("Copy Me", 250,250);
ctx.fillText("Round " + self.currentRound, 250,300);

92

Chapter 5 Creating Games with the Canvas Tag

Styling Text with CSS Fonts

Although we can relatively guarantee that some fonts with be available on most operating
systems, such as Arial, Georgia, and Times New Roman, sometimes you might want a
font that isn’t included by default on the client’s machine. With CSS fonts, we can bundle
them with our games. Whereas for a regular website, it might be appropriate to use a font
loader that pulls from the Web, this doesn’t work well with the Canvas unless we can
ensure that the fonts are loaded before the Canvas is drawn. Otherwise, we have a big
empty space where our text should go or text in the default font.

Listing 5-16 shows the code in a fonts.css file. In it, we have listed the font family of
the included TrueType font file and the format of the font file, generally either TrueType
or OpenType. This code loads the ReenieBeanie font asynchronously. We can ensure it’s
loaded in a rudimentary way by calling setTimeout with an interval of 3 to 5 seconds,
depending on the number of fonts we are loading. A more elegant means is to employ a
loading screen that waits for user input before starting the game or directly embedding
the fonts using data URIs.

Listing 5-16 CSS File Demonstrating the Use of font-face

@font-face {
font-family: 'ReenieBeanie’;
src: url('../ttf/ReenieBeanie.ttf') format("TrueType");

We now just need to include that CSS file in the HTML page hosting our Canvas:

<link href='css/fonts.css' rel='stylesheet' type='text/css'>

Now we're all set. ReenieBeanie is downloaded from the Google Font Directory
(http://code.google.com/webfonts), which has very permissive licenses for the all the
listed fonts. Another great resource is the Open Font Library (http://openfontlibrary.
org/). Be sure to verify the license terms of any font you include with your games.

Summary

In this chapter, through the development of several games and game-related examples,
we dove deep into the Canvas 2D context.You learned how to animate images on a can-
vas, draw primitives, and create text. In the later examples, we wove together MIDI
sounds and bundled fonts into our game.

http://code.google.com/webfonts
http://openfontlibrary.org/
http://openfontlibrary.org/

Exercises 93

Exercises

1. Convert 290 degrees to radians.

2. How would you play a theme song for your game level and then play sounds for
actions such as jumping and kicking without interrupting the theme song?

3. Despite the small file size, why might you not use MIDI directly for game sounds?

You can download chapter code and answers to the chapter exercises at www.
informit.com/title/9780321767363.

www.informit.com/title/9780321767363
www.informit.com/title/9780321767363

This page intentionally left blank

0

Creating Games with

SVG and Raphaél]S

One of the problems we saw when creating games with Canvas was that we had to
independently track mouse interactions and locations of the drawn objects after rendering
was complete. Scalable Vector Graphics (SVG) addresses these concerns by giving us a
means to draw objects while retaining their locations as well as to receive events and
modify them. In this chapter, you learn the essentials of SVG to get started in creating
games. We also discuss how it compares to Canvas in regard to rendering capabilities and
the subset of SVG that most clients implement.

Introduction to SVG

Compared to other elements of HTML5, SVG is a relatively mature component, first
released in 2001, with its most recent release in December 2008. Unlike Canvas, it uses an
XML-based format that stores instructions to draw components. As a result, an object
drawn in pure SVG can be scaled up with no loss in quality. Figure 6-1 shows a raster
(Canvas) image that’s scaled to quadruple its size. An SVG image wouldn’t have the blur-
ring and jagginess.

One area where Canvas and SVG are similar is in the primitives they ofter for draw-
ing. Both offer the following primitives and effects:

Circles or arcs

Lines or paths

Polygons

Strokes

Text

Gradients

Embedding of images

Clipping, masking, and compositing

96 Chapter 6 Creating Games with SVG and RaphaélJS

Figure 6-1 Scaled raster image using Canvas

Both are largely unsupported by versions of Internet Explorer previous to Internet
Explorer 9, which will support both Canvas and SVG. Beyond the purely drawing-
based functions, SVG objects can be scripted with JavaScript and can respond to the
following events:

click
doubleclick
hover
mouseover
mouseout
mouseup
mousedown

mousemove

In some implementations, SVG supports keystroke, mousewheel, and textinput

events as well. In the browser, keystroke events are a point of overlap with the native

capabilities of most modern web browsers. Modern browsers can also directly embed SVG

objects, enabling them to be used to render complete web pages as is done with Flash.
Chapter 8, “Creating Games Without JavaScript,” introduces another means to create
SVG assets using the Java programming language, but the current chapter will use two
more widely methods: RaphaélJS, a JavaScript library with capabilities to render in
browsers earlier than IE9 for dynamic assets, and Inkscape, an open-source vector graphics

application similar to Adobe Ilustrator for more complex static assets. If you haven’t

First Steps with RaphaélJS

installed Inkscape (http://inkscape.org/) or your preferred vector graphics application,
take a moment and do so.

First Steps with RaphaellS

For our first experience with Raphaél]S (http://raphaeljs.com/), we will be creating a
simple card match game.This will allow us to keep the focus mostly on SVG and not the
game logic. Our game will display several rows of cards on the game board and include a
timer and a counter for how many moves have been completed. Figure 6-2 shows a frame
from our completed game.

Card Match Game

Figure 6-2 Screenshot from card match game

Setting Up Our Development Environment

Some web browsers are more stringent that others in allowing you to reference JavaScript
files from your local machine and require you to host your JavaScript on a server. This can
be unwieldy and prone to latency if your web server is far away from your present loca-
tion. The flow of editing a file, uploading it, and checking the updated result gets old
really fast. That is, of course, if you aren’t editing files directly on your server. And you’re
not doing that, are you?

97

http://inkscape.org/
http://raphaeljs.com/

98

Chapter 6 Creating Games with SVG and RaphaélJS

Luckily for us, Java has a lightweight server called Jetty that we can use locally to simu-
late a running server. Don’t worry, you won't actually have to write any Java code, but
you will have to work a little command-line mojo to get the server started. In the code
directory for this chapter is a directory called webserver. Copy it to your working direc-
tory (or somewhere higher if you want to access multiple directories). Provided that you
have Java installed, in a command prompt, enter the following:

java -jar webserver/webserver.jar

This command starts a Jetty server listening on localhost port 8080. If you don’t like
Java, feel free to substitute a local instance using your preferred technology, such as
Django, Node.js, or Rails. Now that we can test our game locally, just like it were live on
a server, let’s create the game board.

Drawing the Game Board

The area where a SVG drawing is displayed in a web page is often called a “canvas.” But
to reduce confusion with the HTML5 Canvas, we will be using the Raphaél term
“paper.” We first need to create a paper to draw our game. Raphaél has several overloaded
constructors to create a paper, but we will use the version that takes a DOMElement
name, a width, and a height. After creating the paper, which is transparent by default, we
need to create a rectangle background for our game board. Listing 6-1 shows the code to
create these elements.

Listing 6-1 Initializing the Game Board

<script src="raphael.js" type="text/javascript"/>
<script type="text/javascript">
var paper = Raphael("gameBoard", 800, 600);
/* Draw at 0,0 with a 800px width and 600px height
and rounded corners [optional param].

*/
var rect = paper.rect(0, 0, 800, 600, 15);
rect.attr({
£ill: '#090', /* £ill with a greenish color */
stroke: '#000" /* draw a black border */
})i
</script>
<body>
<div id="gameBoard"/>
</body>

In Listing 6-1, we draw a rectangle and apply a fill and a stroke to it. We aren’t limited
to those attributes, however. Table 6-1 shows the other attributes we can apply to most
objects.

First Steps with RaphaélJS 99

Table 6-1 Drawing Attributes

Attribute Name Description

cursor Sets the cursor to display.

£i11 The color to fill in a closed object or path.

fill-opacity The opacity of the color fill.

stroke The color of the line outlining a path or closed object.
stroke-width The thickness of the line outlining a path or closed object.
opacity The global translucency of the object.

path A set of coordinates and instructions to draw complex objects.

(This attribute is discussed in detail later in this chapter.)

Next, we need to draw the text for our title.

Drawing Game Text

Raphaél gives us several options to draw text, and we can even alter attributes on the text
such as the color and fill values after they are drawn. We can draw text in the default
browser font and with a white fill by executing code like the following, where the first
two parameters specify the x and y positions, followed by the text string to print. Includ-
ing \n inserts carriage returns in the output text:

var text = paper.text(600, 50, "Timer");
As you saw in Listing 6-2, objects can have attributes applied to them as a JSON map
or as a single pair in the form obj.attr("attribute", "value").Attributes that are not

applicable to the current object are ignored silently. Table 6-2 shows a list of the attributes
we can attach to a text string.

Table 6-2 Font Attributes

Attribute Name Description
font The name of a font to be used
font-family A set of fonts with the same general style but having different

font sizes, weights, and styles
font-size The size of the specified font’s text
font-weight The style of the text (bold, plain, or italic)

100

Chapter 6 Creating Games with SVG and RaphaélJS

Custom Fonts

Sometimes, the basic fonts won’t do. Why should your games be limited to the same hand-
ful of fonts guaranteed to be present on all computers, thus limiting your creativity and
style? Well, the good news is that, thanks to Cufon, they don’t have to.

Cufén is a tool that allows you to take proprietary fonts and convert them to a
JavaScript format that can be used to style text. So if the graphic designers of the world
unite and succeed with getting Comic Sans stricken from all the world’s browsers, rest
assured you can include it in your games if you so choose. One of the other benefits of
Cufén is the reduction in size versus native font formats such as TTF and OTE The proj-
ect claims a reduction of 60% to 80% in file size.You can have the best of both worlds by
not needing a plug-in like Flash and not needing to embed large font files and thus slow
down loading time.

It’s fairly easy to convert a font using Cufén. Navigate to http://cufon.shoqolate.com/
generate/ to convert fonts online or download the code to run the conversion tool on
your own server. The Cufén generator allows you to specify fonts for the default weights
beyond the regular weight, including bold, italic, and bold italic. You can also modify the
given font-family identifier. Figure 6-3 shows these options.

Figure 6-3 Selecting font typefaces to convert

Figure 6-4 shows the different combinations of glyphs you can output in the gener-
ated font. This is an area where we can further reduce the size of the output font. The
default selection is Basic Latin, which includes the uppercase and lowercase alphabet, dig-
its, and punctuation. Options such as Latin Extended-A and B, Cyrillic, Russian, and
Greek depend on the underlying capabilities of the font. Those extended character sets
might not be available, so use caution to verify they are there if you need to use them.

Cufén gives us some other option for restricting a font to a certain domain and mak-
ing the output file even smaller. However, the option I'm most interested in is shown in
Figure 6-5. On the right side is a teeny-tiny Raphaél symbol that formats the font for use
in Raphaél. If you forget to tick it, or find a Cufdn file you’d like to use, don’t fret.You
can convert a Cufén file for use with Raphaél by performing a Find operation on Cufén
and replacing instances with Rapha€l. This is the part of the book where I tell you to not
steal. All fonts aren’t created equal, and many of them have field of use restrictions. Make

http://cufon.shoqolate.com/generate/
http://cufon.shoqolate.com/generate/

sure you investigate what licenses the fonts you want to use have. Conversely, you could
stick to open-source and royalty-free fonts, which are freely available on the Internet.

Custom Fonts

Uppercans

Lowerease

Mumarsis

e Latin digits (0-8), (10 gypha)

Punctation

WordPress punchuation

Dasic Latin uppercase letars (A-Z). (26 ghghsl

Blasic Latin lwescass lebors (a-ch (26 glyphs)

Barsic Latin punctuation (1% {33 glyphs)

Inclues all availabin ghiins. Highty camscammended.

«and aisg thess singls charactars

crd WeoedPress gurchation. it ot (12 ghruhs)
¥ mak Latin
[haetic Latin glyphe within tha Usicads 195 grvpha)
Latine Supplement
Latn giyps Inciuch tuation, cumency symbols, numesals and common accenied characiers. (36 ohyphs)
Latin Extented-a
Exteratend | ne .‘. 1128 ghyphs)
Latin Extended s
Extarcdad Lain glyph £ a {208 glyphe)
Cyrilic Alphabet
Fora complets st see - fup In 432 giypha)
Russian Alphabst
mud i e Flussian languagn, (58 ghyits)
Greak and Coptic
and Far, Bee Gresk - fup to 144 giypha)

Figure 6-4 Selecting glyphs to convert

The

ipt will the font data

Cufon registerFont

L®

Unlike the
text(...)

Figure 6-5 Font customization

function we used before, there is another function, called

print(...)

in Raphaél that gives us a great deal of granular control over characters. Whereas
attributes on a string created with text(...) apply for all characters, strings created

with print(...) can be applied on a character-by-character basis. The same is true with

animations.

101

102

Chapter 6 Creating Games with SVG and RaphaélJS

SVG and the attributes Raphaél exposes allow us to truly interact with the Web and
link to other SVG documents or web pages, and thanks to search engine mojo, those links
are discoverable. Listing 6-2 shows several rectangles and a circle that navigate different
websites.

Listing 6-2 Linking to an External Document

var paper = Raphael(0, 0, 300, 300);
var circle = paper.circle(50, 50, 40);
circle.attr({fill: '#F00'});

circle.node.onclick = function () {
document.location = "http://facebook.com";

b

circle.node.onmouseover = function () {

console.log("over at "+ new Date());
bi
var r = paper.rect(200,100, 40, 40);
r.attr("£ill1", "#00C");
r.click(function () {
document.location = "http://amazon.com";
})i
var rect = paper.rect(150,200, 80, 80);
rect.attr({fill:"#0F0", href:"http://google.com"});

Listing 6-2 demonstrates several things. First, we see the first use of the node keyword,
which specifies that you want to access and manipulate the underlying DOMElement.
Alternatively, for the most common event types, we can attach the listener function
directly to the element like we did with the blue rectangle. Although all three will forward
the browser to a different page, it is important to note that only the last element with the
href attribute acts like a conventional link, changing the cursor to a “clicky hand.” Table
6-3 shows some other attributes that an SVG object can use to link documents.

Table 6-3 Linking Attributes

Attribute Name Description
href Turns the associated object into a hyperlink
target A sub-element on a href page to link to

‘We’d like to have our game text use a font that will most likely be present on users’
machines, so along side the font size, we will specify a list of fonts to attempt. If none of
them are present, Raphaél will fail back to a sans serif font. Listing 6-3 shows how we can
make it this happen.

Custom Fonts 103

Listing 6-3 Setting Attributes on Text Blocks
var attrList = {fill:"#FFF", stroke: 2};
var gameTitle = paper.print(150,30,
"Card Match Game", paper.getFont("Droid Sans", "bold"), 48

)
gameTitle.attr(attrList)

Specifying Color

In the earlier examples, we indicated color by using a simple three-character hexadecimal
representation for the red, green, and blue values. Raphaél provides many different ways
to specify color. In addition to the shortened RGB hexadecimal format, we can specify
colors using the identifiers shown in Table 6-4.

Table 6-4 Methods to Specify Color

Method Description
Color name A string specifying one of the 147 colors defined in HTML and
CSsS.

Examples: "yellow", "green", "pink"

Color channel Specifies the values of red, green, and blue as values from O to
255 or as percentages from 0% to 100%. Optionally, an alpha
channel can be specified using the same methods.

Example: rgb(140,200,10), rgba(100%, 5%, 20%, 90%)

Hexadecimal Represents a color using hexadecimal format. Both the shortened
(#RGB) and long forms (#RRGGBB) are supported.

Hue, Saturation, Represents a color using hue, saturation, and brightness values

Brightness, (Alpha) between 0.0 and 1.0, inclusive. Alternatively, percentages can be

used and opacity can be specified.

SVG also supports gradients, which allow you to smoothly transition between colors at
given intervals. They take a little bit more work to specify. Gradients fall into two major
categories: linear and radial. Linear gradients assume one dimension of influence, with a
vector extending into space and some angle of incidence and with the resulting gradient
matching the vector. Linear gradients take the general form

angle-color[-color[:offset]]*-color

where angle is the angle of incidence/depart, followed by a hyphen and a color. After the
initial color, any number of optional transition stops can be specified. They are demarked
by a hyphen, a color, a colon, and an optional percentage of the offset from the origin of
the vector. If the offset isn’t specified, the transitions will be equally divided between all

104

Chapter 6 Creating Games with SVG and RaphaélJS

the colors. Finally, a terminal color is listed. Note that any of the methods

for indicating a color can be mixed and matched in gradients. So even though something
like

10-blue-rgb(0%,100%,0)-rgba(255,0,0,255)-hsb(0.5, 1.0, 1)

is totally valid, it is a really bad idea to use when it comes to quickly discerning the transi-
tions because mixing and matching affect readability.

Radial gradients, on the other hand, work in two dimensions. The gradient effect
extends in all directions from a focal point somewhere inside the object. Radial gradients
can only be applied to ellipses (including circles). This is only a compatibility issue,
because SVG supports assigning radial gradients to any object.

Radial gradients take the following form:

r[(fx, fy)]color[-color[:offset]]*-color

Besides the focal point, generally you can easily convert a linear gradient to a radial
gradient by dropping the angle, which no longer applies, and adding an r. For example,
our ill-fated example from before becomes this:

rblue-rgb(0%,100%,0)-rgba(255,0,0,255)-hsb(0.5, 1.0, 1)

The focal point for a radial gradient is composed of two values, from 0 to 1, inclusive.
The default value is “0.5, 0.5, which creates concentric color circles. Changing the focal
point values moves that point into one of the four quadrants.

Loading Game Assets

Although it would be interesting to try and draw our own assets for playing cards, the
DRY (Don’t Repeat Yourself) principle applies here. Instead of wasting time on that, we
can use assets from the open-source project SVG-cards (http://svg-cards.sourceforge.
net/) for our card fronts and backs. Figure 6-6 shows the default card designs from SVG-
cards. If we instead choose to be creative, we could substitute a custom card back.

*
o

e
&
o P
ok

Figure 6-6 Front and back examples
from SVG-cards

-!-
3

http://svg-cards.sourceforge.net/
http://svg-cards.sourceforge.net/

Creating Our Game Classes

The way that Raphaél stores SVG is a subset of the SVG specification, so we can’t just
take any SVG file and manipulate it in Rapha&l. Several parsers are available on the Inter-
net that can take a raw SVG file and create Raphaél code to render it. Our other option
is to render the complex portions of the object to a bitmap file and use it to skin a sim-
pler object in Raphaél. The latter option is the best for our simple game. If we had ren-
dered the cards as vector objects, the renderer would have to redraw intricate designs such
as face cards over and over again, thus slowing the interactivity of the game. Luckily for
us, in addition to being able to read and create SVG files, Inkscape can also convert them
to PNG, PDE Postscript, and several other file formats.

Converting SVG Files to Bitmap Images
In SVG-cards, each card is stored in a group with the name of the card and suit in the fol-
lowing format:

{1,2,3,4,5,6,7,8,9,10,jack,queen,king} {club, diamond, spade, heart}
{red,black} joker

To convert, say, the two of clubs, we would open an Inkscape shell by typing this:

inkscape -shell

The interactive shell allows us to run several commands in succession without spawn-
ing a bunch of Inkscape processes. We then need to specify the parameters for the request:

> svg-cards.svg -i 2_club -e 2_club.png

The code samples directory for this chapter contains the required converted assets for
this project. Now that we have our card images and card backs as a bitmap file, we just
need to create our classes for the interaction.

Creating Our Game Classes

The first classes we should create are the card and Deck classes. Our Deck class will allow
us to specify a number of decks, shuffle them, and deal cards. Our card class contains
properties for storing the ordinal and suit values with paths to the card back and front.
The path for the image showing on the front of the card is constructed from the ordinal
and suit. The card also knows how to draw itself at a given position with a paper object.
The peck class contains a collection of cards and has a notion of shuffling and dealing
cards. Listings 6-4 and 6-5 display the basic framework for our card and Deck classes,
respectively.

Listing 6-4 card Class Source Code
/*
Defines the Card object.
@author jwill

*/
function Card(ordinal, suit) {

105

106 Chapter 6 Creating Games with SVG and RaphaélJS

if (!(this instanceof arguments.callee)) {
return new arguments.callee(arguments);
}
var ord;
var suit;
var cardBackPath = "";
var cardFrontPath = "";

var self = this;

self.init = function() {
var paper = Raphael($("#gameboard")0, 800,600);
self.ord = ordinal;
self.suit = suit

bi
self.createCard = function(ordinal, suit) { ¥
self.init();

Listing 6-5 Deck Class Source Code

/*
Defines the Deck object.
@author jwill
*/
function Deck(numDecks) {
if (!(this instanceof arguments.callee)) {
return new arguments.callee(arguments);
}
var cards;
var self = this;
self.init = function() {
var paper = Raphael($("#gameboard")[0], 800,600);
self.cards = new Array(52 * numDecks);
self.initCards();
}
self.initCards = function() {
// Initialize the cards
var ordinals = ['1','2','3','4','5"','6', '7', '8', '9', '10', 'jack',
= 'queen', 'king',];
var suits = ['club', 'spade', 'heart', 'diamond’'];
// Populate card array
for (var k = 0; k<numDecks; k++) {
for (var j = 0; j < suits.length; j++) {
for (var i = 0; i < ordinals.length; i++) {
var index = (i + (j*13) + (k*52));
self.cards[index] = new Card(ordinals[i],suits[j]);

Creating Our Game Classes

}
} // shuffle the decks
self.shuffleDecks();
} self.init();
}
Shuffling Cards

As with a normal deck of cards you could buy in a store, our deck is in sorted order
when we initialize it. To shuffle the cards, we can use a randomizing algorithm popular-
ized by Donald Knuth in which we start at the next-to-last card in the array, moving
backward, and pick a random number between zero and the current position. We then
swap the cards referenced in these indexes and repeat the process until we're done. To
really scramble the cards, the algorithm repeats this process one time for each deck that is
present. Listing 6-6 shows the code performing card shuftling.

Listing 6-6 Shuffling Cards

self.shuffleDecks = function () {
var rand = function(max) {
return Math.floor(Math.random()*max);

}
var swap = function(i,j) {
var temp = self.cards[]j];

self.cards[j] = self.cards[i];
self.cards[i] = temp;

} for(var j = 0; j<numDecks; j++) {
for(var i = (numDecks * 51); i>=0; i-) {

var r = rand(i);
swap(i,r);

Drawing and Animating Cards

Although it would be perfectly acceptable to have no transitions between card states,
doing so adds a little bit more polish to the game and makes game play a bit more enjoy-
able. Tables 6-5 and 6-6 introduce the last of the most commonly used attributes in
Raphaél, those needed to position and transform objects.

107

108 Chapter 6 Creating Games with SVG and RaphaélJS

Table 6-5 Position Attributes

Attribute Name Description

cx The x position for the center

cy The y position for the center

r The uniform radius of the object
rx The horizontal radius of the object
ry The vertical radius of the object
height The height of the object

width The width of the object

X The x position of the object

y The y position of the object

Table 6-6 Transformation Attributes

Attribute Name Description

rotation Spins an object about a center point

scale Increases or decreases the size of the object
translation Moves an object on the screen

Our requirement for graphic effects is pretty low in this game, but we will need a cou-
ple of transitions to enhance the game play. We need to come up with a transition to flip
cards, to make them disappear when we have found a match, and transitions to start and
end the game. Let’s begin with animating the cards.

As you saw earlier, we can wire up the cards like any other DOMElement to respond
to events such as button clicks. Because we are working in only two dimensions, we will
“flip” cards by transitioning one side of the card to zero, making it transparent, while
gradually making the other side of the card opaque. Listing 6-7 shows our £lipcard
function, which reads whether or not the front of the card is showing, inverts the value,
and executes the transition.

Listing 6-7 Flipping Cards

self.flipCard = function(frontShown) {

if (self.meta['hidden'] == true)
return
self.frontShown = !self.frontShown;

if (self.frontShown) {
self.cardBack.animate({opacity:0.0}, 1000)
self.cardFront.animate({opacity:1}, 1000)
game.selectedCards.add(self);

} else {

Creating Our Game Classes 109

self.cardFront.animate({opacity:0.0}, 1000)
self.cardBack.animate({opacity:1}, 1000)
game.selectedCards.remove(self);

} console.log(game.selectedCards);

These lines specify that we should animate the opacity of the object from the current
value to 0.0 or 1.0 and to animate over a duration of 1000 milliseconds (1 second). We
don’t have to stick to just the opacity; most of the events that have numeric values can be
animated. Table 6-7 shows a list of them; many will be familiar from our earlier discussion
of attributes.

Table 6-7 Animateable Attributes

clip-rect cx cy

fill fill-opacity font-size
height opacity path

r rotation rx

ry scale stroke
stroke-opacity stroke-width translation
width X y

In addition to a smooth transition from start to end, Raphaél allows us to add other
modifiers to an animation. Easing allows a developer or designer to modify the animation
path to mimic conditions we see in real life. For example, when there is a key press to
indicate an abrupt stop, you could make a car object slightly recoil as if someone slammed
on the brakes at a low speed. We could also apply functions to imitate acceleration and
deceleration. Or maybe an elastic effect or a bounce effect, where each rebound is slightly
lower that the previous one, until the object comes to a stop.You can provide your our
easing function or use one of the presets listed in Table 6-8.

Table 6-8 Preset Easing Functions

Value Description

> Simple deceleration

< Simple acceleration

<> Accelerate then decelerate

backIn Move backward then move to destination

backoOut Move to destination, slightly past it, then to proper position
bounce Move to destination and lightly bounce the object

elastic Combination of backIn, backOut, and bounce

110

Chapter 6 Creating Games with SVG and RaphaélJS

Although we won'’t cover them in this chapter, you can also specify keyframes encap-
sulating the animation to say, for example, that from 0% to 20% into the animation, I
want the acceleration to be very slow. When a player finds a match, we apply an anima-
tion to fade the cards to transparent with a bounce effect to approximate a blink. This can
simply be done with a single line of code:

self.cardFront.animate({opacity:0.0}, 1000, "bounce")

The next line in the source

self.meta['hidden'] = true;

corresponds to a conditional statement in £lipCard that short-circuits any animations
taking place on that card if it is supposed to be hidden.

Creating Advanced Animations

The last bit of animation we have to complete is the animation for signaling the end of
the game. No one can lose our friendly game, so let’s make it extra special by showing an
animated “You win!” message. Before we dive into animating the message, let’s take a step
back and talk about a concept that we haven’t yet covered in SVG: paths.

Paths

Paths provide a means to create complex shapes. By themselves, they don’t have a visible
representation. There are an abstract set of lines for drawing. If we give them a color fill, a
solid object will be drawn. If we add a stroke, they will resemble a set of lines. We can also
take a shape and draw it multiple times along a path to create a extruded shape with a 3D
effect. In Raphaél, we can also use paths to determine how an object will be animated.

Paths are useful because they allow us to mix and match lines and curves. Any primi-
tive object, such as a circle, rectangle, or even text, can be represented by path components
with the proper stroke and fill properties. A path can be represented by a sequence of seg-
ments, arcs, and curves. The path syntax is not really built to be written by hand, and all of
our examples using paths will be created in a vector graphics application such as Inkscape
and then imported to Raphaél. Be that as it may, it’s important to have an understanding
of the identifiers. If you have played with Turtle Graphics for the Logo programming lan-
guage or some of the graphics packages for BASIC, you will feel right at home.

moveto and lineto

Unlike some of those early graphics libraries for BASIC and Logo, there isn’t an explicit
penup or pendown instruction. Moving the cursor in SVG parlance is the same as picking
up the pen, moving it to another position, and putting the pen back down on the paper.

Creating Advanced Animations

That position can be absolute or relative based on the current position of the “pen.” It
bears noting that almost all of our path instructions have absolute and relative versions. A
moveto instruction is denoted by a lowercase m or an uppercase M and a Cartesian coor-
dinate pair, indicating a relative or absolute instruction, respectively.

There are three variants of instructions for drawing lines: lineto, horizontal
lineto, and vertical lineto.lineto is denoted by an uppercase L for absolute coordi-
nates and a lowercase [for relative coordinates.You can specify a single point or a set of
points. horizontal lineto, denoted by H or h, takes one or more x values. vertical
lineto, indicated by 1 or v, performs the same action as horizontal lineto but on the
y axis. Last but not least, we need a way to take our vertical, horizontal, and general poly-
lines and make shapes out of them.The closepath instruction, marked by a Z or z, does
just that in drawing a straight line from the current position to the start of the current
subpath. Z and z do exactly the same thing but are including for symmetry with the
other commands.

I promise you that you only have to endure a little bit of pain constructing these paths
by hand for this section. No sane developer ever does this by hand. Just think of it like
learning to calculate derivatives in Calculus class; once you fully understood the easy way,
you never had to contend with the hard way anymore. Listing 6-8 moves the cursor to
100,100 and draws a rectangle with sides 40 units long, closes the path, and assigns a
white fill color to it using horizontal and vertical lines. Afterward, relative coordinates are
used to draw a rectangle with a black fill.

Listing 6-8 Rectangular Paths

var rect = paper.path("M100 100 h40 v40 h-40 v-40 z");

var rect2 = paper.path("M200,200 140,0 10,40 1-40,0 10,-40 z");
rect.attr({fill: "#FFF"})

rect2.attr({fill:"#000"})

curveto

Line segments can only take you so far. You can approximate a curve with lineto
instructions, but scaling up the drawing will betray the method you used to draw them.
And it wouldn’t be that fun to have to construct all the segments to draw a curve anyway.
Bézier curves can give us the precision we need while reducing the number of instruc-
tions required. Although he wasn’t the creator of the curves named for him, Pierre Bézier,
a French engineer for the Renault, created a computer-aided design system to use the
curves to design automobile parts and bodies. Today, we use Bézier curves in the design of
many consumer products and some font standards. It’s fairly likely that the font used to
print this text uses Bézier curves.

111

112

Chapter 6 Creating Games with SVG and RaphaélJS

So now that you know how cool they are and where they are used in real life, what
exactly are Bézier curves? They are defined by a starting point, an end point, and a set of
control points. The curve doesn’t pass through these control points, but they affect the
path of the curve, pushing and pulling it like the poles of a magnet.

Bézier curves in SVG come in two varieties: cubic and quadratic. The difterence
between the two is that quadratic curves have one control point and cubic curves have
two. SVG has several identifiers for each, with C/c and S/s denoting cubic Bézier curves
and Q/q and T/t representing quadratic Bézier curves. C/c and Q/q take the absolute or
relative coordinates for the control points followed by the endpoint. S/s and T/f are the
shorthand versions of the aforementioned curves. They take the last control point in the
previous curve and take the reflection of it to use as a control point. For quadratic curves,
you only have to specify the new endpoint, but cubic curves require that you specify a
second control point as well.

Exporting Paths from an SVG File

Now that you have slogged through learning how to draw lines and curves and all, let’s
discuss the easy way. Open up your favorite vector graphics editor, such as Inscape or
Adobe Ilustrator, use the Pencil/Pen tool to draw to your heart’s content, and save the
file as SVG.Then, look for a path tag and copy the contents of the “d” or data property.
SVG-edit, pictured in Figure 6-7, allows you skip one of those steps by giving you an
option to view the raw SVG from inside the web page.

Figure 6-7 SVG-edit showing raw SVG code

Extending Raphaél with Plugins

Animating Along Paths

Raphaél comes with two functions to animate objects along paths: animateAlong and
animateAlongBack.These functions animate an object starting at the beginning and end
of a path, respectively. These functions take a path object or path string, the number of
milliseconds the animation will span, an optional Boolean value for whether to rotate the
object while animating it, and an optional callback function. Given a circle that we have
already defined, we can animate it along one of our rectangle paths by executing the fol-
lowing line of code:

circle.animateAlong(rect, 2000, false);

One thing to note about animateAlong and animateAlongBack is that unless the
shape’s resting position is the same as the path it is moving along, it will move relative to
its own space. For the preceding snippet, from its starting position, the circle will move 40
units to the right, 40 units down, 40 units left, and 40 units up, no matter where the rec-
tangular path is drawn. Our ending screen uses a figure-8 path to animate the message
“You win!”

Extending Raphaél with Plugins

Raphaél can be extended with plugins. Reasons for this could be the desire for deeper
integration of third-party libraries as well as exposing as-yet-unimplemented features in
the SVG specification. Raphaél is a compromise between the feature set in SVG, for
non-Internet Explorer browsers, and VML, an Internet Explorer standard for drawing
vector graphics. If a feature was not present in both standards, it was left out. Plugins can
allow the developer to add back some of that missing functionality, albeit in a non-
cross-platform way.

Adding Functions

Raphaél allows you to add functions to the paper or to elements as well as attributes. The
key difference between functions added to the paper and those added to elements is that
paper objects must be created before a paper is instantiated. Functions can be added to
elements at any time and modified.

The ability to add functions to the paper is exposed by the Raphael. £n object.You are
even able to use namespaces to modularize your code. The gRaphael charting library does
just that. Element functions are exposed by the Raphael.el object. Adding a function to
that object adds it to all Raphaél objects.

SVG Filters

SVG filters comprise sone area that benefits from plug-ins. Filters in SVG are not that
unlike the filters present in many graphics manipulation applications such as GIMP and
Adobe Photoshop. They allow you to alter the way a given object or set of objects is dis-
played. Because they aren’t in core Raphaél, we’ll discuss their capabilities but leave it as

113

114

Chapter 6 Creating Games with SVG and RaphaélJS

an exercise for the reader to integrate them. Table 6-9 shows an abbreviated list of avail-

able filters and their descriptions. Developer community members have created plugins

supporting some filters, but as of the time of this writing, all filters have not been imple-

mented. A good resource for what has been implemented is the Raphaél Google group.

In the context of filters, “image” can refer to an actual raster image, such as a JPEG or

PNG, a matte fill color, or a gradient color.

Table 6-9 Abbreviated List of SVG Filters

Filter Name

feBlend

feDiffuseLighting

feGaussianBlur
feImage
feOffset
fePointLight
feSpotLight

feTile

feTurbulence

Description

Combines the data of two components using one of the
predefined blending algorithms

Defines a light that provides ambient lighting for the scene

Blurs an image by applying a Gaussian function

Renders an image to a raster canvas

Offsets an image by a given vector

Defines a light set at a specific point emitting in all directions

Defines a light set at a specific point in space that is focused
at a point with a bounding cone of influence

Fills a target object with a tiled repeated pattern
Adds noise to an image

Speed Considerations

Compared to the much-newer technology HTML5 Canvas, which operates essentially as
a bitmap buffer, SVG is a bit more heavyweight. The code for drawing 5,000 circles in a
Canvas can be largely reused with translation instructions. An SVG drawing, on the other
hand, has to create 5,000 discrete objects with full DOM representations for each.This is
the price we have to pay for letting SVG handle most things for us. SVG is great for

games with a low number of sprites on the screen, as in our examples, or games where
the sprites will not change often. It would not be fruitful to use SVG for the whole of a

first-person shooter game.

Summary

In this chapter, we dove deep into the internals of SVG with Raphaél]S.You learned how
to draw text, create objects, interact with them, and change them on the fly. You also

learned how to bring color to objects in compelling ways, how to draw complex objects,
and how to extend Raphaél. Lastly, we covered the conditions that would benefit from a

Exercises 115

game coded using SVG and those that would not. Knowing the innate capabilities of the

tools and libraries you intend to use helps you down the line in assuring yourself you

made the right decision and aren’t trying to build a house with a screwdriver, so to speak.

Exercises

1.

A

We briefly discussed the Cufén library, which can be used to convert fonts for use
with Raphaél]S. Use one of the open-source fonts found in the Google Font
Directory (http://code.google.com/webfonts), convert it for use with Raphaél, and
create a scene with any text string using that custom font.

Modify the card match game code to use a custom background for the cards.
Modify the card match game code to optionally include Jokers in the deck.
Draw a hexagon and pentagon using paths.

We used animation to flip playing cards. Make an animation that transitions
between a triangle, a square, and a circle.

You can download chapter code and answers to the chapter exercises at www.
informit.com/title/9780321767363.

www.informit.com/title/9780321767363
www.informit.com/title/9780321767363
http://code.google.com/webfonts

This page intentionally left blank

v

Creating Games with

WebGL and Three.js

In previous chapters, we took great pains to learn the hard way first before diving into
libraries and frameworks that make our coding life simpler. WebGL is a beast. Based on
OpenGL ES 2.0, which itself is a simplification of the much older Open GL API, it’s still
rather large. Although it stands to reason that one might use Canvas 2D or SVG without
the benefit of a framework, the same is not the case with WebGL.There are many con-
cerns to be taken into account, including lighting, texturing, depth of field, particle sys-
tems, and collision detection and response, that make operating without a framework
much like walking a tight rope without a net. The framework we will be using exten-
sively in this chapter is Three.js. Three.js is a 3D graphics library for modern browsers
that, as mentioned before, can render to Canvas, WebGL, and SVG. It supports all that is
possible in WebGL while allowing you to use the same code for all renderers, with some
exceptions. The compatibility layer won’t excuse you from doing extensive testing, but at
the very least it gives you a possible fallback option if the client’s computer isn’t exactly
the latest and greatest. Three.js abstracts many of the pointy edges away—for example, in
dealing with materials and shaders. It has built-in helpers for some of the more common
3D geographic shapes such as spheres, cubes, and cylinders, and a full-featured particle
system, texture mapping, and basic collision detection. In this chapter, we will endeavor to
stay at a high, general level in some cases but dive into the low-level details in others—
whatever seems appropriate for the task at hand. Let’s begin the chapter by discussing
OpenGL ES, the technology behind WebGL.

OpenGL ES, or OpenGL for Embedded Systems, is a specification for 3D graphics
APIs running on devices such as mobile phones, tablets, and video game consoles. Most
mobile device platforms (Android, i0OS, Blackberry/ QNX, WebOS) support some form
of the spec.Video game implementers include Nintendo (Nintendo 3DS), Sony (PlaySta-
tion 3), and OpenPandora (Pandora). Although the names are similar and versions of
OpenGL ES track to OpenGL, OpenGL ES is not OpenGL. OpenGL ES is a subset of
OpenGL. Some key differences are the removal of glBegin/glEnd and glvertex* for
drawing primitives. The use of display lists was deprecated in favor of vertex buffers. We

118

Chapter 7 Creating Games with WebGL and Three.js

won’t be using them directly because Three.js abstracts them all away, but it is important
to be aware of the differences.

Moving to Three Dimensions

When we were drawing on the 2D Canvas context, we didn’t have to worry about an
object’s depth or its position, either near or far from us. We just had a rectangular view-
port representing the things we could see. For WebGL, we do have to consider the depth,
and this unsurprisingly makes our transformation calculations a more complicated. Don’t
worry—I’m not going into matrix math again. At least not yet. If you’re a bit hazy on all
this, take a moment and turn back to Chapter 5, “Creating Games with the Canvas Tag.”
We can control depth with the z-axis, as shown in Figure 7-1.

z

Figure 7-1 XYZ-axes

The addition of the third axis gives us a new construct for representing a point in
space: the vertex. The following snippet shows the code needed to create a vertex in
Three.js:

new THREE.Vertex(new Vector3(0, 0, 0));

Draw two vertices and you have a line. Draw three vertices and you can have a trian-
gle. The options are limitless. Right now we can draw a bunch of vertices on the screen,
but we won'’t be able to see them. That’s because they don’t have any relationship
between them; at this point, they are just a bunch of random points in space. A mesh is a
collection of vertices that describe an object. These vertices are arranged into faces that
are composed of three or more vertices. To create a triangle, we need to perform the fol-
lowing tasks:

= Create a Geometry object to store the vertices.
= Add faces to tell the vertices how to arrange themselves.

= Create a mesh with the Geometry object and a material.

Giving Your Objects Some Swagger with Materials and Lighting

Don’t worry about how to define the material just yet. We’ll be covering materials a
bit later in the chapter. We can see sample output in Figure 7-2 and the corresponding

code to produce the mesh in Listing 7-1.

Figure 7-2 Triangle mesh

Listing 7-1 Creating a Triangle

geometry = new THREE.Geometry();

geometry.vertices.push(new THREE.Vertex(new THREE.Vector3(0, 10, 0)));
geometry.vertices.push(new THREE.Vertex(new THREE.Vector3(-10, -10, 0)));
geometry.vertices.push(new THREE.Vertex(new THREE.Vector3(10, -10, 0)));
geometry.faces.push(new THREE.Face3(0,1,2));

var triangle = new THREE.Mesh(geometry, geoMaterial);

Giving Your Objects Some Swagger with
Materials and Lighting

We now have a context of how the different vertices relate to each other, but we still
won'’t be able to see them. Why? We haven’t told the world what they should look like.

We do that with materials and lighting.

119

120

Chapter 7 Creating Games with WebGL and Three.js

Understanding Lighting

Besides keeping humanity from freezing to death, lighting in Three.js isn’t that dissimilar
to what happens in the real world via the Sun. It has three types of lighting objects:

= AmbientLight—Ambient lighting is the average of all the light generated from all
light sources in an area. Objects rendered with only ambient lighting will appear
two-dimensional. That’s because all vertices receive the same amount of light. One
way to look at it is to consider ambient lighting to be like the thermostat on your
air conditioner/furnace. Turning it on, in general, doesn’t make individual rooms
cooler or warmer, it brings them all approximately to the same temperature.

= PointLight—Point lighting is attenuated light coming from a specific location in
world space. Light is emitted in all directions from the point and does make objects
look more 3D. As an object moves further from the light source, the amount of
light that can affect objects is less and less (attenuation, or colloquially “dropoff™).
Point lights can also cause or contribute to specular reflections.

= DirectionalLight—Directional lighting can be viewed as similar to shining a
bunch of lamps on a subject from the same direction. Whereas point lights will
attenuate over distance, directional lights deliver the same intensity as they stretch
toward infinity or the specified maximum distance.

Listing 7-2 shows examples of the three light types, starting with AmbientLight,
which has a sole parameter. intensity corresponds to how bright the light rays should
be, and distance refers to the longest light ray before total falloff. castshadow is Boolean
that determines whether or not the object illuminated by DirectionalLight with cast a
shadow. Although not listed in the constructors, you can set the position on PointLight
and DirectionalLight. Parameters listed in brackets are optional.

Listing 7-2 Lighting Examples

new THREE.AmbientLight(hexColor);
new THREE.PointLight(hexColor, [intensity], [distance]);
new THREE.DirectionalLight(hexColor, [intensity], [distance], [castShadow]);

Using Materials and Shaders

Materials make our objects less ordinary by giving them colors and textures. We are cov-
ering materials after going over lighting because the lighting of a scene greatly affects
how a material appears to the user. Many atmospheric components go into determining
the final color of a vertex or face including, but not limited to, the following:

» Lighting (ambient, point, and directional)
= Shadows
= Shaders

Giving Your Objects Some Swagger with Materials and Lighting

= The blend mode

= Occlusion

We’ve already covered lighting, and shadows don’t need much description, so let’s press
on with shaders. A shader uses software instructions to calculate rendering eftects gener-
ally on the Graphics Processor Unit (GPU) but can be done in software as well. There are
generally three types of shaders:

= Vertex shaders—Vertex shaders are run for each vertex in a mesh. They can alter
properties such as the position, color, normals, lighting, and texture coordinates.

» Pixel or fragment shaders—Fragment shaders calculate the color and other
properties for each pixel in a mesh when rendered onscreen.

» Geometry shaders—Geometry shaders are used to add or remove vertices on a
mesh. One use is to add LOD (level of detail) effects to a scene—that is, to increase
or decrease the number of vertices in a mesh as a object gets closer or further,
respectively, from the screen.

WebGL and Three.js focus programmatically on the vertex and fragment shaders. The
LOD aspect of geometry shaders is handled in Three js, but a discrete object won't be
covered in any detail in this chapter. Before we get to talking about shaders and materials,
there’s one important concept you need to learn about: the normal. It’s a vector that is
perpendicular to a surface or vertex. It is often used in lighting calculations, which also
affects how materials appear and can be used to create greater detail in models without
increasing the polygon count. Several shading algorithms are either supported natively in
Three js or easily implementable. Let’s look at them briefly, from easy to difficult.

Flat Shading

Flat shading shades an object based on each polygon normal in a mesh. For very regular
shapes such as rectangles, the calculations won'’t be that different from some of the most
advanced algorithms we’ll discuss. The problem with flat shading is that any model with a
reasonable amount of polygons will look blocky, and users will be able to easily see where
one polygon ends and another begins.

Lambertian Shading

Lambertian shading, put simply, reflects light equally in all directions. This causes models
to look the same irrespective of the viewer’s point of view. Unfinished wood, concrete,
and other matte surfaces have this characteristic. Because of the lack of dynamism,
Lambertian shading, like flat shading, is very easy on the GPU.

Gouraud Shading

Gouraud shading, at every vertex, applies a normal that is the average of all the surface
normals for the polygons that the vertex touches. This gives us smoother illumination
than flat shading but at a low cost to the CPU/GPU. Because it is an average of several

121

122

Chapter 7 Creating Games with WebGL and Three.js

vertices, some amount of error will be involved as the applied normal is an estimate and
will be plus or minus what the actual normal value was. This can be especially evident in
anything that causes specular highlights (bright spots on reflective objects). Figure 7-3
shows an infographic of how a plane normal is calculated.

T Calculated Normal T

Figure 7-3 Gouraud shading normal calculation

Phong Shading

Phong shading is the most costly of the four. Also called per-pixel shading, it takes the
vertex normals and calculates the intermediate normal values for each pixel. This pro-
duces a lighting model that improves greatly on the results from Gouraud shading but is
costly to the processor.

Somewhat related but technical not a shading model per se is Phong reflection. Phong
reflection considers how that very few objects are perfectly shiny or rough. As such, the
surfaces on an object are a combination of the two properties (specular and diffuse reflec-
tion, respectively). The components for Phong reflection are as follows:

= An ambient color for the amount of light evenly distributed through the object

= A diffuse color that scatters light in all directions

= A specular color for the highlights, presumably caused by the light source

You might also specify a shininess or opacity. All of these work in tandem to produce

the final material. For example, a totally unshiny material isn’t going to consider the spec-
ular values.

Creating Your First Three.js Scene

One of the first things I learned to draw in OpenGL was a snowman scene from some
random online tutorial. Snowmen are great because no one hates them but the sun, and it
is easy to draw something that looks reasonably close to the subject. It also gives us a
chance to discuss some of the built-in 3D shapes.

Creating Your First Three.js Scene

Setting Up the View

Before we get started, we need to do a little housekeeping to set up our environment to
draw the snowman. In our truncated init function, we instantiate a renderer and scene.
As mentioned before, Three.js can render to several different environments. Changing the
renderer to CanvasRenderer or SVGRenderer is how you would do that. We also need to
set the dimensions of the renderer. Three.js makes a best-effort attempt to render the
scene with the given renderer. Although many effects and materials can be rendered with
all the renderers, some are specific to WebGL. Below the init function, we have a pair of
functions that handle our animation and rendering. requestAnimationFrame attempts to
refresh the drawing as close to the monitor’s refresh rate as possible while short-circuiting
drawing if the window is not visible.You can see this code in Listing 7-3.

Listing 7-3 Setting Up the Environment

function init() {
/1 ...
// create a renderer and scene
renderer = new THREE.WebGLRenderer();
renderer.setSize (WIDTH, HEIGHT);
// some code
}

function animate() {
requestAnimationFrame (animate);
render();

function render() {
renderer.render(scene, camera);

In this chapter, you might notice the use of both “scene” and “scene graph.” The scene
describes all the objects in the environment. The scene graph describes how the objects
are arranged in relationship to each other. A scene graph is a collection of nodes arranged
in a graph or tree structure. Each node may have child nodes. The essential point you
need to know is that because Three js is a scene graph, we only have to keep track of the
objects we want to change. Otherwise, we add the node to the scene graph, call the ren-
der, and don’t worry about it.

On the off-chance that a few of you have never seen a snowman or even snow, a
snowman is shown in Figure 7-4. We can see that his body is more bulbous than
humanoid and that he has sticks for arms and a carrot nose.

Looks pretty daunting, huh? That complete scene can be drawn with only three
shapes: spheres, cylinders, and planes. We use those shapes in different sizes and with
different transformations to create the snowman. A sphere, shown in Figure 7-5,1s a

123

124 Chapter 7 Creating Games with WebGL and Three.js

perfectly round shape that is the result of taking a circle and spinning it around its center
point. Basketballs, baseballs, and the Earth are all spherical shapes.

)~
W

Figure 7-4 Snowman

Figure 7-5 Sphere

Listing 7-4 shows the code needed to draw the snow parts of the snowman’s body. We
start by instantiating a white material. Next, we draw three spheres, each successive one
smaller than the one that preceded it. The first parameter in the Sphere constructor is the
radius, followed by the number of steps to draw for the width and height. More steps give
you a more round sphere but also add a lot more vertices to draw. Fewer steps yield an
object that is quicker to draw but the lighting will not look as good. Lastly, we use the
transformation functions on THREE.Mesh to move the spheres into place and then finish
by adding them to the scene graph.

Creating Your First Three.js Scene 125

Listing 7-4 Drawing the Snowman’s Body

var topSegment, middleSegment, bottomSegment;
var whiteMaterial;

whiteMaterial = new THREE.MeshLambertMaterial({
color:0xFFFFFF
})
bottomSegment = new THREE.Mesh(
new THREE.Sphere(8, 16, 16), whiteMaterial
)i
middleSegment = new THREE.Mesh(
new THREE.Sphere(6, 16, 16), whiteMaterial
)i
middleSegment.translateY(10);
topSegment = new THREE.Mesh(
new THREE.Sphere(5, 16, 16), whiteMaterial
)i
topSegment.translateY(19);

scene.addChild(topSegment);
scene.addChild(middleSegment);
scene.addChild(bottomSegment) ;

The second shape we will use in the scene is a cylinder, as shown in Figure 7-6. A
cylinder is formed by taking a circle and extruding it along a straight line. “Extruding” is
just a fancy way of saying “duplicate the object, move it a little bit, and then rinse and
repeat.” Soup cans and some cups are cylindrical.

Figure 7-6 Cylinder

Listing 7-5 shows the code to draw the stick-like arms of the snowman. We start by
declaring a brownish material. Next, we create the arms. The parameter list starts with
how many steps to use, followed by the starting and ending radii, and the length of the
cylinder. We have to do a bit more work this time to move them into place.

126 Chapter 7 Creating Games with WebGL and Three.js

Listing 7-5 Adding Arms

var arm, arm2, armMaterial;

armMaterial = new THREE.MeshLambertMaterial({
color: 0x8B5A00
i

arm = new THREE.Mesh(
new THREE.Cylinder(20, 0.3, 0.3, 10),
armMaterial

)i

arm2 = new THREE.Mesh(
new THREE.Cylinder(20, 0.3, 0.3, 10),
armMaterial

arm.rotation.x = 30;
arm.rotation.y = 10;
arm.translateX(8);
arm.translatez(1l);
arm.translateY(15);

arm2.rotation.x = -30;
arm2.rotation.y = 10;
arm2.translateX(-7);
arm2.translatez(1l);
arm2.translateY(15);

scene.addChild(arm);
scene.addChild(arm2);

A plane, shown in Figure 7-7, gives our scene a little bit of depth. Think of it as a giant
sheet of paper or, better yet, as a big rug.

Figure 7-7 Plane

Creating Your First Three.js Scene 127

Like the sphere and cylinder before it, the plane allows you to control how detailed
the mesh is. After declaring the width and the height, you can set the respective step val-
ues. The code to draw a plane is shown in Listing 7-6.

Listing 7-6 Drawing a Plane

plane = new THREE.Mesh(
new THREE.Plane(500,500, 20, 20),
planeMaterial

Although we have three main types of shapes in the drawing, the snowman’s nose can
be thought of as both a cylinder and a new shape type: a cone, as shown in Figure 7-8.
Some graphics libraries will differentiate between the two, but the relation is similar to
that of rectangles and squares: All cones are cylinders but not all cylinders are cones.The
extrusion is the same, but the radius of each subsequent circle gets smaller and smaller
until it reaches zero.

Figure 7-8 Cone

You can see in Listing 7-7 that the only point of distinction between a cone and a
cylinder is that one of the radii is close to zero.

Listing 7-7 Drawing a Nose

nose = new THREE.Mesh(
new THREE.Cylinder(20, 0.8, 0.01, 3),
noseMaterial

128

Chapter 7 Creating Games with WebGL and Three.js

Viewing the World

If you tried to run the code we’ve written so far, you wouldn’t see anything on the page
and suspect that it is broken.The reason we can’t see anything is because we haven'’t told
Three.js where we will be located and what we will be looking at. Placing a Camera in the
scene is how we can view it. Based somewhat on the human eye, cameras have attributes
that determine what can or cannot be seen.The camera object signature is shown here:

var cam = new THREE.Camera(fov, aspect, near, far, [target - optional])

The most important parameter and also the first is fov, or the field of view (FOV).
The FOV determines the amount of the world that can be seen at one time. It is often
talked about in degrees. We can calculate it by putting a camera (or eye if you want to
make it gruesome) on a tripod and pointing it out in the distance toward some objects.
Looking through the viewfinder and not moving the camera, you notice the rightmost
object you can see and draw a line from your position to that point.You do the same for
the leftmost object. Now draw a line between the two objects. We now have a triangle
that we can use to find the FOV. An infograph of this is shown in Figure 7-9. Rest assured
that you do not have to calculate this...ever. The computer does all the work for you.

Viewer

Figure 7-9 Calculating the field of view (FOV)

The next parameter is aspect, for the aspect ratio. You might recognize the term from
the specs on your monitor or television. Aspect ratio is the ratio of the longer dimension
of your viewport to the shorter. Most screens are somewhere in the area of 4:3 (standard
definition) or 16:9 (widescreen). Aspect ratio works in collaboration with the FOV to
determine how much of the world is cropped from view.

The next two parameters, near and far, represent the clipping planes for your world.
In a scene with thousands of objects and textures being drawn at once, it would be taxing
on the CPU and GPU to try and show everything. Even worse, it would be wasteful to
draw the things you can’t even see. The near clipping plane is usually relatively close to
the user, whereas the far clipping plane is somewhere oft in the distance. As objects cross

Loading 3D Models with Three.js

the far plane, they spontaneously appear or disappear. Some games use fog to make the

appearance and disappearance of objects more realistic. target is an optional parameter
that allows you to designate an object to look at. Figure 7-10 shows how the first four

parameters combined to make the viewing frustum.

Far
plane

Near
plane

Viewer

Figure 7-10 Viewing frustum

But, wait a minute, why didn’t we have to deal with any of this when were drawing on
the 2D Canvas? The short answer is that we were; Canvas was doing it for us behind the
scenes. A frustum for a 2D scene can be created by making a camera with the near and
far values being the same, which is also the z value for all drawn objects. In effect, that
camera is constrained to seeing a specific slice of the world.

Loading 3D Models with Three.js

Having to create everything in code would get tedious very fast. You might be happy to
know that Three.js supports loading 3D models in its own JSON format and has file
exporter scripts for Autodesk 3ds Max and Blender.

Autodesk 3ds Max—or colloquially 3D Studio MAX or just MAX—is widely recog-
nized as the industry standard for creating, animating, and rendering 3D models. It is
widely used not only by artists for games but also in TV and film. Built in to the product
is a scripting language called MAXScript, which can be used to build client-side plugins.

Blender (www.blender.org) is a cross-platform, free, and open-source advanced 3D
modeling application. It can create complex effects supported in commercial 3D model-
ing software such as UV wrapping, texture, bones and rigging, and particle system eftects.
It also bundles a nonlinear editor and Python API for in-application scripting. Blender is
managed by the non-profit Blender Foundation, chaired by Blender’s creator Ton
Roosendaal and developed by the Blender community (www.blenderartists.org/forum/).
There is even a community magazine (http://blenderart.org/).

129

www.blender.org
www.blenderartists.org/forum/
http://blenderart.org/

130

Chapter 7 Creating Games with WebGL and Three.js

Part of the outreach the Blender Foundation conducts includes the Blender Confer-
ence (held annually in Amsterdam), the Suzanne Awards (which are competitively
awarded to animators), and the production of several short films. Commercially, Blender
has been used in television commercials, History Channel shows, and in the pre-production
of Spider-Man 2.

The export scripts for both applications are located in the utils/exporters directory of
Three.js. Check the appropriate vendor websites to find out how to install plugins, paying
extra care to the version the plugin states it requires. Use a version newer than that
required and it might not work correctly.

Listing 7-8 shows the code to asynchronously load a JSON model and add it to our
scene graph. As you can see in Listing 7-9, the JSON model file can include materials that
we can modify or use. The last line of createscenel may look a bit daunting at first, but
let’s break it down. Skipping the first two self-explanatory parameters, we have the global
scale of the object, its X, y, and z positions, its rotation on the X, y, and z axes, followed by
the material to use.

Listing 7-8 Loading a Model File

function drawCube() {
var loader = new THREE.JSONLoader();
loader.load({model: "cube.js", callback: createScenel });

function createScenel(geometry) {
geometry.materials[0][0].shading = THREE.FlatShading;
mesh = THREE.SceneUtils.addMesh(scene, geometry,
250, 400, 0, 0, 0, 0O, 0, geometry.materials[0]);

Truncated to the essence of what comprises the model file, Listing 7-9 gives you a gist
of what is output from the Blender exporter.You can see the areas for the vertices, nor-
mals, materials, and faces. We’ll hold off on explaining some of the other areas of the file
until later in this chapter.

Listing 7-9 Truncated Cube.js File

var model = {

"version" : 2,
"scale" : 1.00,
"materials": [{

"DbgColor" : 15658734,

"DbgIndex" : 0,

"DbgName" : "Material",
"colorAmbient" : [0.0, 0.0, 0.0],

Programming Shaders and Textures

"colorDiffuse" : [0.64, 0.64, 0.64],
"colorSpecular" : [0.5, 0.5, 0.5],
"shading" : "Lambert",
"specularCoef" : 50,

"transparency" : 1.0,

"vertexColors" : false

o

"vertices": [1.00...],
"morphTargets": [],
"normals": [0.577349,..],
"colors": [],
"uvs": [[11,
"faces": [35,...],
"edges" : []

}i

postMessage(model);
close();

Programming Shaders and Textures

If you want to forgo using the built-in material features in Three.js and possibly create
more advanced effects, you can dip into the WebGL features and create your own vertex
and fragment shaders. In Three.js, you would create a material as demonstrated earlier in
the chapter and attach your shaders. To write shader code, you need to learn a little bit
about OpenGL Shader Language, or GLSL for short.

GLSL is a high-level language with a C-like syntax. Although structured like pro-
grams, and even called that in some cases (the combination of a vertex shader and frag-
ment shader), the shaders are not compiled but passed around as strings. They can be
created at runtime, as some are in Three js, or read in from files or <div> tags on a web
page. Some of the more dangerous operators such as pointers are not present in GLSL,
but it closely matches the feature set of C, the operators of C and C++, and can do pretty
much anything you’d want to do, including flow control and creating/calling functions.
GLSL also has some bundled graphics-processing-specific convenience functions.

Listings 7-10 and 7-11 show the code for a GLSL program that colors all vertices with
a white color. Listing 7-10 is where we assign the color using a vec4 to represent the
desired red, green, blue, and alpha values.

Listing 7-10 Sample Fragment Shader

<script id="shader-fs" type="x-shader/x-fragment">
#ifdef GL ES

131

132 Chapter 7 Creating Games with WebGL and Three.js

precision highp float;
#endif

void main(void) {
gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);
}

</script>

Listing 7-11 shows the code for a vertex shader. When we view vertices, although
drawn in 3D space, they are projected into 2D space when they are shown on the screen.
gl_Position locates the final position of the vertex onscreen by multiplying the projec-
tion and model view matrices by the location of the vertex. Don’t worry about the extra
1.0.That is present because in matrix multiplication, the dimensions have to match.
projectionMatrix, modelviewMatrix, and position are all injected by Three js for us. If
you are adapting a GLSL program from another platform, you might see those programs
explicitly declare these variables.

Listing 7-11 Sample Vertex Shader

<script id="shader-vs" type="x-shader/x-vertex">
#ifdef GL_ES
precision highp float;
#endif

void main(void) {
gl Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);

}

</script>

To use the shaders in our application, we need to create a shader material for the
objects that will use it. After this is instantiated, we can use it like any other material.
Listing 7-12 shows the code to create a MeshShaderMaterial using the bare minimum
properties. The code uses a JQuery-like library to get the contents of the script tags.

Listing 7-12 Creating a MeshShaderMaterial

var shaderMaterial = new THREE.MeshShaderMaterial({
vertexShader: $('#vertexShader').get(0).innerHTML,
fragmentShader: §$('#fragmentShader').get(0).innerHTML
})i

Often, shaders will need to do some advanced calculations, or you might want to pass
data from your host application to your GLSL program. Shader variables let you do just
that. There are three basis types:

Programming Shaders and Textures

= Uniform—The value stays the same during a render of a frame and is available to

both shaders.

= Attribute—R ead-only variables available to the vertex shader.

= Varying—Allows the vertex and fragment shaders to share data.

In Listing 7-11, projectionMatrix and modelviewMatrix are uniforms and position
is an attribute. When creating our own variables, it is important to note that GLSL pro-
grams are not JavaScript and require explicit declaration of types. In addition to the prim-
itive types available in C/C++, there are also some GLSL specific ones. Table 7-1 shows
the possible vector types, whereas Tables 7-2 and 7-3 show the matrix and texture types,

respectively.

Table 7-1 GLSL Vector Types
Type
vec2, vec3, vecd
ivec2, ivec3, ivec4d

bvec2, bvec3, bvec4

Description

Floating-point vectors for 2D, 3D, and 4D
Integer vectors for 2D, 3D, and 4D
Boolean vectors for 2D, 3D, and 4D

Table 7-2 GLSL Matrix Types

Type Description

mat2 2x2 matrix

mat3 3%x3 matrix

maté 4x4 matrix
Table 7-3 GLSL Texture Types

Type Description

samplerlD, sampler2D, sampler3D

samplerCube

1D, 2D, and 3D textures
Texture for a cube map

133

134

Chapter 7 Creating Games with WebGL and Three.js

Using Textures

Textures can range in shape and size, so we can’t always map a 1:1 relationship between
the size of a texture and the face it will be applied to.To compensate for this, instead of
mapping with the actual pixel sizes, we map the relationship between the texture and the
face it will cover with texels. A texel, also known as a texture coordinate or texture
pixel, is a pair of two values that range from 0.0 to 1.0 for the x- and y-axes. We assign a
texel for each vertex in the object we are texturing.You can see an example of this in
Figure 7-11.

(0,0) (1,0)

0,1) (1,1)

Figure 7-11 Texels

Instead of attempting to texture a complex object all at once like you would with a
color, you can instead texture the individual faces of the object. This can optimize the
texturing process and allow greater control over the look of the textured object. This
process is called “UV mapping.” You can see a simplified form of this in Figure 7-12 as a
cube map. A cube map consists of six textures, one for the top, bottom, and four sides of
the cube.

Top

Sides

Bottom

Figure 7-12 Cube map

Using Textures 135

If we supply one texture, it is repeated on all the sides of the cube. If a face in the
object to be textured isn’t present, the texture data for that face is discarded. Cube map-
ping allows us to use the same texture information for a cube, sphere, cylinder, or any
other object.

With UV mapping, a template is created by unwrapping the triangles and laying them
all flat. The artist could then paint on each individual face. Once textured, the object has
the desired “skin.” Take, for instance, the games of the Dead Rising franchise, which allow
the protagonists to change their clothes at will. The game developer did this by layering
multiple UV maps. There could be a map for the body and skin texture, then another for
undergarments, and another for outer clothing.

Listing 7-13 demonstrates how to apply a texture to a sphere.To avoid needing extra
lights to illuminate the model, we use a white ambient color on the material. Three.js will
do a lot of the heavy lifting for us, leaving us mostly free to hand it a texture using the
map property, and it then constructs the cube map for us. Figure 7-13 shows the model
produced by the code in Listing 7-13.

Listing 7-13 Texturing a Sphere

function drawScene() {
var texture = THREE.ImageUtils.loadTexture(
"200407-bluemarble.jpg");
var material = new THREE.MeshPhongMaterial({
color: OXFFFFFF, ambient: OXFFFFFF, map:texture
})i

sphere = new THREE.Mesh(new THREE.Sphere(32, 32, 32), material);
scene.addObject (sphere);

In the case of Listing 7-13, which shows how to texture a sphere, the UV coordinates
were created for us. The Threejs JSON format has support for UV coordinates, and all of
the packaged exporter plugins can export them as well.

136 Chapter 7 Creating Games with WebGL and Three.js

Figure 7-13 Textured sphere

Creating a Game with Three.js

Conway’s Game of Life is a cellular automaton simulation where individual cells (or, in our
version, spheres) abide by certain rules to determine their transition between different
states. Conway’s Game of Life is a great project because we don’t have to worry so much
about game play, but it requires us to manage many objects in the scene at the same time.
Here are the general rules:

= A live cell with fewer than a certain number of live neighbors dies.
= A live cell with more than a certain number of live neighbors dies.
= A dead cell with a certain number of live neighbors comes alive.

= A live cell with a certain number of neighbors lives on.

Conway’s 1s strictly 2D, and cells are born with three neighbors, die with more than
three, and live on with two or three neighbors. Because we are using 3D and possibly dif-
ferent birth/death rules, we have to call the game “Life-like.” Unlike the original, where
the simulation has a reasonably large space to “roam,” our simulation will be constrained
to a customizable square grid with configurable birth/death rules. An added feature that is
present in the Java3D application that inspired our app is different cell color based on the
age of the cell. A screenshot of the running game is shown in Figure 7-14.

The code runs one cycle of 100 alive/dead transitions for each cell.

Simulating the Real World with Game Physics

|

&
o
...

o ° ®°
.
¢

© P
v e
' &

¢

Figure 7-14 Life-like game screenshot

Simulating the Real World with Game Physics

In Chapter 4, “How Games Work,” we discussed some very basic ways to do collision
detection and create particle systems. In that chapter, we used informal bounding boxes to
determine whether a collision had occurred, which resulted in a very constrained
response. We also dabbled a bit with particle systems. In this chapter, we apply physics
properties to the particles in a more formal way.

When we think of what makes humanoid-based games look realistic, we are seeking
physics engines at work—or more specifically, rigid body dynamics. One way to think of
this 1s to consider rigid bodies to be like bones in the human body. The bones themselves
don’t bend but can be articulated at the joints and have a maximum of six degrees of
freedom (translation and rotation in X, y, or z). We can also add constraints to restrict the
motion so that our models aren’t dislocating joints when they move. These constraints
could be as simple as making the object immovable, like a wall or the ground, or by using
joints. Joints allow us to connect and constrain rigid bodies. The two types of joints that
most physics systems support are hinge and ball-and-socket. Hinge joints restrict motion
to one axis. Examples in the human body are knees and fingers. Ball-and-socket joints, on
the other hand, allow a freer range of motion on possibly all six degrees of freedom.Your
shoulders and hip joints are good examples of ball-and-socket joints.

137

138

Chapter 7 Creating Games with WebGL and Three.js

Rigid bodies also have physical properties such as mass, inertia, velocity, and so on.
Whereas your bones only account for 30% to 40% of your body’s mass, rigid bodies con-
tain 100% of the simulated object’s mass. Rigid bodies don’t have to just be bone-like
structures, they can be immovable objects such as walls and the ground or things encom-
passing one or many moving bodies.

Physics engines use a combination of primitive shapes to detect collisions, such as
spheres, boxes, capsules, and free-form meshes.You are free to use as many as you want;
for instance, you could detect a general collision with the right hand with one collision
primitive and then drill down to the exact finger that was affected. After the primitives
are all defined, the physics engine starts and slowly steps through time to check for colli-
sions and changes to the transformation matrices of the objects and rigid bodies. These
changes are reported to the render functions and combined with player input. There is
another major type of dynamics called soft-body dynamics. Any type of cloth as well as
fur, hair, and feathers would use soft-body dynamics. We won'’t be covering this in any
detail as it is an advanced topic. However, it warrants mentioning.

The physics engine we’ll be using for our demos is JigLibJS. It is a port of the Java
variant of the popular JigLib library. JigLib is available at www.jiglibjs.org/. Although
the original library is written in C++, in addition to JavaScript, JigLib has been ported to
C# and Actionscript. Listing 7-14 shows the initial setup of our physics world. We begin
by retrieving an instance of the PhysicsSystem and setting the gravity for the world and
the type of solver to use. In this case, we used FAST, but the other options are NORMAL and
ACCUMULATED. You give up a little accuracy for choosing FAST, over NORMAL and
ACCUMULATED, but usually there isn’t a noticeable difference.

Listing 7-14 Setting Up JigLibJS

function initJigLib() {
system = jigLib.PhysicsSystem.getInstance();
system.setSolverType("FAST");
system.setGravity(jigLib.Vector3DUtil.create(0, -9.8, 0, 0));

After we create the physics system, we need to create a mesh for the ground and a
corresponding physics rigid body to represent the ground. The properties we need to set
on the rigid body, for the most part, match what we set on the mesh, with the exception
of the additional call set_moveable(false) to make the ground unaffected by external
forces. This code is shown in Listing 7-15.

Listing 7-15 Drawing the Ground

// create the ground
var plane = new THREE.Mesh(
new THREE.Plane(75,75,10,10),
new THREE.MeshLambertMaterial({
color:0x222222

www.jiglibjs.org/

Simulating the Real World with Game Physics

}
)i
plane.translateY(-10);
plane.rotation.x = -70;
scene.addObject (plane);

var ground = new jigLib.JPlane();
ground.set_y(-10);
ground.set_rotationX(-70);
ground.set_movable(false);
system.addBody (ground);
plane.rigidBody = ground;

Next, we need to draw our sphere and assign a rigid body to it. The code to create a
Three js sphere is pretty straightforward, so I've excluded it in Listing 7-16. If you need a
refresher, check out the sources. We begin with instantiating the Jsphere, passing it a null
for the skin and a value for the radius. After setting the mass on the object, we can orient
it in 3D space using the moveTo function and the Vector3putil class. We could have set
the point to move to using the individual set_x, set_y, and set_z functions, as we did
with the ground or by just passing in an array of values as shown in the commented line.
One reason why you might want to construct a Vector3D is if you plan to somehow
transform it after you create it.

Listing 7-16 Drawing a Sphere Rigid Body

// create rigid body
var body = new jigLib.JSphere(null, 8);
body.set_mass(8);

body.moveTo(jigLib.Vector3DUtil.create(sphere.position.x, sphere.position.y,
sphere.position.z, 0));

//body .moveTo ([sphere.position.x, sphere.position.y, sphere.position.z, 0]);

system.addBody (body) ;
sphere.rigidBody = body;

Lastly, we need some code to update our objects. The updateDynamicsWorld func-
tion in Listing 7-17 begins with a calculation to find the elapsed time since the previous
run. The system takes the elapsed time to figure out how to apply the forces to the sys-
tem. We next iterate over all the objects, checking to see if they have rigid bodies
attached. If so, we alter the transformations of the meshes to match. In Listing 7-17, we
are dealing only with the translation and rotation, but the listed orientation variable is
how we would access the full transformation matrix.

139

140

Chapter 7 Creating Games with WebGL and Three.js

Frames per Second Versus Time-Based Animation

When games are created based solely on frames per second, they might be optimized for a
particular class of system or processor and thus run differently on others. You might notice
this if you dust off some of your old 3.50 or 5.250 floppies. If the game was developed for
a 386 20MHz computer, it might be unplayable on a 3GHz machine. Also, frame-based ani-
mation inappropriately assumes that it won’t have to share the processor with any other

applications. CPUs, by design, rapidly switch between running processes. If a processor-

hungry app is running in the background, such as a music player, you might see your frame

rate rapidly decline.

Listing 7-17 Updating the World

function updateDynamicsWorld() {
// find elapsed time from last update
var tl = new Date().getTime()
var elapsedTime = tl - t0;
t0 = tl;

system.integrate(elapsedTime/1000);

for (var i = 0; i<scene.objects.length; i++) {
var mesh = scene.objects[i];
if (mesh.rigidBody) {

var state = mesh.rigidBody.get currrentState();

var position = state.position;

var orientation = state.get orientation().glmatrix;

mesh.position.x = position[0];
mesh.position.y = position[l];
mesh.position.z = position[2];

mesh.rotation.x = mesh.rigidBody.get rotationX();

mesh.rotation.

<
[l

mesh.rotation.z

= mesh.rigidBody.get rotationY();
mesh.rigidBody.get_rotationZ();

Revisiting Particle Systems

Particle systems in Three js solely deal with 2D objects. They use a concept called
billboarding, wherein the textured face of the sprite is always facing the camera and/or
user’s viewport. Billboarding allows two-dimensional shapes to appear to have depth in a

Creating Scenes 141

3D world. Billboarding allows us to save polygons, where possible, and is not relegated to
particle systems. Some LOD algorithms will transition between not drawing an object,
drawing it with a billboard, drawing it with a low-poly model, and drawing it with the
high-resolution model. To create a particle system in Three.js, we first need to create a
THREE.Geometry object to hold the vertex locations of the objects to draw. We then pass
it to a ParticleSystem object with the vertices and a ParticleBasicMaterial to use
for the particles. In this case, we loaded a PNG image for the particles and set the size in
the material to the dimensions of the image. In Listing 7-18, you can see that we don’t
ever instantiate the individual particles. After the geometry is assigned to the
ParticleSystem, adding more particles has no effect even though it doesn’t give an error
when we try and it seems to work. Any transformations are applied to the particle system
as a whole, and each particle system can only have a single texture for all the particles.

Listing 7-18 Bubble Particle System

// create texture
ballTexture = THREE.ImageUtils.loadTexture("ball.png");
var material = new THREE.ParticleBasicMaterial(

{ size:52, depthFalse:false,
transparent:true, map:ballTexture

)i

// create vertices

geometry = new THREE.Geometry();
randX = Math.random()*100;

randY = Math.random()*100;

randZ = Math.random()*100;

for (var i = 0; i<numParticles; i++) {
geometry.vertices.push(v(randX,randY,randz));

}

particleSystem = new THREE.ParticleSystem(geometry, material)

scene.addObject (particleSystem);

Creating Scenes

Loading a single model is all fine and good, but what about loading a whole scene at
once. Can we do that? We sure can. SceneLoader takes a JSON file and asynchronously
loads the assets in it, freeing us to use ASCII and binary model files where appropriate.

142

Chapter 7 Creating Games with WebGL and Three.js

Selecting Objects in a Scene

Figuring out which object on the screen is selected, also known as “picking,” is a bit more
difficult in 3D space that it is in 2D. In 2D, we could read the x and y mouse positions
and be able to easily check them against our object constraints. In 3D space, the fact we’re
dealing with a 3D world projected onto 2D space creates a bit more work for us. One
method is picking is to render the objects each in a unique color and then check the
pixel color at the mouse’s position.You could do this by using the scene graph to render
an offscreen canvas exclusively for picking. Provided the polygon counts aren’t that high
or you are using a solely 2D canvas, color picking will perform very well. We could fur-
ther increase speed by using lower detail models for our picking algorithms.

One of the drawbacks with color picking is that although it is great at locating the
object that was picked, it is bad at telling us where the 3D projection of the selection
point is located. To do this, we would have to give each face of each object a unique
color. Doable, but not fun.

A more advanced method is to use ray casting, which is a means of testing for inter-
section by firing a beam toward a surface and reacting based on the first polygon encoun-
tered. A fork of Three.js (https://github.com/mindlapse/three.js/) contains code for
picking using ray casting.

Animating Models

Making your models move like humans do is one way to make your games more realistic.
A means of doing this is called “rigging,” where, in addition to the mesh of vertices, we
also give the object an armature of bones, each of which affects the vertices around it
with a given weight. When you pick up a coftee cup, your brain has to make several cal-
culations on how to move your shoulder, upper arm, forearm, and wrist to finally know
how to move your hand to grab the cup.This is known as forward kinematics. Inverse
kinematics uses the final position of the hand to backtrack and figure out where the rest
of the joints will be. Instead of calculating the exact position for each frame of an anima-
tion, we calculate a couple of them, also known as keyframes, and interpolate the values
between them. Keyframes help guide the animation in the right direction. Too few
keyframes, especially if the start and end states are vastly different, can cause unhuman-like
limb contortion. Although MAX and Blender both support inverse kinematics and for-
ward kinematics, the export scripts do not. That gives us two choices: We can write an
export script to get the rigging information, or we can pose our objects in the 3D mod-
eling application, export the individual keyframes, and then stitch them together in the
application. When they deal with a single object, keyframes can also be discussed with the
more precise term, morph target. Whereas a keyframe can be a snapshot of an object’s
transformation or the individual locations of its object’s vertices, a morph target only

https://github.com/mindlapse/three.js/

Sourcing 3D Models

describes the latter. In order to produce smooth animations between two targets, morph
target influencers are used. If one target represents 2 seconds into the animation and the
next represents 4 seconds, and if the current time is 2.25 seconds, then the target at t = 2
will have a greater influence than t = 4. Morph targets are a new and lightly documented
area of Three js (as in about 3 days old at the time this chapter was being finished). Check
the Three.js sources for examples and more details.

Sourcing 3D Models

Although it isn’t hard to create inanimate objects such as trees, trunks, and basic furniture,
creating photorealistic models and textures is outside the skillset of most people. If you
know Photoshop or GIMP like the back of your hand and live and breathe Blender,
Autodesk 3ds Max, or Maya, feel free to skip this section.

TurboSquid (www.turbosquid.com), formerly known as the Gamasutra Exchange, is
an online marketplace for 2D/3D models, textures, materials, and application plugins.
Over 200,000 models are available for download in a range of formats for open-source
and commercial applications. The information page for each asset clearly lists the licensing
terms.

If you use Google SketchUp (http://sketchup.google.com) to create models, you
might be interested in the 3D Warehouse (http://sketchup.google.com/3dwarehouse).
Even if you don’t use SketchUp, you might be interested because the 3D Warehouse is a
great source for models of historic and significant buildings as well as objects from the
real world. For example, if you were doing a spy game based in London, the 3D Ware-
house would be a great place to get models of Big Ben and Westminster Abbey. Limited
exporter scripts are bundled with the free version of SketchUp.You can either pony up
for the commercial version ($495) or try to find some community sources scripts on the
Internet.

For the adventurous, there is MakeHuman (www.makehuman.org). It is an open-
source project that started as a Blender plugin and allows you to create highly customized
human models by specifying the ethnic features, gender, age, body tone, weight, and
stature. These models are also fully rigged and textured, allowing you to quickly integrate
them into your games.You can even edit facial expressions, and there is support for
importing BVH (BioVision Hierarchy) files, one of the industry standards for providing
motion-capture data that can be used with rigged models. Figure 7-15 shows the basic
MakeHuman application.

143

www.turbosquid.com
http://sketchup.google.com
http://sketchup.google.com/3dwarehouse
www.makehuman.org

144 Chapter 7 Creating Games with WebGL and Three.js

000 MakeHuman

Radial

Figure 7-15 MakeHuman home screen

Benchmarking Your Games

Programming with WebGL takes an incredible amount of processing power and isn’t
always the most forgiving medium. One mistake that you might make early on is drawing
too much. Whether you use raw WebGL or Three.js, drawing 100 spheres that are the
same size doesn’t mean you need to create a new set of vertices for each one.That is a
sure way to use up more processing power than needed. An unoptimized version of the
Game of Life demo did just that and used up 1.4GB of RAM before crashing the browser
tab. WebGL will happily use a copy of vertices over and over again with different transfor-
mation matrices to produce objects. Let’s discuss a couple of tools that will help you opti-
mize and benchmark your applications.

Checking Frame Rate with Stats.js

Included in the sources for Three js is a small utility library to measure the frame rate in
WebGL scenes. Listing 7-19 shows the code to create a Stats object with some optional
CSS to position the element at the upper-left corner of the window. Call
stats.update() somewhere in the animate function and you’re all set.

Summary

Listing 7-19 Creating a Stats Element

stats = new Stats();
stats.domElement.style.position = 'absolute';
stats.domElement.style.top = 'Opx';

$("#container").appendChild(stats.domElement);

Using the WebGL Inspector

What Firebug and the Chrome/Safari Developer Tools are to HTML/CSS/JS, the
WebGL Inspector (https://github.com/benvanik/WebGL-Inspector) aims to be for
WebGL.The project, which is available as a Chrome extension, as a Firefox plugin, or can
be bundled directly into an application, surfaces a panel to monitor what is going on in
your WebGL application.You are able to see all the referenced textures and shader pro-
grams as well as capture individual frames.You can even walk though the calls that are
being made on an individual frame, step by step. Figure 7-16 shows the WebGL Inspector
running in a browser window.

P Cont: fhart | St | B O

Figure 7-16 WebGL Inspector

Summary

It would be impossible to cover all there is to know about WebGL in one chapter.
Instead we went with a more practical approach, discussing low-level details and concepts
when needed while for the most part remaining high level, leveraging Three.js for the
hard work.You can think of raw WebGL code as assembly code. Many learn it, but few
have to use it from day to day.You learned how to leverage the low-level APIs for items
such as shaders and how balance this with the abstractions for materials, texturing, and
lighting that Three.js provides.You also learned how to integrate physics and 3D models

145

https://github.com/benvanik/WebGL-Inspector

146 Chapter 7 Creating Games with WebGL and Three.js

into games. After we created a game with Three.js, you learned about some tools to help

us optimize and benchmark our code.

-
Exercises
1. Load a model file and retrieve the material data from it.
2. Describe how to use texture coordinates to texture a triangle.
3. Write the code to texture a cylinder.

You can download chapter code and answers to the chapter exercises at www.
informit.com/title/9780321767363.

www.informit.com/title/9780321767363
www.informit.com/title/9780321767363

3

Creating Games Without
JavaScript

H TML5 games without JavaScript, you say? Yes, I do. Well, sorta. JavaScript is consid-
ered by many as the lingua franca of the Internet. There isn’t much you can do without it
or by using some non-JavaScript plugin technology. So although the phrase “without
JavaScript” could also mean using a plugin such as Flash or Silverlight, in this case, it
doesn’t. This chapter introduces several technologies that use an alternate language but
output JavaScript code either at the compilation phase or at runtime. These technologies
take advantage of the ubiquity of JavaScript to make it a sort of native code. It’s similar to
how a Java or C# compiler takes the code we write and makes something much less
human readable but optimized for the machine running it.

Here are some reasons we might want to use an alternate language to build JavaScript
applications:

= The existence of features not present in native JavaScript
= Possible speed increases in developing time

= A lack of knowledge or appreciation for native JavaScript

Whereas many developers don’t dare venture to the bytecode/intermediary code level,
we can enjoy the best of both worlds.You can wade through the compiled output or you
can stay at the meta layer. So, presumably, a more descriptive title for this chapter might
have been, “Creating Games with Alternate Technologies That Target JavaScript But Do
Not Use It as a Primary Language.” But that doesn’t roll off the tongue.

Google Web Toolkit

Google Web Toolkit (http://code.google.com/webtoolkit/), also known as GWT, is a Java
web application framework that allows developers to create AJAX applications using Java.
The compiler converts Java code to JavaScript. Although a Java development environment
is needed to develop applications, GWT places no such restriction on the server that runs

http://code.google.com/webtoolkit/

148

Chapter 8 Creating Games Without JavaScript

the compiled code. Developers can use REST or their own method of communicating
with a server in place of GWT’s Remote Procedure Call mechanism. Several products
within Google, such as Google Wave, AdWords, and Orkut were built using GW'T.

GWT strives to reduce the pain usually experienced from browser-specific quirks by
providing a set of standard widgets that operate similarly between browsers.

Understanding GWT Widgets and Layout

Instead of interacting directly with the Document Object Model as you would when cre-
ating a native JavaScript application, with GWT, you instead work with the Java widgets
that are GWT representations of their HTML counterparts.

RootPanel is the widget that anchors the page to the HTML. It provides an interface
between our Java code and the HTML page that hosts the application. We can use it to
retrieve a specific element, like so:

RootPanel.get ("buttonDiv")

Or we can use it o retrieve the page itself:
RootPanel.get ()

Other than both variations of get (), the functions we will use the most are add () and
remove (), which add and remove widgets from the page, respectively. Listing 8-1 shows

the code to place a button on a web page. The button responds to button clicks with an
alert message of “Hello, World!”

Listing 81 GWT Hello World

import com.google.gwt.core.client.EntryPoint;

import com.google.gwt.event.dom.client.ClickEvent;
import com.google.gwt.event.dom.client.ClickHandler;
import com.google.gwt.user.client.Window;

import com.google.gwt.user.client.ui.*;

public class MyFirstPage implements EntryPoint {

public void onModuleLoad() {
Button button = new Button("Click Me");

button.addClickHandler (new ClickHandler() {

public void onClick(ClickEvent event) {
Window.alert ("Hello, World!");

b

RootPanel.get ("buttonDiv") .add (button) ;

Google Web Toolkit 149

The call to addclickHandler in the listing is the equivalent of setting the onclick
function.You can also see that there is a window class to expose browser-level methods.
The MyFirstpage class does nothing by itself. It needs an HTML page to host the
JavaScript generated from our Java code and a specialized XML file whose filename ends
with .gwt.xml and that tells the compiler which characteristics to include. Listing 8-2
shows the corresponding HTML page for Listing 8-1.

Listing 8-2 Host Page for MyFirstPage Class

<html>
<head>
<title>MyFirstPage Application</titles>
<link rel="stylesheet" href="MyFirstPage.css">
</head>
<body>

<script type="text/javascript"
src="com.test.MyFirstPage.nocache.js"></script>

<button id="buttonDiv"/>
</body>
</html>

Listing 8-3 shows the module file for the MyFirstPage application.

Listing 8-3 MyFirstPage Module File

<module>

<inherits name='com.google.gwt.user.User'/>
<entry-point class='com.test.client.MyFirstPage'/>
</module>

The Java class and the .gwt.xml file define a module along side an HTML view. If we
are packaging functionality for inclusion in other projects, creating an HTML page is
purely optional. Inheriting from modules is how we can extend applications with new
features. In Listing 8-3, the MyFirstPage module is inheriting the functionality from the
User module. We’ll visit a couple more examples later in this chapter.

Exposing JavaScript Libraries to GWT with JSNI

GWT would be somewhat useless if we didn’t have a way to manipulate raw JavaScript.
For those cases, we can extend GWT by using its JavaScript Native Interface (JSNI). JSNI
uses a special format to signal to the compiler that the enclosed code calls from Java to
JavaScript, or vice versa. Listing 8-4 shows a sample JSNI function to print out to the
console log.

150 Chapter 8 Creating Games Without JavaScript

Listing 8-4 A Simple JSNI Function

public static native void log(String text) /+*-{
return console.log(text);

-2/

JSNI also uses special identifiers $doc and $wnd to refer to the enclosing document
and window, respectively. The RaphaélGWT, Canvas2D (gwt -g2d), and WebGL (gwt -
g3d) modules we will cover later in this chapter all use JSNI to expose their JavaScript
code to Java.

RaphaelGWT

In Chapter 6,“Creating Games with SVG and RaphaélJS,” we created a memory card
game using Raphaél]S. GWT has a complementary module exposing Raphaél function
calls to GWT.When you create a circle or a path in GWT, thanks to JSNI, you are mak-
ing the same function calls you would be making if you coded this by hand.

RaphaélGWT functions in a different manner than its JavaScript counterpart. The
library is structured so that you create a drawing by extending the Raphaél class and then
add your objects to it. If you want to add a click listener or some other function to the
object, you must create an inner class and implement the appropriate GWT handlers.
Listing 8-5 shows an Image class that can accept click events.

Listing 8-5 Raphaél Image Class

public class RImage extends Image implements HasClickHandlers {
public RImage(String src, double x, double y,
double width, double height) {
super (src, x, y, width, height);

public HandlerRegistration addClickHandler (ClickHandler handler) {
return this.addDomHandler (handler, ClickEvent.getType());

This class would live in your extended Raphaél class due to scoping requirements.
They can get very unwieldy quickly for all but the most simple games. For those brave
souls out there, you could interact with the JSNI layer directly if you choose.

For a comparison with the JavaScript version, you can find a Java port in the source
code for this chapter.

One area where RaphaélGWT shines is creating paths. As you saw previously, path
strings are long, unwieldy, and hard to read. PathBuilder creates paths by calling each
instruction with its parameters, one at a time. Listing 8-6 shows a path created with
PathBuilder.

Google Web Toolkit 151

Listing 8-6 RaphaélGWT PathBuilder Example

PathBuilder pb = new PathBuilder();

pb.M(cx, cy)
.m(-60, -20)
.1(s80, 0, 0, -40, 70, 60, -70, 60, 0, -40, -80, 0)
.z ();

Adding Sound with gwt-html5-media

gwt-html5-media, as its name suggests, is a module providing HTML5 audio and video
functionality to GWT applications.You saw in Chapter 1, “Introducing HTML5,” how
we could create native audio elements using JavaScript. This library is a bit of scaffolding
on top of that. Listing 8-7 shows how we can check for Ogg Vorbis support for audio files
and default to MP3 if Ogg isn’t available.

Listing 8-7 Conditional Audio Loading

void loadAudio() {
if (!Audio.canPlayType ("audio/ogg; codecs=vorbis")

.trim() .equals("")) {
sndFlipCard = new Audio ("/Game/sounds/flipcard.ogg") ;
sndShuffle = new Audio ("/Game/sounds/cardshuffle.ogg") ;
sndWin = new Audio ("/Game/sounds/fanfare.ogg") ;
} else {

sndFlipCard = new Audio("/Game/sounds/flipcard.mp3") ;
sndShuffle = new Audio ("/Game/sounds/cardshuffle.mp3");
sndWin = new Audio("/Game/sounds/fanfare.mp3");

Accessing the Drawing APIls with GWT

When it comes to the APIs for drawing, you aren’t limited to just Raphaél. Many imple-
mentations of GWT libraries provide support for Canvas and WebGL. In this section, we
cover gwt -g2d, which allows us to use Canvas from within GWT. gwt -g3d, which we
won’t cover in this chapter, provides similar support for WebGL.

The only dependency for gwt -g2d is the gwt-g2d.jar file (found at http://code.
google.com/p/gwt-g2d/) or the gwt-g3d.jar file (found at http://code.google.com/p/
gwt-g3d/). gwt -g3d bundles the modules for gwt -g2d along side its own. We need to
place gwt-g2d on the build path of own project and, as with all GWT libraries, we need
to add a line to our .gwt.xml file and we are ready to go:

<inherits name='gwt.g2d.g2d’/>

http://code.google.com/p/gwt-g2d/
http://code.google.com/p/gwt-g2d/
http://code.google.com/p/gwt-g3d/
http://code.google.com/p/gwt-g3d/

152

Chapter 8 Creating Games Without JavaScript

The gwt-g2d analog to the Canvas context is the Surface class. It is our primary
interface for drawing. Surface provides immediate noncached access to the Canvas.
Listing 8-8 shows the initialization of a surface with a width of 640 pixels by 480 pixels.
Next, a blue rectangle and some scaled black text are added to the surface. Lastly, our sur-
face is added to the page.

Listing 8-8 Basic Example Using Surface Class

public class SurfaceExample implements EntryPoint {
public void onModuleLoad() {
Surface surface = new Surface (640, 480);
surface.setFillStyle (KnownColor.BLUE)
.fillRectangle (100, 175, 40, 40);
surface.setFillStyle (KnownColor.BLACK)
.scale(2) .fillText ("Hello from gwt-g2d", 100, 100);
RootPanel.get () .add (surface) ;

There is also a higher-level API called ShapeBuilder that stores the commands inter-
nally until you batch them out to a shape. The shape can then be redrawn more easily.
Listing 8-9 shows an example using ShapeBuilder. First, we describe a circle by drawing
an arc of radius 25 with a center at 100, 100 from O radians to 2*7 radians, which repre-
sents a full revolution around the center point. The shape is then drawn on the surface
with a green fill color and with a yellow fill color and translated 75 pixels to the right.

Listing 89 Example Using ShapeBuilder

public class ShapeBuilderExample implements EntryPoint {
public void onModuleLoad() {
ShapeBuilder builder = new ShapeBuilder() ;
builder.drawArc (new Arc(100,100,25, 0, Math.PI*2));
Shape shape = builder.build();

Surface surface = new Surface(640,480);

surface.setFillStyle (KnownColor.GREEN) . fillShape (shape) ;
surface.setFillStyle (KnownColor.YELLOW) .translate (75,0) .fillShape (shape) ;
RootPanel.get () .add (surface) ;

CoffeeScript

CoffeeScript

CofteeScript 1s a Ruby- and Python-inspired language for JavaScript. It compiles to
JavaScript and can use JavaScript libraries seamlessly. For those who have some experience
with Groovy, a scripting language for Java, they will see some similarities as well. Ruby
and Python have allowed developers to create web applications and iterate much quicker
than with statically typed languages such as Java and C#. CoffeeScript can provide the
same experience for JavaScript. CoffeeScript allows developers to code in a more object-
oriented manner with a class and inheritance mechanism.

Ars Technica (the popular technology blog) and 37signals (the creators of Ruby on
Rails) both have created iPhone applications using CoffeeScript. Anecdotal reporting has
claimed that rewriting libraries in CoffeeScript has reduced the lines of code by as much

as half.

Installing CoffeeScript

The CoffeeScript compiler is self~hosting and capable of compiling itself, and one of sev-
eral implementations runs as a Node.js module. Node.js is an event-driven framework
built on the V8 JavaScript engine that is commonly used for writing network applications.
We will cover it and some other server-side JavaScript options in more detail in Chapter
9,“Building a Multiplayer Game Server,” but for the moment, we’ll just acknowledge its
existence as something that can help us compile CoffeeScript. After cloning the Node.js
and CoffeeScript repositories, you can install the compiler by running

sudo bin/cake install

in your CoffeeScript source directory. For instances where Nodejs is not an option or
difficult to install (for example, on Windows or Mac OS X, which requires XCode), these
methods may alternatively be used:

. Ruby—gem install coffee-script.

» Java—]CofteeScript is a library that uses the Rhino programming language to
compile or to embed in a Java application.

= Ubuntu/Cygwin—Node can be installed on Windows using Cygwin (or if you
have the space or know-how, you could install a Ubuntu virtual image and do your
compilation inside of it). CofteeScript is present in the Ubuntu repositories and can
be installed with its dependencies by executing the following:

sudo apt-get install coffee-script

For the purposes of this chapter, we will assume that you are using the Coffee exe-
cutable provided by the Nodejs installation method.

Compiling CoffeeScript Files

In most cases, we will invoke the CoffeeScript compiler by executing:

153

154

Chapter 8 Creating Games Without JavaScript

coffee *.coffee -c

This command creates a JavaScript version of every CoffeeScript file in the current direc-
tory. We could instead specify

coffee *.coffee -c -o [directoryl]

to create the JavaScript files in a different directory. Another useful switch is -p, which
prints the output of the conversion to the console instead of a file. A full-fledged list of
options can be found on the CofteeScript website at http://jashkenas.github.com/cof-
fee-script/#installation.

A Quick Guide to CoffeeScript

In this section, we’ll dip into CofteeScript. This isn’t meant to be a canonical reference
but rather a delta between traditional JavaScript and CoffeeScript.

Basics

One of the core differences with JavaScript is that most parentheses and semicolons are
optional. When a set of parentheses can be implied, such as when there are multiple
parameters, they can be omitted. Semicolons are only needed if we are putting more than
one expression on one line. In CofteeScript, whitespace is significant, a hallmark from
Python. As you'll see later, this works hand in hand with the lack of curly braces. Listing
8-10 shows “Hello World” written in CoffeeScript. Notice that the first instance of
console. log includes the parentheses to clarify the ambiguity that we want to refer to
the function console.log() and not the property.

Listing 8-10 Hello World in CoffeeScript

console.log()
console.log "Hello World!"

The var keyword is also optional in CoffeeScript. Whereas in JavaScript, omitting var
puts the variable into the global scope, CofteeScript inserts the var for you and prevents
you from overloading a variable in a function scope. Each script is also wrapped in an
anonymous function to further make it hard to infect the global namespace.

Functions and Invocation

CofteeScript functions follow a simplified form reminiscent of closures in Groovy. No
function keyword is needed, only an optional parenthesized list of parameters, an arrow
(->), and the function body. Listing 8-11 shows the CoffeeScript to calculate the circum-
ference of a circle and its associated JavaScript.

http://jashkenas.github.com/coffee-script/#installation
http://jashkenas.github.com/coffee-script/#installation

A Quick Guide to CoffeeScript 155

Listing 8-11 Circumference of a Circle in CoffeeScript and JavaScript

#CoffeeScript
circum = (r) -> Math.PI * 2 * r
alert circum 10

// JavaScript
(function() ({
var circum;
circum = function(r) {
return Math.PI * 2 * r;
}i
alert (circum(10)) ;

PO

Another interesting addition is splats, or variable function arguments. Splats are indi-
cated by three periods as the last parameter name in a function. Neither JavaScript nor
CoffeeScript support function overloading, so we can use splats to indicate that the func-
tion can accept a variable number of parameters. Listing 8-12 shows a summation func-
tion using a splat. It also demonstrates the implied return value, which by default is the
last expression in the function.

Listing 8-12 Summation in CoffeeScript and JavaScript

#CoffeeScript
sum = (X,y,2...) ->
result = x + y
for i in z
result += I
result
alert sum 1,2,3,4,5,6

// JavaScript
var sum;
var _ slice = Array.prototype.slice;
sum = function(x, y)
var _i, _len, _ref, i, result, z;

z = _ slice.call(arguments, 2);

result = x + y;

_ref = z;

for (1 = 0, len = ref.length; i < len; i++) {
i= _ref[i];

result += 1i;

}

return result;

}i

alert (sum(1, 2, 3, 4, 5, 6));

156

Chapter 8 Creating Games Without JavaScript

To prevent the output from having a weird side effect such as “NalN” or “undefined,”
you have to supply the minimum number of parameters. Therefore, if a function calls for
two normal parameters and one with a splat, you must supply at least two parameters to
avoid any side effect.

Aliases, Conditionals, and Loops

Although you are free to use normal conditional statements and identifiers such as == and
1=, CoffeeScript provides human text versions that can be more readable. Table 8-1 pres-
ents some of the common aliases and their equivalent values. The included parentheses are
for clarity and aren’t essential in real code.

Table 8-1 CoffeeScript Aliases

Expression Alias

== is

I= isnt

! not

if (exp != value) unless (exp is value)
true on, yes
false off, no
this.property @property
&& and

|| or

while true loop
while not (exp) until exp

Conditional statements are able to be indicated before or after the expression to exe-
cute. The eproperty designation, lifted from Ruby, will help us later to differentiate local
scope variables from class instance variables.

Enhanced for Loop and Maps

CofteeScript introduces a new format of for loop to iterate over collections that is very
similar to the notation in Python and Groovy. Instead of specifying initial, ending, and
iteration conditions, you can use the more simpler syntax:

for item in collection
doStuff (item)

Behind the scenes, this is iterating the loop, pushing the item referred to at index x
into an object item that you are free to use within the function. If we needed for some
reason to have access to the index, we could use the expanded form:

A Quick Guide to CoffeeScript

for item, index in collection
doStuffWithIndex (index)
doStuff (item)

We can iterate over maps using the same form with a slight difference, replacing in
with the of keyword:

for key, value in map
dostuff (key, value)

As you can imagine from seeing the code in Listing 8-12, the generated JavaScript
code would be much longer.

Classes and Inheritance

One of the most exciting features of CofteeScript is the ability to create classes in
JavaScript.You could always create objects that act a bit like classes, but the delta between
classes in a typical compiled language and JavaScript was a bit large.

CoffeeScript uses a new keyword (class), along with the significant whitespace,
@property designation, and the new function format to create a reasonable facsimile of
what we would consider a class. Listing 8-13 shows a simple Human class.

Listing 8-13 A Human Class in CoffeeScript

class Human
constructor: (@name) ->
setAge: (@age) ->
getAge: -> @age
setHeight: (@height) ->
getHeight: ->
@height

One change from traditional JavaScript that you can see here is the use of the
constructor keyword en lieu of Human(parameters).The constructor doesn’t require a
body because the use of @name tells it to automatically save the value into an instance
variable. For the same reason, our setters don’t need a function body either. All eproperty
variables are public, so given a Human object h, we could just get the height by calling

h.height

or

h.getHeight ()

One way that we can guard against improper access is to change the signatures of the
@property variables to be different from the general property names, whether by append-
ing an underscore to the name or some other name mangling. Tactics like these will help
us preserve state when it comes to inheritance.

157

158

Chapter 8 Creating Games Without JavaScript

Class inheritance is a computer science concept where receiving classes, or child
classes, implicitly receive properties and method definitions from other classes, also
known as parent classes. The implementer of the child class can choose to use the meth-
ods in the parent class unchanged or instead use their our logic. Listing 8-14 shows some
of this in action.

Listing 8-14 Extending the Human Class

class Male extends Human
constructor: (@name) ->
super @name
@gender = "male"
getHeight: ->
super () + 3

Every instance of our Male class is a Human. The Male class likes to fudge his height, so
it retrieves the real height by calling super () and adds 3 units to it. super calls a function
with the same name on the parent function with the given parameter list, if any. Another
change we made is to declare the gender in the constructor function.

Alternate Technologies

Google Web Toolkit and CofteeScript aren’t our only non-JavaScript options. In this sec-
tion, we briefly discuss a couple more options.

Cappuccino

280 North, which was acquired by Motorola in 2010, created the Cappuccino web
framework, which uses the Objective-] programming language and ports of several
GNUStep/Mac OS X Cocoa frameworks to create applications. The syntax of Objective-
J is largely similar to that of Objective-C, but the former runs on top of JavaScript. In
Objective-], developers don’t need to directly manipulate the DOM or create CSS; those
capabilities are handled by the framework itself. Its relation to Objective-C might be
helpful to current iOS developers in quickly porting applications.

Pyjamas

Pyjamas is a port of Google Web Toolkit using Python in the place of Java. Although it
might tend to lag the features in GWT, it offers a more dynamic and possibly more rapid
development environment than Java. Pyjamas supports HTML5 Canvas, but WebGL has-
n’t been implemented yet. Pyjamas does have a concept for interacting with JavaScript
code similar to JSNI, so there is no barrier preventing a developer from porting WebGL
to it. Pyjamas Desktop is a component of Pyjamas that allows applications to run unmod-
ified on the desktop. Instead of compiling the code to HTML and JavaScript, the applica-
tion runs the Python code, leveraging Python libraries for the Gecko, Webkit, and Trident

Exercises 159

browser engines, which power the Mozilla, Safari/Chrome, and Internet Explorer
browsers, respectively.

Summary

In this chapter, we explored several technologies that allow us to use different languages
to create games on the Web. We dove into the robust library support in the Google Web
Toolkit and looked at the ways CoffeeScript can seamlessly integrate with JavaScript. In
examining GWT, we took our memory card game from Chapter 6, created a GWT ver-
sion, and added HTML5 audio. At the close of this chapter, we briefly discussed other
options for making games where JavaScript isn’t the primary language. Hopefully, this
chapter showed you that a less-than-proficient knowledge of JavaScript is no longer a
barrier to creating compelling HTML5 games.

Exercises

1. What are the alternate values for true in CoffeeScript?
2. What is the name of the protocol for calling JavaScript from GWT?
3. What is Pyjamas?

You can download chapter code and answers to the chapter exercises at www.
informit.com/title/9780321767363.

www.informit.com/title/9780321767363
www.informit.com/title/9780321767363

This page intentionally left blank

9

Building a Multiplayer
Game Server

In this chapter, we will build a game server to house the logic for our games and provide
a communal experience for the players. Keeping in the spirit of the games we have been

developing, we will be using the server-side JavaScript framework Node.js for our back-

end work.This will allow us to deeply integrate between our game and server-side code.
Assisting Node.js will be the socketing library Socket.IO.

Introduction to Node.js

Node.js is an asynchronous server-side JavaScript environment built on the Google V8
JavaScript engine.V8, which is written in C++, is the engine that runs JavaScript in the
Google Chrome browser and is known for its speed. Node treats items such as sockets,
HTTP, TCP/UDP, and file I/O as first-class citizens and provides little abstraction over
them. Listing 9-1 shows the code for a simple Node.js application that responds to all
requests with the text “Hello World.” It begins with a require statement to retrieve the
HTTP package for use in the applications. The require statements are similar to require
and import statements from Ruby and Python, respectively, in that they make the con-
tents of another file available for use by the currently running application.

Listing 9-1 Simple Node.js Application

http = require 'http'’

http.createServer((req, res) ->
res.writeHead 200, {'Content-Type': 'text/plain'}
res.end 'Hello World\n'

).listen 8124, "127.0.0.1"

console.log 'Server running at http://127.0.0.1:8124/'

Using require statements is an easy way to modularize your code and make it more
readable and maintainable.

162

Chapter 9 Building a Multiplayer Game Server

It is important to realize that Node.js is a general-purpose event-driven framework
and not the end-all and be-all for a web application. In most cases for any nontrivial
example, you will want to use a Node.js web framework.

Node has been embraced by developers because it allows them to code from front to
back in the same language. As a result, Node is being used for more than just web servers
and is powering utility scripts, testing frameworks, and command-line applications. The
official CoffeeScript compiler is implemented using Node. To further build on the work
we did with CofteeScript in Chapter 8, “Creating Games Without JavaScript,” we will be
using CoffeeScript for all the examples and demos in this chapter. If CoffeeScript isn’t
your favorite beverage-themed programming language, the CofteeScript compiler pro-
duces reasonably readable JavaScript that you could use directly.

Extending Node with the Node Package Manager

By itself, Node is fairly lightweight. That’s not to say you can’t build fairly involved appli-
cations with just Node. Node can be extended using the Node Package Manager (or
npm for short). npm functions like a software app store where the modules can be full
applications in their own right or pieces that can be integrated into other applications.
npm can be installed by executing the following command:

curl http://npmjs.org/install.sh | sh
If that fails, you can visit http://npmjs.org/ for further instructions. A list of available

modules can be found at http://npm.mape.me/. Modules can be installed or uninstalled,
respectively, by executing the following command:

npm install <name of module>

or

npm uninstall <name of module>

Managing Multiple Node Versions

Node is very much in its early days when it comes to stability. Some npm packages need
to run against a specific version or have unpredictable behavior. As a result, you can save a
bit of pain by installing Node using a version manager.

n (https://github.com/visionmedia/n) is a script file that allows you to manage your
node versions. Not only can the versions exist along side each other, but you can specify a
version of Node to be the default to route all commands through or you can selectively
run commands through a certain version.You can install n by executing

npm install n

if you already have some version of Node installed, or by cloning the git repository and
executing the following command:

make install

http://npmjs.org/
http://npm.mape.me/
https://github.com/visionmedia/n

Making Web Apps Simpler with ExpressJS 163

The command n 1s lists the versions of Node available for installation, whereas
the commands n latest [or version] and n rm [version] install/use the specified
version and remove the specified version of Node, respectively.

Making Web Apps Simpler with ExpressJS

Express]S (http://expressjs.com/) is a rapid web application development framework for
Node.js. Think of it as a focused web development layer over the more general-purpose
Node. Express focuses on the following:

= URL routing DSL

= Middleware

= View templating and rendering

» Deep integration with Connect, a middleware layer for Node, to manage things

such as cookies, sessions, and routing

Listing 9-2 shows a very basic Express]S application. After having installed Express
with npm by executing npm install express, we need to tell Node to retrieve the
Express library for us to use. We next create a server, a route (explained momentarily), and
a port on which the server will listen. The sys package is imported to give us some status
messages. sys.puts is equivalent to console. log.

Listing 9-2 Example ExpressJS Application

express = require 'express'
app = express.createServer ()
sys = require 'sys'

app.get '/', (req, res) ->

res.send('Hello World')
sys.puts "Server started on http://localhost:3000"
app.listen(3000);

Serving Requests with URL Routing

Express]S lets you define routes or URL endpoints to which your application can
respond. Routes can respond to any of the verbs GET, PUT, POST, and DELETE. Listing 9-3
shows the definition of a route that responds to the base server URL and prints “Hello,
World.”

Listing 9-3 Simple ExpressJS Route

app.get "/", (req, res) ->
res.send("Hello, World")

http://expressjs.com/

164

Chapter 9 Building a Multiplayer Game Server

You can create separate blocks for each HTTP verb, or you could use all, which
routes all verbs through the same block of code.

Express]S’s routing API is fairly flexible, allowing you to route to a base URL, as
shown in Listing 9-3, or to a static URL and formatted URLs, as shown in Listing 9-4.
The use of a colon before a portion of the endpoint means that component will be
exposed as a request parameter property. A question mark at the end of a fragment tells
Express]S that portion of the endpoint is optional. We can separate the root and extended
routes as we did with /about and /about/:id or combine them with conditional logic
as we did with /profile/:id?.The final example, /updateProfile, uses a POST. It
demonstrates how we can get access to the transmitted data by inspecting the req.body
object.

Listing 9-4 Advanced Routes

express = require 'express'
app = express.createServer()
sys = require 'sys'
app.configure ->
app.use express.logger()
app.use express.cookieParser()
app.use express.bodyParser()
app.use express.static(__dirname + '/public')

app.get '/about', (req, res) ->
res.send('About Page')

app.get '/about/:id', (req, res) ->
id = req.params.id
res.send('About Page for '+id)

app.get '/profile/:id?', (req, res) ->
id = req.params.id
if (id is undefined)
res.send("Profile not found")
else res.send(id+

s Profile")

app.post '/updateProfile', (req, res) ->
newData = req.body
name = req.body.name
doStuffwWithData(data)
res.send("Update successful.")

sys.puts "Server started on http://localhost:3000"
app.listen(3000);

Making Web Apps Simpler with ExpressJS

Express]S has a middleware layer exposed to it by the bundled Connect
(http://senchalabs.github.com/connect) library. Connect’s middleware layer provides
reusable functions for common things an application might need, including but not lim-
ited to authentication, logging, session management, cookies, and parsing request bodies.
We’ve already written a few of the most basic middleware functions in our sample
applications. Listing 9-4, which shows some advanced routes and uses the bodyDecoder
middleware to enable seeing the POST request’s body. It also specifies that there would be
a static directory called public that serves up assets such as client-side JavaScript, images,
CSS, and HTML.

Managing Sessions

In order to use sessions, we need to include a couple middleware components.You can
see a sample route that uses sessions in Listing 9-5. cookieDecoder and bodyDecoder are
required to be instantiated before session.The secret parameter of session helps the
middleware to encode the GUIDs for the session IDs. The session object is created
seamlessly for us behind the scenes, and we can attach [serializable] objects to it, as
well as modify or remove them. If we don’t specify a backing store, it defaults to in-mem-
ory. Although not bundled directly with either Connect or Express]S, backing stores are
available for virtually every popular database.

Listing 9-5 Logging Session Visit Count

app.configure ->
app.use(express.cookieParser())
app.use(express.bodyParser())
app.use(express.session({secret:'asdf'}))

app.get '/', (req, res) ->

if req.session.visitCount == undefined
req.session.visitCount = 1
else

req.session.visitCount = req.session.visitCount + 1;

res.send "Session ID:"+req.session.id+"
"+'You have visited this page
+ req.session.visitCount + ' times';

Understanding the ExpressJS Application Structure

Express]S is pretty liberal when it comes to application structure, letting you set where to
find the specific directories, as demonstrated in the following snippet:
Set directory for views to render

app.set 'views', _ dirname + '/views'

Be that as it may, all the applications in this chapter will follow the structure shown in
Figure 9-1. It provides a clear separation of concerns and makes it easier to learn

165

http://senchalabs.github.com/connect

166

Chapter 9 Building a Multiplayer Game Server

Express]S.Views define how the information will be presented to the user. The public
directory holds static assets that the application will serve to users, such as CSS, images,
and JavaScript files. All applications should be tested in some shape or form, and the tests
directory will house those tests. Last but not least is the app.coftee (or alternatively app.js)
file. It initializes the server with our core logic for the application and sets up routes, log-
ging, middleware, templating, and so on. It should be noted that executing the express
script in an empty directory will create a sample app.js file along with views, public, logs,
and tests directories.

user@cr-48-ubuntu:~/Documents/repos/express-demo$ express

./views/layout.jade

: . /views/index e

: ./public/stylesheets
./public/stylesheets/style.css

: ./public/images

: ./public/javascripts

: ./logs

: . /pids

- make sure you have installed jade: $ npm install jade
user@cr-48-ubuntu:~/Documents/repos/express-demo$ ||

Terminal 0

Figure 9-1 ExpressJS application structure

Templating HTML with CoffeeKup

CoffeeKup is a templatinge engine for HTML that allows you to create HTML entirely
by using CoffeeScript. Provided that Node.js is already installed, CoffeeKup can be
installed by executing

npm install coffeekup
on a command-line prompt. Frameworks that support CoffeeKup as a rendering engine
convert the CoffeeScript code at runtime into HTML and JavaScript. Listing 9-6 shows

the CoffeeKup code to create a simple HTML page and set the content of a div to
“Hello World!” Notice that we can assign and use variables inside the code.

Listing 9-6 A Simple CoffeeKup Page

@title = "Hello World"
doctype 5
html ->
head ->
title @title
body ->

Making Web Apps Simpler with ExpressJS

div id: 'content',6 ->
div id: 'fragment', ->
@body

coffeescript ->
document.getElementById('content').innerText = "Hello World!"

Listing 9-7 shows the HTML code that is generated when the preceding CofteeKup
file is served by Express]S.

Listing 9-7 Generated HTML Code
<!DOCTYPE html>

<html>
<head>
<title>Hello World</title>
</head>
<body>
<div id="content"></div>
<div id="fragment"></div>
<script>; (function () {
return document.getElementById('content').innerText = "Hello World!";
naO;
</script>
</body>
</html>

So far, we have seen CofteeKup generating full pages. Using it as a templating engine
in Express]S means we can modularize our Ul code and render fragments of pages on the
fly using a set of common layouts. We can register CofteeKup with Express]S by includ-
ing the following snippet in our application file:

app.register '.coffee', require('coffeekup')

app.set 'view engine', 'coffee'

The code tells Express]S that, by default, we will be using views that are CoffeeScript
files and that we can omit using the file extension when referring to them. Using the full
filename allows us to mix layouts using the other libraries: Jade, Haml, JQuery Templates,
and EJS.When a fragment file is referenced, the system looks for an associated layout file
that describes the outer structure of the HTML to display. In the case of CoffeeKup, it
searches for layout.coffee in the views directory, failing over to other directories if it is
not found. Listing 9-6 is an example of what could be defined in a layout file. You might
have noticed that there is a @body variable that hasn’t been assigned a value and doesn’t
seem to appear in the generated HTML. When rendering a view, Express]S takes the

167

168

Chapter 9 Building a Multiplayer Game Server

content of the view we are rendering and puts it into the layout file as the value of the
body variable. So given a view fragment named index.coffee that contains the code

div ->
"The time is now #{new Date()}"

we could set up a route on /getTime, as shown in Listing 9-8, that, when visited, would
return the composition of index.coffee and layout.coffee.

Listing 9-8 Creating a Route for /getTime

app.get "/getTime", (req, res) ->
util.log "Client visited /getTime"
res.render 'getTime'

View variables can also be passed at runtime. If we wanted to pass the time zone to the
getTime page, we could modify the view as shown in Listing 9-9, passing the desired
variables in a map property named context.

Listing 9-9 Modified Route

app.get "/getTime", (req, res) ->
util.log "Client visited /getTime"

res.render 'getTime', context:{timezone: 'America/Los Angeles'}

Persisting Data with Caching

In most applications, there will be a backing database of some sort to store data. Like a
computer hard drive, reading the data is fairly quick—the time consuming part is finding
the data. Caching allows us to have quicker access to data. Once data is accessed, it’s fairly
likely that it will be accessed in the future. Caching sets aside a bit of memory to store
recently accessed objects. Caches don’t have infinite storage; otherwise, they lose their
advantage over databases. Caching strategies for choosing which objects to eject can vary
greatly. Many of them center around some variant or combination of ejecting the Least
Frequently Used (LFU), Least Recently Used (LRU), and Most Recently Used (MRU)
objects. Alternatively, the cache can eject based on a period of inactivity, as is done with
website sessions.

The node-cache project (https://github.com/ptarjan/node-cache) provides some basic
functionality that we can further build upon. node-cache’s API is pretty straightforward,
providing the six functions listed in Table 9-1.

https://github.com/ptarjan/node-cache

Managing Client/Server Communication

Table 9-1 node-cache API

Function Description
get (key) Retrieves the value for the given key; otherwise null.

put (key,value,duration) Stores the given value with the specified key. If a time
is specified, the key/value pair will be purged after the
duration. Otherwise, it is stored until explicitly removed.

del (key) Deletes the value held by the given key.

size() Returns the number of non-null key/value pairs in
the cache.

memsize() Returns the number of key/value pairs in the cache.

debug(bool) Turns debugging on or off.

Managing Client/Server Communication

In the early days of the Web, back when using the “World Wide” part of the name was
still in vogue, interaction was pretty limited.You clicked a link, and it send you some-
where.You filled in a long form of data, clicked Send, and were routed to a new static
page. Slowly but surely this static means of interaction became more dynamic as more
websites began using AJAX to update their information without redirecting the user. The
innovation didn’t end there. Further advances brought server-side push, long polling, and
has culminated in TCP sockets being supported natively in web browsers. Web Sockets in
their current incarnation are new, but the concept itself is not. Early Java applets were able
to open up a socket between the server and the client’s browser.

Communicating with Socket.l0

Socket.IO is librarys for Node.js that seeks to provide a common interface that different
transport mechanisms can use regardless of the destination or source of the message.
Socket.IO supports communicating using the following technologies:

= Native Web Sockets
Adobe Flash sockets

= AJAX long polling

» AJAX multipart streaming

= Forever [Frames

= JSONP polling

169

170

Chapter 9 Building a Multiplayer Game Server

This combination of transports allows Socket.IO to support almost all versions of
every major desktop and mobile browser. In addition to the official Node.js implemen-
tation, there are unofficial server implementations for Java, Python, Google Go, and

Rack (Ruby).

Setting Up a Simple Socket.lO0 Application with Express

Listings 9-10 and 9-11 show the server and client sides for a simple Socket.IO application
that echoes back whatever the server or client send each other. The server has an event
called connection that it listens for. When that even is fired, it prints to the console that a
new client has connected and it registers a function to be executed whenever there is a
message. It is empty in the code sample, but you can see that responding to the
disconnect event is also possible.

Listing 9-10 Server Code for Hello World
Setup socket.io

socket = io.listen app
socket.on 'connection', (client) ->
sys.puts "new client connected."”
client.on 'message', (data) ->
sys.puts data
client.send data
client.on 'disconnect', ->

Listing 9-11 shows the other side of the equation with the client’s code. After includ-
ing the requisite JavaScript file, we instantiate a new socket and register functions for the
connection and message events like we did on the server.

Listing 9-11 CoffeeKup Template for Hello World
doctype 5
html ->
head ->
title "#{@title}"
script src: '/js/socket.js'

body ->
coffeescript ->
socket = new io.Socket 'localhost'
socket.connect ()
socket.on 'connection', ->
console.log 'Connected.'
socket.on 'message', (data)->
console.log data
socket.send "Hello World"

Managing Client/Server Communication

Making Web Sockets Simpler with NowlJS

Socket.1O is great for simple communication, but complex conversations over sockets
would require you to do something such as formatting messages as JSON, sending them
over the socket, and decoding/encoding them on each side. As the number of conditions
we have to handle grows, making our mini-language for all the features of our application
becomes untenable. It would be so much easier for the server to be able to call the spe-
cific methods in the client’s domain without complex message passing—and vice versa.
With Now]S, we can do just that.

Now]S is a client- and server-side JavaScript library that enables clients and servers to
make remote procedure calls over a Web Socket pipeline. Now]S uses Socket.IO for the
communications bit by wrapping it with several important features. There are two shared
namespaces, called everyone.now and now. The former is implemented on the server side,
and the latter is the client’s interface to Now]JS. Any variables or object graphs set within
the everyone.now namespace will be shared among all clients and the server. If the server
calls a function in the everyone.now namespace and it exists on the client, it will attempt
to execute the function of the same name in the client’s now namespace. An example will
help illustrate this better. One of the common tasks we will perform a lot on our game
server is to retrieve player data. We are going to use Now]S to have the client request a list
of the currently connected players. On the server we have a function in the
everyone.now namespace called getPlayerList. It takes a callback to the client to return
the code as its only parameter. Listing 9-12 shows only the code that would change from
an initial application file.

Listing 9-12 NowlJS Demo Application File

nowjs = require("now")

app = express.createServer()
everyone = nowjs.initialize(app)

everyone.now.getPlayerList = (callback) ->
players = ['Jake','John', 'Cathy']
callback(players)

Alternatively, we could have defined a function on the client to be called by the server.
The server could have used this to communicate rather than a callback. Our client-side
code, after the required now.js script file has been included, defines a function called
getPlayers that calls the server’s getPlayerList function and prints the results to the
console. The last snippet of code is the call to now.ready.The ready function allows us to
specify code to be executed when the connection has been successfully made to the
server. This is shown in Listing 9-13.

171

172

Chapter 9 Building a Multiplayer Game Server

Listing 9-13 NowlJS Client Code

doctype 5
html ->
head ->
title "#{@title || 'NowJS Demo'}"
script src: '/nowjs/now.js'

body ->
coffeescript ->
window.getPlayers = ->

now.getPlayerList (data) ->
console.log(data)

now.ready ->
console.log('ready')
div ->
input type:'button', value:'Get Players', onclick:'getPlayers();'

Debugging Node Applications

With all those asynchronous callbacks firing, being able to effectively debug our applica-
tions becomes extra important. If we need to find the value of a single object for a short
time, then console debugging (where we print out data to the console) might work.The
sys object has a function called inspect that will convert all the details of an object to a
String. We can use that with sys.put to output to the command line, as in the following
snippet:

sys.put(sys.inspect(obj))

Great in a pinch, console debugging becomes untenable when you are trying to check
flow control or when an error is several levels down. For those more advanced cases, a
full-fledged debugger is more helpful, giving more control over the running application.
The node-inspector project (https://github.com/dannycoates/node-inspector) provides

this functionality for Node applications.You install node-inspector by executing the fol-
lowing command:

npm install node-inspector

You can then start the debugger with the following command:

node-inspector &

Now node-inspector is ready to start monitoring your applications. The last steps are
to start Node in debug mode by executing either

https://github.com/dannycoates/node-inspector

Creating a Game Server 173

node —debug <app file>

or

coffee —nodejs <app file>

and navigating to the address provided by node-inspector (generally
http://0.0.0.0:8080/debug?port=5858) in a WebKit-based browser. There, you'll see the
Developer Console repurposed to show details about the application. Turn back to
Chapter 1, “Introducing HTML5,” if needed, for a refresher. One really cool feature of
node-inspector is that the Scripts tab shows you CofteeScript files as the compiled
JavaScript that will actually run on the server side.

Creating a Game Server

A typical multiplayer game server includes several areas for users to interact, at minimum,
a game lobby, specific game rooms or areas, and a means for users to chat with one
another. In the coming sections, we will tackle each of these areas.

Making the Game Lobby

The game lobby is first part of our application that the users see. From the lobby, the
users can see games in progress that they can join, chat with other users, and create their
OWI game rooms.

Listing 9-14 shows the CoffeeKup code needed to implement the application’s landing
page. On the left, we have a large container that will hold our Canvas. On the right is a
chat window for our players to communicate with others.

Listing 9-14 Application Landing Page Code

@title = 'Game Lobby'

div style:'float:left;height:600px;width:800px', ->
div style:'float:right;',->

textarea id:'chat', rows:'10', columns:'50', style:'width:200px;height:550px"

br ->

input type:'text', columns:'40', id:'message'

input type:'button', value:'Send',
onclick:"distributeMessage($('#message').get(0).value)"

When the user clicks the Send button, it passes the content of the message text area to
our distributeMessage function, which in turn calls the function of the same name on
the server. receiveMessage is invoked by the server on all the clients when a client sends
out a distributeMessage call. We can see the client code in Listing 9-15.

http://0.0.0.0:8080/debug?port=5858

174

Chapter 9 Building a Multiplayer Game Server

Listing 9-15 Client-Side Code to Send and Receive Chat Messages

window.now.receiveMessage = (name, message) ->
val = §('#chat').get(0).value
val += name + ':' + message + '\n'
$('#chat').get(0).value = val
console.log('Received message:

+ message + from: '+name)
window.distributeMessage = (message) ->

if now.name is 'Unknown'
now.name = prompt("What is your name?")

now.distributeMessage (message)

Notice in Listing 9-16 that the server only has to implement the function where it is
doing work. It calls receiveMessage with the blind faith that it will exist on the clients.

Listing 9-16 Server-Side Code to Send and Receive Chat Messages

everyone.now.distributeMessage = (message) ->
console.log("Received message:"+ message + " from: "+this.now.name)
everyone.now.receiveMessage(this.now.name, message)

Creating Game Rooms with NowlJS Groups

From the lobby, players can select an existing game room they would like to enter or cre-
ate one of their own. Each game room has properties with a preset range, such as the
game in play for that room, the maximum set of players, and the game logic for the game.
Shortly after all participants leave a game room, the server removes it from view.

Now]S allows you to segregate users by using groups. Groups have their own set of
now objects that the clients share with the server. Groups make it so that the people not in
our game room don’t get bombarded with messages and notifications. getGroup retrieves
an existing group with the name of the passed parameter or creates one. Listing 9-17
shows this in action in the bit of code we use to create our game rooms. After the game
room is created, player entrances and exits are announced to the people in the room
thanks to the on 'connect' and on 'disconnect' events.

Listing 9-17 Creating a Game Room

everyone.now.createRoom = (roomName, callback) ->
console.log("Created room: "+roomName)
group = nowjs.getGroup (roomName)
group.on 'connect', (clientId) ->
group.now.receiveMessage(this.user.clientId +" joined the game room.")
group.on 'disconnect', (clientId) ->

Managing Game Play

group.now.receiveMessage(this.user.clientId + " left the game room.")
gameRooms . push (group)
callback(group)

Managing Game Participants and Moving Between Game Rooms

Now that we have our game rooms, we need people to put into them. That is where our
game participants come into play. We can have two types of game participants: players and
watchers. Players engage in the game and are affected by the game logic, whereas watch-
ers can merely watch the play as the game unfolds. Either type of participant is able to
broadcast messages to others in the game room. Listing 9-18 shows how the code we
have wrapped around the Now]S objects to add or remove a user from a game room.

Listing 9-18 Moving Between Game Rooms

everyone.now.joinRoom = (roomName) ->
group = nowjs.getGroup (roomName)
group.addUser (this.user.clientId)

everyone.now.leaveRoom = (roomName) ->
group = nowjs.getGroup (roomName)
group.removeUser (this.user.clientId)

Managing Game Play

In this section, we get to the nitty-gritty of our game server. We will code the game logic
for the Tic-Tac-Toe game we coded in Chapter 5,“Creating Games with the Canvas Tag.”

Moving a game from running locally to running on a server is much like the transition
in moving a web application from a traditional web framework to a purely event-driven
model. Whereas you could just busy-wait for a single application running locally, on
something like Node, you instead have to keep track of the dozens or hundreds of games
at once. We will use the database and caching to allow us to manage many games at a
time and to scale.

Back in Chapter 5, we used the Canvas to code some of the basics of tic-tac-toe, and
in Chapter 4, “How Games Work,” we coded the artificial intelligence powering it. We
can use our game server to finish that effort and put the two pieces together.

After a room is created, users can create a new game. The now object for that game
room stores the current state of the game board, which player is X and which is O, and
whose turn it is. When a player takes his or her turn, the move is sent over the wire to the
server’s now object to validate and apply it if valid. Another change from the previous ver-
sion is the use of the cache to store the current game state. Although groups have a now

175

176

Chapter 9 Building a Multiplayer Game Server

object, they cannot have arbitrary objects attached to it like the everyone.now object can.
The cache also solves the problem of everything in the now object being shared between
all clients. If we were to, for instance, store all the cards for a game in the now object,
nothing would keep a less-than-honest player from easily peeking or changing the cards
in his or her hand.You can see this code in Listing 9-19.

Listing 9-19 Validating and Applying Player Moves

everyone.now.completeTicTacToeMove = (room, X, y, player) ->

rooms = cache.get("rooms")
room = rooms [roomName]

group = nowjs.getGroup(room)
roomState = cache.get(room)
board = roomState.board

otherPlayer = if player is 'X' then 'O' else 'X'
if board[x][y] is '-'
board[x][y] = player

check for win

cache.put(this.now.room, roomState)
else
roomState.message = 'Player #{player}, Please try again.'
cache.put(room, roomState)
group.now.receiveGameState (roomState)

We could just as easily wire in a computer player by having it calculate its moves and
adjusting the game board on the server’s now object. The receiveGamestate function
operates in a similar way to the receiveMessage function does with chat.The state on
the server is treated as the source of truth. After each action, the game state is pushed to
all the clients and they redraw their screens. The solution we used for tic-tac-toe works
well for games that can be represented concisely, but fails as the scale of players goes up.

One way to handle scale, especially for free-roaming games such as arena-style first-
person shooters, is to move most of the interaction to the server. Whereas in the tic-tac-
toe game server example, the user could run specific functions on the server, albeit with
some basic verification, other games might need more safeguards against cheating. One
way to do that is to run most of the logic on the server and push updates to the client.
On the client side, the client no longer can run functions—it can only send updates of’
what input keys were pressed. It is the server’s job to make sense of what a button being
pressed means. RealtimeMultiplayerNodeds (https://github.com/onedayitwillmake/
RealtimeMultiplayerNodeJs) exposes many of these features. Although it is outside the
scope of this book to cover in any depth, it bears mentioning for the benefit of those who
have their hearts set on massive multiplayer Scrabble or similar technology.

https://github.com/onedayitwillmake/RealtimeMultiplayerNodeJs
https://github.com/onedayitwillmake/RealtimeMultiplayerNodeJs

Exercises 177

Summary

This chapter provided a crash course in the server-side JavaScript web framework and the
surrounding ecosystems.You learned how to use Express]S to create routes for web pages
and also how to template HTML to be served when the specific route is visited. You also
learned how to use Web Sockets with the Now]S and Socket.IO projects for real-time
communication between the server and clients. Next, we dove into data persistence using
a simple cache. We finished this chapter with a tech demo around creating a game server.

Exercises
1. Write code that creates a Now]S group and prints “Welcome” to the console when
someone joins the group.
2. What is the n command to install Node.js version 0.4.8?

3. Create a route that responds to the “location” and takes a parameter called city.

You can download chapter code and answers to the chapter exercises at www.
informit.com/title/9780321767363.

www.informit.com/title/9780321767363
www.informit.com/title/9780321767363

This page intentionally left blank

10

Developing Mobile Games

It could easily be argued that the 2007 release of the iPhone was the genesis of mobile
gaming and the “app-itization” of web content. Sales of content for mobile devices,
including phones, tablets, and televisions has numbered in the billions. Although mobile
games existed before, the appearance of smartphones was one of the first times that
mobile devices could use the Web—the real Web—and not some watered-down version
for consuming and producing content. In this chapter, we will discuss in part the domi-
nant mobile phone operating systems, what is involved in developing for them, and some
of the frameworks that work with them. Before we go into the how and why, let’s briefly
discuss the platforms themselves.

Choosing a Mobile Platform

In this section, we briefly cover the capabilities and peculiarities of the dominant mobile
device operating systems.

i0S

Formerly known as the iPhone OS,10S powers most of Apple’s mobile and entertain-
ment devices, including the iPhone, iPod Touch, iPad, and AppleTV. Considering only
mobile devices, 1OS has garnered approximately 16.8% of market share, at the time of this
writing. 108 is a variant of the BSD-based Mac OS X optimized for touch interaction.
10S is restricted to Apple-branded devices. iOS applications that are not served by the
browser are generally coded in the Objective-C programming language. The iPhone, iPod
Touch, and iPad can connect to other devices using Wi-Fi and sometimes Bluetooth and
CDMA/GSM cellular service. Webkit, a fork of the open-source KHTML layout engine,
powers the browser experience for these devices. HTML5 is extra important to Apple
because it forbids plugin technology such as Flash in its iOS devices. In addition to the
108 devices, on the desktop, Webkit is at the core of Google Chrome and Apple Safari,
the third and fourth most popular desktop browsers. When it comes to implementing
HTML5 standards, browsers that use Webkit have been at the forefront of the charge.

180

Chapter 10 Developing Mobile Games

Android

Android is an operating system created by Google to run on mobile devices. Android has
captured 36% of the market thanks to a multitude of carriers and device options. The first
Android device launched approximately a year after the initial iPhone. One of the key
differentiators between devices running Android and those running iOS is that, except in
rare cases, Google doesn’t assert control over the devices and or their specifications.
Native Android applications can be written in a Java syntax that can be compiled for the
Dalvik virtual machine. Communications options vary by device but are equivalent to
those of the 10S devices. Android and iOS devices may also contain gyroscopes for direc-
tional positioning and accelerators to infer motion in space. Thanks to Android’s open-
source license, cellular carriers are free to install Android on any device or modify parts of
the operating system without getting Google’s permission. This has contributed to
Android’s gains in market share. A plethora of phones and tablets have emerged in the past
three years spread across about five different versions of the operating system. Although
this may cause some fragmentation in the capabilities of the core OS, it has less-tangible
ramifications for HTML5 games. Android uses a variant of the Google Chrome web
browser, which itself is derived in part from Webkit. Although some devices are still being
released with the relatively ancient Cupcake and Donut versions (1.5 and 1.6, respec-
tively), most new devices run Eclair (Android 2.0/2.1), Froyo (Android 2.2), or higher—
which boast improved HTMLS5 support and faster JavaScript engines. Recent Android
devices can also run Flash content, unlike their iOS counterparts. Because the operating
system is open source, there tends to be a plethora of devices running different versions of
Android. Although much hay has been made about fragmentation, at any given time, the
number of versions run by a plurality of devices is generally only one or two.

Web0S

WebOS is a operating system creating by Palm, later acquired by HP, to run on mobile
devices. The first devices launched in June 2009. Under Palm’s tenure, only two devices
were released: the Palm Pre and the Palm Pixi/Pixi Plus. WebOS, although using Linux
for its core functionality, makes use of JavaScript, HTML, and AJAX for most user-facing
applications. Since the acquisition, an updated Palm Pre 2 has launched and HP has
announced its intention to use WebOS for mobile phones, tablets, and printers. WebOS
only accounts for a scant sliver of the market. In mid to late August 2011, HP decided to
exit the hardware business and discontinued production of the Palm Pre 2 and its tablet
form factor device, the Touchpad. Existing devices have been marked down to fire sale
prices with many consumers seeking devices in hopes that Android will be ported to it.
HP says that their exit from hardware doesn’t mean the end of WebOS. That remains to
be seen.

Windows Phone 7

Last is the most recent entrant into the market, Windows Phone 7, created by Microsoft.
The market share for Windows Phone 7 is somewhere below 3.3%. That figure includes
Windows Mobile devices as well. The first Windows Phone 7 devices launched in late

Deciding Between an Application and a Website

2010.Windows Phone 7 is a break in compatibility to its predecessor Windows Mobile
6.5. Applications can be written in C# using either Microsoft’s Internet application
framework Silverlight, or the more gaming focused XINA project. For our needs,
Windows Phone 7 at present is a nonstarter. The included browser is a blend of features
from Internet Explorer 7 and 8, which support no HTMLS5 elements. Bear in mind that
Internet Explorer 9 beta has a more complete implementation of HTMLS5 features.

In mid-2011, Microsoft and Nokia brokered a deal making Windows Phone 7 the
standard OS for new Nokia devices. As these devices begin to roll out, Windows Phone 7
will begin to consume the 27.4% market share held by devices running Nokia’s Symbian
operating system. During that same time, Microsoft announced the “Mango” update to
Windows Phone 7, which includes a mobile version of Internet Explorer 9 with HTML5
support. The update is due sometime in Fall 2011.

Flick, Tap, and Swipe: A Quick Guide to Mobile
Gestures

If T take away your mouse and keyboard and give you a touch screen, you’ll need a way to
communicate with the system, and mobile gestures are just how you would do that. Ges-
tures allow you to replace the mouse with your finger. Capacitive screens (or in laymen’s
terms, multitouch screens) allow you to interact with the screen using multiple fingers at
one time. Multitouch screens allow you to do things that aren’t usually possible with
mice, such as making a pinching motion to zoom a map or drawing a letter to go to
entries that start with that letter in an address book. The gestures that are usually present
are tap and double-tap (cousins to the mouse click and double-click), possibly a long
press, and some sort of swipe or flicking motion. Some of the mobile operating systems
contain more or offer the ability to create new ones.

Deciding Between an Application and a Website

Launching your game as a website ofters the following advantages over launching it as an
application:

» Speed in development
» Portability

= Ease in deployment

A game that launches as a website has one hub of activity. Although some developers
might test the game play on multiple devices, the website itself is treated as the main
client for development and testing. Testing primarily in one place will greatly streamline
development cycles to push new features or bug fixes. Having the game live on a website
also simplifies the deployment strategy. There is one and only one place to push changes
and fixes and to monitor for bugs. If you stay within the lowest common denominator
of features between HTML5-compliant browsers, possibly with the help of a mobile

181

182

Chapter 10 Developing Mobile Games

framework, you could get a product that works reasonably well without the need for
much testing.

Although all three major mobile platforms use some form or another of Webkit, they
each have their own little quirks. These little nits might cause some unexpected behavior
on these browsers. For example, Android devices running 2.2 or higher and newer
WebOS phones could use Flash for audio, but Flash is stricken from iOS devices. In this
case, using Flash audio on the website would break the experience on some devices.

To counteract these issues, we could deploy our games as applications for each indi-
vidual platform. Deploying as individual products gives us the opportunity to do the
following:

= Tailor the experience to each platform

= Market the applications better

Inversely, deploying for each platform individually increases the development costs
both in maintenance of multiple apps and in finding developers who are mobile platform
generalists. Later in this chapter, we will discuss in more detail some specific libraries that
can help in packaging applications, but first let’s talk generally about what is going on
behind the scenes. Whether your game is launched as a website or a mobile application,
the one point of commonality is your game assets: the HTML, JS, CSS, and whatever
other assets you have created. The difference is in how they will be run. In a mobile appli-
cation, the files are bundled and run locally. The application is, in its most basic imple-
mentation, just a widget of some sort to show HTML content with a little Java,
Objective-C, or other native code to bind it all together. Frameworks that might interpret
gestures sit at the outermost layer closest to the user. Figure 10-1 shows the breakdown of
the individual layers in an Android application.

HTML/CSS/JS
WebView
Application
Java Code

Operating System

Figure 10-1 Android application layers

Native code is where we could define new gestures that only a specific operating sys-
tem might support. In addition to OS-specific gestures, we might expose other features
that are accessible only from native code, such as camera or accelerometer support. The
biggest advantage to releasing your games as applications is better marketing opportuni-
ties. Most mobile platforms have app stores that feature apps that can run on their
devices. Some, such as the iPhone App Store and the upcoming Amazon Android App
Store, are curated environments, where each app is vetted to make sure it runs properly
and as expected. Other stores, such as Android Market, allow the developer to deploy an

Storing Data on Mobile Devices 183

app and have it almost instantly be available for download or purchase. If your game isn’t
packaged as an app, there is no way it can be a featured download in any of the stores. It
can also be more difficult to get potential users to buy your game. If you use a website,
you would have to set up payment systems as well as handle refunds and download errors.
Releasing the app through a store moves that heavy lifting to someone else.

Making your game an application doesn’t come without risks. Apps are vulnerable.
They can be copied, cracked, and decompiled. If you make a good game, it may very well
get pirated. All that being said, the opportunity for greater exposure, in my humble opin-
ion, far outweighs the risks.

Storing Data on Mobile Devices

Most nontrivial applications have a need to store structured data. The general consensus
for mobile devices has been to employ SQLite. In Chapter 1, “Introducing HTML5,” we
briefly discussed WebSQL, which is closely linked to SQLite. Note that mobile applica-
tions, for the most part, use the SQLite support built into the operating system rather
than that of the browser. WebSQL (SQL in the browser) has been deprecated in favor of
the NoSQL-like IndexedDB standard.

The application frameworks we will discuss later in this chapter—Appcelerator Tita-
nium and PhoneGap—both allow you to make native OS database calls from your
HTMLS5 applications. If you make extensive use of the database, it won’t be optimal to
use one method for the browser and another for mobile applications. Generally, the less
code that has to change, the better. Enter Lawnchair.

Relaxing in Your Lawnchair: An Easier Way to Store Data
Lawnchair is a storage API created by some of the same folks behind PhoneGap. It allows
us to use a single API to persist data in many backing data stores. We could use Lawnchair
for something as simple as save states or as complex as game maps. It gives us a way to
future-proof our code. Lawnchair supports the following backends:
= DOMStorage (localStorage)
WebSQL (both Webkit and Gears)
= Window-Name
» BlackBerry
= [E User data
= IndexedDB

If you are familiar with NoSQL key/value stores such as MongoDB and CouchDB,
you will feel right at home with Lawnchair. (Key/value store databases store their data in
collections of objects that are maps of properties, generally as a JSON object.) You can
create a database and just start populating things in it.You don’t have to declare in
advance what properties your objects will have. They can evolve naturally over time. As a

184

Chapter 10 Developing Mobile Games

result, all objects of the same “type” might not have the same set of properties. The install
instructions can be found at http://westcoastlogic.com/lawnchair/. We need to include
the Lawnchair.js file and one of the included adaptors.

Getting Started with Lawnchair

The first thing we need to do is create a Lawnchair store. You can think of it as a bag of
objects that are generally alike.You can have as many stores as you want, up to the non-
administrator limits of your browser (generally about 5SMB, before the user is prompted
for permission). Listing 10-1 shows the code to create a classes store and populate it with
a couple objects using the save function. Alternatively, we could supply a function to be
executed when the save operation is completed.

Listing 10-1 Creating a Lawnchair Store

var classes = new Lawnchair({name:'classes'}, function() {
this.save({name: 'Calculus 101', professor:'Jenkins'});
this.save({name: 'Physics 220', maxClassSize:30});
this.save({name: 'Advanced Physics', prerequisite:'Physics 220'});

i

Lawnchair supplies several functions to retrieve records: each, get, and all. Like its
name implies, each iterates over each record in the store and runs a supplied function on
the results. Listing 10-2 shows the code to print out all the names of our classes.

Listing 10-2 Lawnchair each Example

classes.each(function(record) {
console.log(record.name);

})i

get allows us to retrieve a record for a given key and, if found, run a function on the
results. Until now, we haven'’t talked much about keys. If we don’t specify one when we
create our records, Lawnchair generates a GUID string to use as the key for us. Listing 10-
3 shows the code to save some records with a custom key and a get function to find them.

Listing 10-3 Lawnchair save and get Examples

classes.save({key:"CISC650", name:"Intro to Computer Science"});
classes.save({key:"CISC615", name:"Analysis of Algorithms"});
classes.get("CISC615",

function(r){console.log(r);}

)i

http://westcoastlogic.com/lawnchair/

Client-Side Scripting Simplified with JQuery and Zepto

Up until now, we haven’t talked about removing records. r Lawnchair lets us remove a
single record with remove or blow away the whole store with nuke. Listing remove, like
get, takes the key of the object to remove. nuke, by default, doesn’t take any parameters,
but you can optionally include a callback function to be executed when the nuke is com-
plete. Listing 10-4 shows both methods in action.

Listing 10-4 Lawnchair remove and nuke Examples

classes.remove("CISC615",
function(r) {console.log('"remove completed)}
)i

classes.nuke();

Client-Side Scripting Simplified with JQuery
and Zepto

Browser-based applications more and more are moving away from a list of static pages
and toward one-page applications where interactivity is improved and portions are loaded
dynamically. Although many options are available, we will be focusing on JQuery variants
and Zepto. These were chosen based on the ubiquity of JQuery as a client-side scripting
standard. On the lighter side, Zepto provides some touch screen gestures on top of a
JQuery-like interface. JQueryMobile and JQTouch provide more of a framework for
HTML5 applications. Their default themes look like native 1OS apps, whereas you would
have to define your own style sheets when using Zepto.

Using JQuery Variants

JQuery is a library for JavaScript that simplifies traversal of HTML documents, selectors,
event handling, and AJAX animations. Polls and analysis vary greatly but the consensus is
that for sites where the JavaScript library can be detected, between 50% and 78% use
JQuery. JQuery’s functionality can be expanded via user-developed plugins. JQuery is
often recognized by its use of the $ and $. functions, the latter of which allows a single
discrete function to be called, whereas functions of the former type can be chained
together. The two generally used JQuery frameworks/plugins for optimizing a web
application are JQueryMobile and JQTouch.

JQueryMobile (http://jquerymobile.com/) is a framework that focuses on providing
a high-grade experience on today’s mobile browsers. It is hosted on the JQuery website,
and in theory, the advances made in JQuery will flow into JQueryMobile very quickly.
The project attempts to gracefully degrade when displayed in a browser that doesn’t pro-
vide full HTML5-compliant capabilities.

185

http://jquerymobile.com/

186

Chapter 10 Developing Mobile Games

JQueryMobile supports many of the gestures that are supported in native mobile
applications. In addition to sensing when you change the direction you are holding the
device via the orientationchange event, JQueryMobile supports the following touch
events:

= tap
= taphold
= swipe
= swipeLeft
= swipeRight
Earlier in this chapter, we discussed tap. A swipe event is fired when there is contact
with the screen and movement of 30 pixels or more up or down (for a general swipe
event) or left or right for swipeLeft or swipeRight, respectively.
JQueryMobile includes several CSS transitions for moving between pages. The follow-
ing transitions are supported:
= slide
= slideup
= slidedown
" pop
= fade

s flip

We could a pop transition to an anchor tag by including the following code:

I'll pop

Inversely, including data-back="true" will reverse the transition when the Back
button is hit.

In addition to the smooth CSS transitions, JQueryMobile’s components can be
themed. It has a built-in theme that closely mimics the user interface of 10S applications.
At present, there isn’t a theme to make apps look more “Android like” (or for any other
non-10S platform).You could probably attribute this to the evolution of native apps on
both platforms. Native applications from outside developers on 10S didn’t arrive for
nearly a year from the device launch.The advice from Apple at the time was to make web
apps. Android, on the other hand, supported a software development toolkit from day one.

Architecting Your Applications with JoApp

JQTouch (http://jqtouch.com/) shares a lot of ground with JQueryMobile. JQTouch
focuses on smaller device screens, whereas JQueryMobile attempts to be device inde-
pendent. Like JQueryMobile, JQTouch built-in themes support iOS devices and not
much else. The number of built-in touch events is somewhat limited compared to
JQueryMobile. Only tap and swipe are predefined.You can, however, build more ges-
tures into your application by interpreting the return values from touchmove.

Using Zepto.js

Last but not least is Zepto.js (http://zeptojs.com/). It is not officially a JQuery variant but
it does have a JQuery-compatible chaining syntax. It is also incredibly small. The library is
under 5KB after being minified and gzipped. This comes at the expense of not including
styling for components as JQTouch and JQueryMobile do. In addition to JQuery selec-
tors and chaining, Zepto supports JQuery-style HTTP GET, PosT, and AJAX calls and can
sense the mobile operating system on which it is running. Touch event support is fairly
robust with listeners for tap, doubleTap, swipe, swipeLeft, and swipeRight.

Architecting Your Applications with JoApp

Jo (http://joapp.com/) is a cross-platform JavaScript framework for HTML5 apps. The
same code can be used to deploy an application in Safari, Chrome, Firefox, i1OS, Android,
and WebOS. Jo uses CSS3 as much as possible to handle presentation and animation. Jo
also provides encapsulation for persistent storage and is able to unobtrusively work with
other JavaScript libraries. Jo concerns itself with the visual elements of an application,
leaving the device-specific minutiae to the enclosing framework—for example, Phone-
Gap and Titanium, which we will discuss later in this chapter. Like the aforementioned
JQTouch and JqueryMobile, Jo provides a fairly attractive 10S theme. Listing 10-5 shows
the HTML for a basic Jo application. No other content is needed if the application cre-
ates all user interfaces in code.

Listing 10-5 Basic Jo Application

<html>
<head>
<link rel="stylesheet" type="text/css" href="css/aluminum.css">
<link rel="stylesheet" type="text/css" href="css/webkit.css">
<!-- <link rel="stylesheet" type="text/css" href="css/webos.css"> -->

<!l-- <link rel="stylesheet" type="text/css" href="css/chrome.css"> -->
</head>
<body>
<!-- any static page content goes here -->
<!-- load jo library -->

<script src="jo_min.js"></script>

187

http://jqtouch.com/
http://zeptojs.com/
http://joapp.com/

188

Chapter 10 Developing Mobile Games
<!-- any application JavaScript files go here -->
<script src="hello.js"></script>

</body>
</html>

Jo includes a set of skinned components and controls to create user interfaces. These
can be created using JavaScript or by using HTML. By default, HTML will ignore tags it
doesn’t recognize, so Jo can coexist with regular HTML code. Listing 10-6 shows the
code to create a screen and embed a Canvas inside it.

Listing 10-6 Displaying a Canvas in Jo

//initialize jo
jo.load();

//define a wrapper for document.body
var scn = new joScreen();

var canvas = new joHTML('"<canvas height="200" width="200"></canvas>");
scn.push(canvas);

Jo provides an easy means to meld together game content and the application using
containers. Jo’s interfaces use a stack architecture that’s not unlike a deck of cards, allowing
you to discretely separate screens.

Choosing an Application Framework

We have many options for creating applications using HTML and deploying them to
mobile devices. The two frameworks we will discuss in this section—PhoneGap and
Appcelerator Titanium—expose native mobile device functionality to JavaScript. Later in
this section, we will package the same application with both of them targeting Android.
The application we’ll be developing uses Zepto.js to capture touch gestures and for deter-
mining the operating system. The app draws an HTML file that displays the OS and
viewable window dimensions and also has a Canvas that responds to touch events.

PhoneGap

PhoneGap (http://phonegap.com) is a mobile application development framework cre-
ated by Nitobi Software. The framework allows access to native components of mobile
devices such as the accelerometer, camera, contacts, and the file system via a JavaScript
interface. All application code is written using JavaScript and HTML and is bound at

http://phonegap.com

Choosing an Application Framework

compile time to the corresponding Java or iOS APIs. Experienced developers could addi-

tionally expose other native APIs to the JavaScript interface. Currently, the framework

supports developing applications using the following operating systems with varying lev-
els of support for HTMLS5:

iOS

Android

WebOS
Blackberry
Windows Mobile
Symbian

Diving into the PhoneGap APls

PhoneGap contains about a dozen APIs, listed next, for making applications. Virtually
anything that can be done in a native app has a PhoneGap API:

Accelerometer
Camera
Capture
Compass
Connection
Contacts
Device
Events

File
Geolocation
Media
Network
Notification

Storage

Of the aforementioned APIs, the most important is the Events API. When an applica-
tion loads, by virtue of the way HTML and JavaScript work, it is possible to call functions
on objects before they are fully initialized. The Events API exposes an event called

deviceready that fires when phonegap.js is ready to start receiving commands. Every

PhoneGap application should subscribe to deviceready. Listing 10-7 shows a simple

example of the code we would need to listen for the event.

189

190

Chapter 10 Developing Mobile Games

Listing 10-7 Listening for the deviceready Event

document.addEventListener("deviceready", doStuff, false);

function doStuff() {
// Now safe to use the PhoneGap API

In traditional browsers, JavaScript has no access to the local file system, thus handing
that heavy lifting to code executing on the server side. This is a pretty hefty restriction for
an application that doesn’t have a server. Luckily for us, PhoneGap does give us a way to
read, write, and upload files from JavaScript code. The FileReader object permits us to
read files from the file system.The object only has three functions: readasText takes a
filename as a parameter and stores that text content of the file in the result property on
the FileReader object. readAasDataURL returns the specified file as a base64-encoded
URLI string. For a refresher on how data URI strings operate, look at the section on
images in Chapter 5, “Creating Games with the Canvas Tag.” The abort function quits
reading the file. In addition to the result property, there is also an error property to
store any errors, a readyState property to initiate the status of the load in progress, as
well as events that can be subscribed to for updates on progress and status.

The Filewriter object, like FileReader, contains properties for the readystate and
errors. In addition to the expected write and abort functions, you can also seek to a
position in a file and truncate it to the length of a specified number of bytes. Listing 10-8
shows the code to write a string to a file (test.txt) and truncate it to a length of 10 bytes.

Listing 10-8 PhoneGap FileWriter Example

var paths = navigator.fileMgr.getRootPaths();

var writer = new FileWriter(paths[0] + "test.txt");
writer.write("writing some text");
writer.truncate(10);

Lastly, the FileUpload object gives us a way to upload files to a server using HTTP
POST. It has a sole-function upload that takes as parameters the file to upload, the URL to
POST to, callbacks for success and failure, and an options object to pass additional infor-
mation with the request.

The isReachable function on the Network object allows us to check for connectivity
given a URL to connect to and a callback to execute when connectivity is determined.
We can use the results to determine whether we are offline, connected to the carrier’s
network, or connected to Wi-Fi.

PhoneGap is capable of getting the user’s attention with several different audio, visual,
and sensory notifications. In addition to a stylized alert message that we would see in any
browser, we can vibrate the phone for a number of milliseconds, make a beep sound a
number of times, or show a confirmation dialog.

For further documentation, you can visit http://docs.phonegap.com.

http://docs.phonegap.com

Packaging Android Applications with Titanium and PhoneGap

Appcelerator Titanium

Appcelerator Titanium (www.appcelerator.com) is a software development toolkit that
allows developers to create desktop and mobile application using web technologies such
as HTML, JavaScript, and CSS. On the desktop, the experience is reminiscent of and is
often compared to the Adobe AIR runtime.

For mobile devices, Titanium only supports Android and iOS. Although that is not
technically cross-platform, iOS and Android account for most of the smart phones being
sold. The reduced focus to cutting-edge mobile operating systems allows the creators to
really refine the experience on iOS and Android.

Diving into the Appcelerator Titanium APIs

Whereas PhoneGap expects you to use HTML and CSS or another library altogether for
laying out user interfaces, Appcelerator Titanium has its own set of JavaScript APIs to cre-
ate Ul elements. These elements produce native components during compilation and
keep the secret that your app was built with Titanium.You are also free to develop your
application using just HTML, JS, and CSS.

Titanium.Filesystem, and the object File it exposes, allows you to interact with the
file system. Any operation that you would expect from a traditional compiled language—
such as creating and reading files and directories, creating temporary files, and setting flags
on them—is supported in this module. This is the only area where Titanium differs from
PhoneGap. Having to only deal with Android and iOS, which are fairly feature rich,
makes it easier to enable this functionality.

Titanium’s Network module is equally robust. Like the PhoneGap counterpart, it can
detect network connectivity and determine whether the host is connected via Wi-Fi or
cellular service. The module can create and receive HTTP and TCP requests and search
for connected Bonjour/Zeroconf services. Bonjour is the name of Apple’s implementa-
tion of Zeroconf, which allows computers, servers, and peripherals such as printers and
scanners to connect with little configuration from the user.

Packaging Android Applications with Titanium
and PhoneGap

Now that we have talked about Titanium and PhoneGap, let’s dig into them a little bit
more by packaging an application with them.The application is fairly basic in nature, dis-
playing some information about the mobile browser and responding to some events. To
assist us with mobile gestures, we will be using Zepto.js. The core HTML file we will be
using is shown in Listing 10-9. It uses window.innerHeight/innerwidth to retrieve the
height and width of the browser window and properties on the $.0s object to show the
operation system and version

191

www.appcelerator.com

192 Chapter 10 Developing Mobile Games

Listing 10-9 HTML File for Mobile App

<!DOCTYPE HTML>
<html>
<head>
<script src="zepto.min.js"></script>
<title>Test Application</title>
</head>
<body>
<div id="t"></div>
<canvas id="canvas" height="200" width="200"
tabindex="1">
</canvas>
<div id="os"></div>
<div id="browserWidth"></div>
<div id="browserHeight"></div>

<script>
function determineOS() {

if ($.0s.ios == true || $.os.iphone == true || $.os.ipad == true) {
return "iO0S/iPhone/iPad " + $.os.version;

} else if ($.os.android == true) {
return "Android "+ $.os.version

} else {
return navigator.userAgent;

$("#os").text("Operating System:"+ determineOS());
$("#browserHeight").text("Height: "+window.innerHeight + "px" + "\n");
$("#browserWidth").text("Width: "+window.innerWidth);

$('#canvas').bind('click', function(event){ $("#t").text('tapped at
= '+new Date()) });

$("#canvas").bind('tap', function(evt) {
$("#t").text('tapped at '+new Date());
})i
</script>
</body>
</html>

Sound on Android Devices

Although there is far better support than usual for the audio element, some Webkit
browsers, such as the one in Android 2.2, don’t natively support it. A workaround for this
lack of support is to use a video element with the audio file as the source and then call
play (). If you're using a framework such as PhoneGap or Titanium, this won’t be a prob-
lem, but it is something to be aware of if you are rolling your own solution.

Packaging Android Applications with Titanium and PhoneGap

Packaging an Application with Titanium

Creating a project with Titanium is simple, requiring only a few filled-in text boxes and a
few button clicks. Figure 10-2 shows the New Project screen for a sample Titanium

application.

Project type: Mobile

Name: TitaniumApp
App Id: com.example.TitaniumApp

Directory: TitaniumApp (]
(W WENVEEERIE VIR http://example.com

Installed Mobile Platforms: iPhone SDK found Android SDK found

Figure 10-2 Creating a new project in Titanium

From the Titanium application, we can run our apps in the Android or 1OS emulator,
on physical devices, or deploy them to their respective app stores, as shown in Figure 10-3.

Run Emulator [J Run on Device @ Distribute

Free
Titanium Week
Webcasts

Wed. Jan. 5:
Titanium for New Developers

Thu. Jan. 6:
What's New in Titanium Mobile 1.5

Fri. Jan. 7:
Developing Native Android Apps
with Titanium

Register Now

sox: (I sce- (D ritter: (R

Figure 10-3 Running an emulator in Titanium

Figure 10-4 shows a list of the files for our application. Of particular note to us is the
Resources directory (which houses all our application code) and tiapp.xml (which
describes how our app will behave on iOS and Android).

193

194 Chapter 10 Developing Mobile Games

¥ [build - Folder
» [android - Folder
=] CHANGELOG.txt 4 KB Plain Text
| LICENSE 12 KB Document
=] LICENSE.txt 4 KB Plain Text
| manifest 4 KB Document
_ README 4 KB Document
¥ [Resources - Folder
» [android - Folder
Us| app.js 4 KB JavaSc... script
» @l css - Folder
= default_app_logo.png 90 KB Portab...image
#| index.html 4 KB HTML ...ument
> Bl = Folder
= KS_nav_ui.png 4 KB Portab...image
2| KS_nav_views.png 4 KB Portab...image
» [sounds - Folder
> il of - Folder
_ tiapp.xml 4 KB Text document

Figure 10-4 Application directory structure in
Titanium

Titanium maintains its own Android images just for Titanium. Any modifications
won'’t be persisted, as Titanium regenerates them from time to time. Behind the scenes,
when you deploy to the emulator, Titanium launches the selected image and compiles
and deploys the application.

Titanium uses a file named app.js to describe the user interface and logic of your
application. Listing 10-10 shows the code to use Titanium’s JavaScript API to create a
window, populate it with a Webview, and show it to the user.

Listing 10-10 Sample Application app.js File

// this sets the background color of the master UIView
//(when there are no windows/tab groups on it)
Titanium.UI.setBackgroundColor('#000");

!/

// create root window

//

var winl = Titanium.UI.createWindow({
title: 'App',
backgroundColor: '#fff"'

var webview = Titanium.UI.createWebView({
url:'index.html'

})i
winl.add(webview);

// open window
winl.open();

Packaging Android Applications with Titanium and PhoneGap

After we place our index.html and zepto.min.js files in the same directory as app.js, we
are ready to run our application.

Packaging an Application with PhoneGap

Instead of using a customized emulator launcher like Titanium does, PhoneGap relies
strongly on the existing Android tool chain. This means that you can use the Android
plugin with the Eclipse IDE like a native application would. Components of the
AndroidManifest.xml configuration file that are automagically created for you in Tita-
nium have to be coded by hand with PhoneGap. For the purposes of this example, we
assume you have the Android plugin installed in your IDE of choice.

Creating a project is pretty straightforward and bears no hallmarks that are different
from creating a native application. Figures 10-5 and 10-6 show the creation screens for
our project. In Figure 10-6, we left the option “Create ‘Hello World!” project” selected
because that reduces the amount of Java code we will have to write.

PhoneGap exposes Java functionality to HTML applications using two files: a Java
library named phonegap.jar and its JavaScript counterpart, phonegap.js. phonegap.jar
needs to be placed somewhere on the application path. We will leave phonegap.js for a
bit later.

New Project

Name:

App

Project files location:

Users /jwill {Desktop/repas /html5gamebooksamples /chapterlOcade/PhoneGapApp []

Project file format: | .idea (directory based) &

Intellij IDEA

(¥ Create module

Module Settings

project Name: PhoneGapApp
Content roat: 11/Desktop/ repes/ htmiSgamebooksamples/ chapter 10code/PhoneGapApp | ||
Module file location: 11/ Desktop/repos fhtml5gamebooksamples /chapter10code/PhoneCapApp [~
Select type Description
&L“ja‘,a Module Encapsulates core functionality for building Android applications.

{7 Plugin Module
Cl Android Module

&L’JMaven Module

< Previous) Next >) Finish Cancel) Help)

Figure 10-5 Creating an application using PhoneGap

195

196

Chapter 10 Developing Mobile Games

New Project

SDK properties

Android Platform: | € Android 2.2 Platform 4] (Refresh)

(Y (Edit) () R
New | Edit) Remove) View Classpath

(® Application () Library
Project properties

[IGE[1][»]F:W Appiication name: PhoneGapApp

Package name*: com.html5book

¥ Create "Hello, World!" project

module

Activity name | App

< Previous Next > (" Finish (" Cancel (Help

Figure 10-6 Creating an application using PhoneGap (continued)

Listing 10-11 shows the additions we must add to AndroidManifest.xml to allow
PhoneGap to do its work. The snippet begins with a tag telling Android what types of
screens this application is allowed to operate on. Next is a series of enabled permissions
for components of the device, such as camera access, contacts, audio, and GPS. In
Android, every application must explicitly declare which permissions it will use. For our
sample application, the sole permission we use is android.permission.INTERNET, but
Listing 10-11 shows the required permissions to enable all features of PhoneGap.

Listing 10-11 Additions to AndroidManifest.xml

<supports-screens android:largeScreens="true"
android:normalScreens="true" android:smallScreens="true"
android:resizeable="true" android:anyDensity="true"

/>

<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.VIBRATE" />
<uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE LOCATION" />
<uses-permission
android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
<uses-permission android:name="android.permission.READ PHONE_STATE" />

Packaging Android Applications with Titanium and PhoneGap

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.RECEIVE SMS" />
<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission

android:name="android.permission.MODIFY AUDIO_ SETTINGS" />
<uses-permission android:name="android.permission.READ CONTACTS" />
<uses-permission android:name="android.permission.WRITE_ CONTACTS" />
<uses-permission

android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.ACCESS NETWORK_STATE" />

To the application tag in the AndroidManifest.xml file, we also need to add the following:

android:configChanges="orientation|keyboardHidden"

This tells Android that when the specified changes happen (in this case, the user rotat-
ing the device and sliding in/out the keyboard), this application will handle it and not to
execute the default behavior and relaunch the application.

Next, we need to make some changes to the sample Activity file Android has created
for us. Activities represent a single screen display. Unless you have a really good reason to
or would like to tweak Java code, you can get along with solely the changes shown in
Listing 10-12.

Listing 10-12 Sample Application Activity File

package com.html5book;

import android.app.Activity;
import android.os.Bundle;
import com.phonegap.*;

public class App extends DroidGap {
@override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
super.loadUrl("file:///android asset/www/index.html");

Just as we only had to concern ourselves with the Resources directory in Titanium,
after initial setup, there is just one primary directory in which we will be working on
PhoneGap. We even saw a hint of this when modifying the Java file. We need to create a
directory and subdirectory on our path named assets and assets/www, respectively. This is
where all our HTML-related application files will live. android_asset is a link to assets. To
expose our Java functionality to the application, we just need to copy the phonegap.js file
to assets/www. Figure 10-7 shows the application directory layout for our application.

197

198 Chapter 10 Developing Mobile Games

| AndroidManifest.xml 4 KB Text document
¥ [assets - Folder
L] W - Folder
index.html Zero KB HTML ...ument
s/ phonegap-0.9.3.js 102 KB JavaSc... script
> [bin == Folder
_ build.properties 4 KB TextE...ument
 build.xml 4 KB Text document
| default.properties 4 KB TextE...ument
> [gen == Folder
¥ &l libs - Folder
| phonegap-0.9.3.jar 115 KB Java JAR file
_ local.properties 4 KB TextE...ument
_| PhoneGapApp.im| 4 KB Document
| proguard.cfg 4 KB Confi...ion file
- (Bl res == Folder
& src - Folder

Figure 10-7 Application directory structure in
PhoneGap

As opposed to needing a special application to build, launch, or install our application,
we can use our favorite IDE or work directly from the command line using the

build.xml file.

Summary

In this chapter, we discussed various libraries and frameworks to create HTMLS5 applica-
tions on mobile devices. We focused on libraries that expose touch events and storage
options. We looked in detail at two frameworks to package applications: PhoneGap and
Appcelerator Titanium. Finally, we used those frameworks to package some applications.

Exercises
‘What is a workaround for playing audio using HTML5 in Android 2.2 browsers?

What are the pros and cons of using Appcelerator Titanium versus PhoneGap?

What is an advantage of using Lawnchair or any other NoSQL-inspired storage
solution over a SQLite database?

4. Which operating system is currently a no-go if you want to create HTML5

applications?

You can download chapter code and answers to the chapter exercises at www.
informit.com/title/9780321767363.

www.informit.com/title/9780321767363
www.informit.com/title/9780321767363

11

Publishing Your Games

The first ten chapters of this book dealt primarily with learning about HTML5 and
associated technologies and developing games. In this chapter, we shift our focus and
cover how to deploy your games with a good measure of optimization thrown in.
Applications on the Web live and die based on their speed. Optimization and effective
use of offline cache are important pieces of the puzzle when pushing out your work to
the masses.

Optimizing Your Game’s Assets

We are making games, so lots of our payload will be in the games’ logic. In an attempt to
write code that you will understand in six months’ or a year’s time, you may have
painstakingly commented and formatted your code. Or not. The problem with all those
comments is that they take up space in your files and your users don’t care that you've
explained how something works, just that it does. The smaller your files are, the faster
they will download. Minification is the process of making code smaller. Often, this will
include removing white space and comments as well as renaming functions and variables.

Minification with Google Closure Compiler

Google Closure Compiler is a code analyzer, optimizer, and minimizer, all rolled into one
package. Most minimizers will do the standard function and variable renaming, comment
removal, and then call it a day. Closure Compiler goes one step further and walks the
abstract syntax tree for your code and notes which code can be removed because it is
unreachable or can be simplified by inlining, which is replacing a function call with code
from that function. It can also identify mistakes in your code. We won’t be using the
advanced features in this chapter, but you are encouraged to research this more if you are
so interested. Closure Compiler does require Java to be installed to run the application, so
go ahead and take a moment to grab it if you don’t already have Java installed on your
machine.

200

Chapter 11 Publishing Your Games

Download and extract compiler.jar from the zip file located at http://closure-com-
piler.googlecode.com/files/compiler-latest.zip. The compiler doesn’t have any external
Java dependencies. We can optimize a file by executing

java -jar compiler.jar

at the command line, followed by the options and values we desire. The useful flags for
our needs are —--js, -—compilation_level,and --js_output_file.

You can see the available command-line options, including the ones we won'’t be cov-
ering at all, by executing the following:

java -jar compiler.jar --help

--js specifies files to be minified. We can include as many as we want, as long as each
file has its own --js flag. We have three choices for the --compilation_level:

= WHITESPACE_ONLY
= SIMPLE OPTIMIZATIONS

= ADVANCED_OPTIMIZATIONS

As mentioned before, we will leave ADVANCED_OPTIMIZATIONS for another place and
time. The WHITESPACE_ONLY identifier only removes white space and comments. SIMPLE
OPTIMIZATIONS executes the WHITESPACE_ONLY optimizations and additionally mangles
top-level variable and parameter names. --js_output_f£ile, as its name hints, allows us to
specify an output file to hold the optimized JavaScript. If we passed multiple files via --3s,
they will be concatenated into a single file.You can see an example of how a call to opti-
mize several files with simple optimization would look here:
java -jar compiler.jar --js Game.js —js zepto.min.js
--js_output_file outfile.js --compilation level SIMPLE OPTIMIZATIONS

The amount of white space and comments will determine how small the minified
version is. On some of the project files from other chapters, I noticed an average 40%
reduction in size after minification. Think about that for a moment: that’s 40% less data to
download and in most cases a reduction in files to download (because they are concate-
nated together). It’s a clear win. If you are running your own server, you should know
that most web servers allow you to go a step further in gzipping your assets. You might
have to install an additional module or plug-in, but it is something to consider because
minifying then gzipping can yield a reduction in file size in the high double digits. When
a client requests a file from the server, the server will respond to the request with a
gzipped version that the client then extracts. The web page that requested the asset has no
idea that it was served a gzipped resource.

CSS can also be minified and gzipped. Closure Compiler doesn’t do CSS minification.
Most of your games will probably be light on CSS and heavy on JavaScript, so CSS mini-
fication is not likely to make a significant difference.

http://closure-compiler.googlecode.com/files/compiler-latest.zip
http://closure-compiler.googlecode.com/files/compiler-latest.zip

Optimizing Your Game’s Assets 201

Images can likewise be optimized. Every image included in a document is a separate
HTTP request. Combining them into a sprite sheet allows us to save precious time by
providing them all in one go.

Running Applications Offline with Application Cache

One of the trends that has been ushered in with HTMLS5 is a desire to blur the lines
between online and offline access. In Chapter 1, “Introducing HTML5,” we talked briefly
about how the now-defunct Google Gears allowed you to store data for offline access;
that concept has been carried forward with HTML5 Application Cache. It takes away the
binary decision users had to previously face: whether to be online and able to access the
app, or not. A properly structured app could retain some subset of functionality while
offline. Although you won'’t be able to hit an external server (for instance, to post leader
board scores), other tools, such as localStorage,can cache data locally and re-transmit it to
the server when connectivity is re-established.

Listing 11-1 shows a basic Application Cache manifest file. All manifests must begin
with the line cACHE MANIFEST.The manifest listed is using the default behavior to cache
all indicated files if there are no section headers.

Listing 11-1 Basic Application Cache Manifest

CACHE MANIFEST
/game.css
/game.js

The sections we can specify in a cache manifest are as follows:
» CACHE
» NETWORK

= FALLBACK

These indicate to always cache, to never cache, and how to handle a request for an
uncached file, respectively. CACHE is the default. Listing 11-1 is equivalent to the code
shown in Listing 11-2.

Listing 11-2 Basic Application Cache Manifest

CACHE MANIFEST

CACHE:
/game.css
/game.js

The NETWORK section can be specified in one of two ways. We can either specify
explicitly which assets can only be accessed online, as we did for cached assets in Listings
11-1 and 11-2, or we can specify wildcard (*) values. Listing 11-3 shows a manifest were

202

Chapter 11 Publishing Your Games

we exclude all Ruby files from caching. If we had omitted the .rb extension, the manifest
would require network access for everything we didn’t explicitly list in the CACHE section.
Any line whose first non-white-space character is a # is treated as a comment. Unlike
comments in programming languages, these must be on their own lines. The reason for
this is that the # is also used in URLs as a fragment indicator. A comment on the same
line as a URL would be ambiguous to the browser.

Listing 11-3 Application Cache Manifest with Network Section

CACHE MANIFEST

Manifest with CACHE and NETWORK sections
CACHE :

/game.css

/Game. js

NETWORK:
*.rb

The last and arguably the most important part of the manifest file is the FALLBACK sec-
tion. The pairs in the FALLBACK section help your user cope with offline access. The first
value in the pair is the URL pattern to match. It is followed by the asset to serve in its
place. We might show a generic avatar for some users if they are viewing the leader board
offline. We could also route them to a page stating that they are offline and certain fea-
tures will be unavailable until they reconnect. The goal again is to give them as much
functionality of the app as possible. Listing 11-4 shows a manifest file that serves
generic_avatar.png for all requests made to the /images/avatars/ directory and shows
offline.html for all uncached HTML files.

Listing 11-4 Application Cache Manifest with All Sections

CACHE MANIFEST

#Manifest with all sections
CACHE:

/game.css

/Game. js

NETWORK:
*.rb

FALLBACK:
/images/avatars/ /generic_avatar.png
/ /offline.html

Now that we have a manifest with all sections defined, we need to tell our application
to serve it to users.You might have noticed that we never specified any HTML files to be

Hosting Your Own Server

cached. We both indicate the HTML to be cached and serve the manifest to users by
adding a property value to our code, as shown in Listing 11-5.

Listing 11-5 HTML File with manifest Property

<!DOCTYPE html>
<html lang="en" manifest="/offline.manifest">
// Stuff goes here

</html>

The filename can be anything, but it must end in .manifest. It should also be served
with the MIME type text/cache-manifest.That’s of less concern than the filename.
Most web servers will properly guess the MIME type of files based on their extension
and contents. If we have a single-file app, after adding the code from Listing 11-5, we'’re
done. For a multipage app, we need to include the manifest property in each page that
should be cached. Although you can list the HTML files in the manifest itself; it is less
messy to have the property be a part of your templates and omit it, as necessary to prevent
caching rather than trying to maintain a massive list of HTML files in the manifest.

A common misconception is that changing files on the server without changing the
manifest will somehow automagically retrieve the changed files and leave the unchanged
files alone. That simply is not the case. Changing the manifest file is how the browser is
notified of changes to the files. One quick-and-easy way to change the manifest is to add
a comment line with a version number or identifier and to increment the number when
you change assets referenced in the file. When you visit the site, it looks at the manifest
file and checks whether it has viewed the file before, firing a checking event along the
way. The manifest is checked against the local version if one exists; if they match, the
browser fires a noupdate event and the function ends. If the local version doesn’t exist or
the browser notices a change, a downloading event is fired and all assets are downloaded
again. Periodically during the download process, progress events will be fired to give
updates on the download status. When complete, either a cached or updateready event
will be fired for the site without or with a previous manifest, respectively. Although
caching occurs, unless you force an refresh on receipt of the updateready event, the
user’s session will not be swapped to use the cached assets. The cached assets will be used
on the next refresh after caching occurs.

Hosting Your Own Server

When it comes to running your own server, you can choose to physically run the equip-
ment at your home or place of work or you can use a hosting service. Some services give
you a curated experience, where you just log in to an online dashboard to upload files;
others give you a clean instance of a server to install the software you need to run on it.
If you are anything like me, even if you have been diligent about gifting your slow
machines to non-gamers, you still probably have one or two usable machines around the
house. One of my castofts was a laptop whose screen went bad but has a decent processor

203

204

Chapter 11 Publishing Your Games

and 2GB RAM in it. With an external monitor to do the initial setup, that is the perfect
machine to run a site.

The Domain Name System (DNS) translates human-friendly domain names to their
IP addresses. When you have an instance at Rackspace or Amazon, the IP address is not
going to change for the lifetime of that instance. Residential Internet providers, on the
other hand, routinely invalidate and reassign the IP address assigned to your cable modem.
This presents a problem for your users if the IP address for your site changes often. It’s the
equivalent of someone changing their e-mail address every month. At first, you would try
to keep up and actively seek them out, but eventually you would get lost and lose inter-
est. Dynamic DNS services solve this problem by running software that reports the IP
address back to the host at short intervals so that it catches changes quickly. Many mod-
ern wireless routers have this functionality built in. DynDNS and No-IP.com are two of
the better-known and trusted dynamic DINS services. In addition to handling the routing
of your domain name, they offer a number of free branded domain names you can use to
get started.

When a user types in the domain for your website, several operations take place. First,
the root servers, which contain the canonical information for the top-level domains
(TLD; that is, .com, .uk, .fr, .me, and so on) are contacted to find the address of the TLD
your site uses. The TLD is then queried to find the name server for your domain. Those
servers are queried to get the IP address of your site. The last hop before returning the IP
address is where dynamic DNS would fit in. Dynamic DNS doesn’t work for all situa-
tions, especially those that need 100 percent uptime. However, it is a great way to test
ideas before growing to a hosted server.

Deploying Applications on Hosted Node.js
Services

At the time of this writing, only a few companies specifically target deploying Node.js
applications. This situation is expected to improve as Node.js becomes more of a mainstay.
The advantage of using such a service is that you don’t have to worry about the minutiae
of maintaining a hosted server, such as opening and routing to ports, enforcing separation
between apps sharing the box on different domains, and operating system updates. A dis-
advantage of using such a service is lack of control. You don’t have a say in what equip-
ment your site will run on and can’t do much if intermittent connectivity issues arise.
Due to their elastic replication nature, you won'’t be able to save new files into the appli-
cation instance while it is running. This is an issue easily handled with online storage
services such as Amazon and Rackspace, but it is certainly something to think about. In
this section, we will focus on the services offered by Nodester.

Nodester (www.nodester.com) is a open-source hosting platform for Node.js
applications. Nodester uses Git to track changes as well as to start and stop your applica-
tions. Provided you have Node.js and NPM installed, you can get started by installing the
nodester module with the following command:

www.nodester.com

Publishing Applications on the Chrome Web Store

npm install nodester-cli -g

Next, you need to request a registration token:

nodester coupon <email address>

Within a couple hours or so, you should have a welcome e-mail with your registration
code and some basic “Getting Started” instructions. The e-mail takes you through the
steps to create a new user, generate an SSH key, and provide a password. We will conve-
niently skip those steps here and instead focus on what makes Nodester cool: its API.

Nodester’s command-line interface is a bridge over common tasks from Node, NPM,
and Git. When you create a Nodester application with the command

nodester app create <app_ name>

you are actually creating a remote Github repository for the application.You can manage
NPM modules by just running the following command:

nodester npm <install|uninstall> <modules>

You can start, stop, or restart an app at any time by running this command:

nodester app <start|stop|restart> <app_name>

These commands only affect the code that is on the remote server. Any local changes
need to be committed and pushed to the remote server before they will show up.

Having an application run from appname.nodester.com is fine for proof-of-concept
apps, but real apps will need their own domain. Nodester can accept redirects from your
own domain.You can manage aliases from your app name to your domain by executing
the following command:

nodester appdomain <add|delete> <app-name> <domain-name>

You also need to add an A record to your DNS host pointing from your domain to
Nodester’s IP address, currently 50.16.203.53.You can discover the other available com-
mands by running nodester on the command-line with no parameters.

Nodester puts forth a novel solution to the hosting problem by providing hosting and
version control deeply integrated into the same package. One area where it falls short is
in persistence. Nodester doesn’t offer a built-in database for you to use—and probably
with good reason. It would be hard to build a solution that solves the needs of most
developers and keeps data properly segregated. Fortunately, the cloud database-hosting
industry is fairly strong with offerings from MongoHQ (MongoDB), Cloudant
(CouchDB), and Amazon (SimpleDB/SQL).

Publishing Applications on the Chrome Web Store

The Chrome Web Store is a place where you can purchase apps, themes, and extensions
for the Chrome web browser. Estimates place the number of Chrome users at somewhere
around 120 million worldwide. The Chrome Web Store is also the primary means for

205

206

Chapter 11 Publishing Your Games

Chromebooks (Netbooks running Chrome OS) to install applications. Computers run-
ning Chrome OS have a Linux core, but the sole interface with which users will interact
is the Chrome browser. The Chrome browser updates itself mostly silently in the back-
ground, so you don’t have the concerns that you have with other major browsers in sup-
porting legacy versions. Applications distributed through the Chrome Web Store also have
the ability to have updates pushed to users with little effort. With the Chrome Web Store,
you can lean forward and code to the cutting-edge capabilities of the browser. That’s not
to say you won'’t have to do a little sniffing to determine capabilities of something such as
WebGL or hardware acceleration, but targeting a single browser reduces the pain. We've
talked a lot throughout the book about what apps are, but we haven'’t really discussed
themes and extensions. A theme modifies the look and feel of your Chrome application
window with custom images and fonts. Extensions are mini-applications often have only
a single purpose. An example of an extension would be a tool that “linkifies” text that
appears to be a Twitter handle. In this section, we focus on packaging applications. When
it comes to apps, the Chrome Web Store gives you two options for delivery to your users.
You can deploy an app hosted on your servers or a packaged app that the user downloads.

Describing Your Application’s Metadata

Every installable app—be it a hosted or packaged app—needs some metadata about it to
be described in a file called manifest.json. In the manifest file, we describe essentials, such
as the name, description, and version of the application, icons, URLs (either external or
bundled), and what permissions the application will use. Listing 11-6 shows a sample
manifest.json file for a packaged app.

Listing 11-6 Sample manifest.json File
{

"name":"Copy Me Game",
"version":"0.0.1",
"description":"A Simon-like 'repeat the pattern' game",
"app" : {
"launch": {
"local path": "index.html",
"container":"tab"

}
Iy
"icons": {
"16": "icons/icon_16.png",
"128": "icons/icon_128.png"
}

Publishing Applications on the Chrome Web Store 207

Deploying a Hosted Application

Hosted apps are not just glorified bookmarks. The manifest file allows you to request
additional permissions at installation. Listing 11-7 shows a typical manifest file for a
hosted app. One notable change from the previous example is the web_url key/value
pair. It indicates the website that will be launched when the app is started. The site will
also be approved for the requested permissions.

Listing 11-7 Sample Hosted App manifest.json File
{

"name":"Copy Me Game",
"version":"0.0.1",

"description":"A Simon-like 'repeat the pattern' game",
"app" : {
"launch": {
"web_url": "http://copyme.example.com/index.html",

b
"icons": {
"16": "icon_l6.png",
"128": "icon_128.png"
}I
"permissions": [
"unlimitedStorage",
"notifications"

In the case of Listing 11-7, users will be presented with a single pop-up listing all the
requested permissions, as opposed to multiple requests in succession. Here’s a list of the
permissions we can request for an app:

= background
= geolocation
= notifications

» unlimitedStorage

In Chapter 1, we discussed using geolocation and notifications, so turn back to that
chapter for a refresher. unlimitedStorage removes the 5MB restrictions on localStorage
and database storage. Without the permission, users would be shown a pop-up when they
have reached the threshold. If they decline, it might negatively aftect your application.
Therefore, if you are going to be saving any sort of substantial data, it’s better to request it
than not.

208

Chapter 11 Publishing Your Games

The background permission allows an app to load as soon as Chrome is started and
run even if the user isn’t actively interacting with the app or Chrome. It runs a back-
ground HTML page that it can use to run miscellaneous tasks. The Twitter client, Tweet-
Deck, uses background pages to check for new tweets and sends browser notifications
when a user is mentioned or direct-messaged. In the context of a game, this might be
where you would send and receive the game state, messages, and moves. In order to use
the background permission, you also have to add a background_page key/value pair to
the manifest.

Deploying a Packaged Application

Packages applications are great for offline access and, like hosted applications, use a zipped
file that contains a manifest.json file. In addition, all of the app code is included. Packaged
applications can also leverage the Licensing API, but that functionality does come with a
couple words of caution. Because the whole application is downloaded to the user’s
machine, a motivated user can alter files to circumvent your security. If your application is
free, this won’t be a concern at all. For an application that is free but uses in-app payments
for content, perhaps, it likewise might not be that much of an issue.

Testing Your Applications Locally

Chrome gives you the ability to rapidly test your applications locally without having to
redeploy to the web store. The Extension Options pane, which can be accessed from Tools
| Extensions or by typing chrome://extensions in the omnibar, allows you to install a
working copy of your application as well as configure, uninstall, or disable other themes,
extensions, and applications. Figure 11-1 shows the Extensions pane with the Developer
Mode collapsible pane expanded.You would click the Load Unpacked Extension button
and navigate to the root directory of your application.

3
Extensions

Exterion 3 = Do moce

N L L T e p—— v

Figure 11-1 Chrome Extensions pane

Uploading Your Application to the Chrome Web Store

When you have tested locally to your heart’s content, it’s time to take it to the next level
with either beta testing or full deployment to the world. If you go to the Chrome Web
Store from a new tab, near the bottom will be a Developer Dashboard link. From this
dashboard, you can manage updates or add new themes, extensions, and apps for the
Chrome Web Store. If you weren’t grandfathered in during the beta period, you will have
to pay a $5 fee to distribute applications through the Chrome Web Store. Like the

Publishing Applications on the Chrome Web Store

Android developer fee, that is not an annual recurring fee—it’s a one-time fee. After you
sort out the registered developer situation, you can navigate to the dashboard. Figure 11-2
shows a dashboard with a couple of apps that are in beta test.

-
& chrome web store | S

Developer Dashboard

Your Listings (1 2 cr 2 Stal
Copy Me Game
Published o
' ver 1 01140344 201140314 0 e Ungubiish | Edit
Published to
20104225 0101225 4 o= Unputiish | Edit

Add new item

Figure 11-2 Chrome Web Store Developer Dashboard

In beta test mode, these applications show up in the Chrome Web Store, but only for
the creator and any testers the creator has white-listed. Below the listed apps is a “so big
you can’t miss it” button permitting you to add a new item. When you click the button,
you are greeted with a simple web form asking you to upload an archive file, as shown in
Figure 11-3.

-
= | chrome web store | &
Devslopar Dashboard » Add new Ham

Upload an extension or app (.zip file)

Uploading an extension:

+ Upload 3 ZIP e of your extension diwciory, not A packaged CRX fla
* Inciude o well-gesigned product I6on In your mianifest (e Af).

= Need more help? Visil the Google Chrome Exbension developer heip and check the Cheome Exlension documentalion

Uploading an app:

+ Rand the documaniation sbeut craating & packaging apps.

Figure 11-3 The Add New Item screen

When you attempt to submit the file, the server parses it to make sure that it has, at the
very least, a manifest.json file, a small icon (16x16 pixels) for the browser tab, and a large
icon (128%128 pixels) for the New Tab app dashboard of all installed apps. Forget to
include any of these items, and the server will refuse to upload the file.

209

210

Chapter 11 Publishing Your Games

To the far right of the applications in Figure 11-2 are two links: one to toggle whether
the application is published or unpublished, and link to edit an item. The latter link allows
us to configure the app with more granularity than the manifest file allows.

Configuring Your Application

Figure 11-4 shows the first portion of a large form for configuring app attributes.You can
see that it populates some basic information from the manifest file, including the app
name, version, and description.You can also select which countries’ users will be able to
see the app in the Chrome Web Store. From this form, we can also load an icon and add
screenshots, a link to a YouTube video, or a link to Google Docs presentation.

Dervetoper dashtoard = Edit iem

1281,
'OowMaGama leon 128x128px Uplcad new image
Wersian 0.0.1 by James Willams
A Siman-like Tepeat th patlem’ gami
Update e

Payments
+ This apgacation Is froe.

Changs payment Appearance of header

= Use defaull background

Locales
Custom Image - ST0x2TSpx: | Upload new image
Choose whar your app should ba listed, and confirm your sekection by publishing or
sawing & draft, Your choice of CoUNtries OIS Us Fank Your ApH, Later this. year, It wil S axampies and leam moee: Tips and quideines for Images
s prevent your app from being isted in the countries tal you lesve unchecked,
Laarm more
Salect All | | Unseiact All
scroonshots:

¥ United Statos ¥ haly 400x2TS pixnis of proportsanally larger (GIF, JPEG, of PNG)
- -
Argenting Japan 7 [P
¥ nustralla ¥ Meuica
¥ Brazil ¥ Nelherards
o Canada ¥ Paland
¥ France ¥ Potuga Link to YouTube video or Google Docs Presentation
oral)
¥ Germany ¥ Spain t:'u =
ittt
¥ india # United Kingdom %

Figure 11-4 The Edit Item screen

The second portion, shown in Figure 11-5, gives you a chance to select preset cate-
gories for the app or to add your own. There is also the area for providing a detailed
description as well as upload buttons for promotional banners in the event your app gets
featured. Lastly, there is a default language designation. Chrome provides built-in localiza-
tion for themes, extensions, and apps so you can include all messages in deployment
instead of deploying several versions of the app.

The third and final portion, shown in Figure 11-6, allows you to associate the item
with a verified website you own, mark the content as “Mature,” attach links, and designate
the use of OpenlD authentication. It is important to note that if you are using Chrome
Web Store Payments, you must use OpenlD authentication so that the purchase can be

Publishing Applications on the Chrome Web Store

verified and attached to the user’s Google account. All the documentation on the matter

suggests using OpenlD because it purportedly makes the path to transitioning from a free

to a paid app easier and improves the user experience.

Categerton
Select al leas!t one and al most two categores.
Education Erftertainment
* Gamos Lifestyle
Mews & weatner Productivity
Shopping Soctal & commurication
Lniities

Additional categories [comma-separated):

Promotional Images

Trase kaywords will e used 0 Improve cur sMection of catagories.

Language

Specifying your application’s. Language will hedp Lesers find i:
English v

Detalied description

[Focus on axpalning what tho appacation dos and why users should install it:

Characters remaining. 18000

Thess Images
Store,

your app is tha Ch

+ Large barner - S85x220px. Uplcad new Image
* Small bannds - 21014000 | Upload naw image:
Se0 axamples and lnam more: Tips and quideiines for Images

Figure 11-5 The Edit Item screen, continued

Verifled wobsite
This is an official ileen for & websile | own:

dued & evrw sl with Google Webmanler Tooks .,

GpenlD
This Bem uses Googhe OpeniD to athenticatt users. What's this?

Google Analylics tracking
Your Googhe Analylics 1D; UA] ——
Leam more about Google Analilics tracking

Links

Lk B0 wieba e Tor your application [optional)

Nona * Ealresh iist

Linik 0 suppart & FAD for your application (aptional)

Mature centent

Discard draft |~ Save draft and return io dashboard

This fem contains content (hal mary nol be sullabie for all ages. VWhal's tis?

Publish to lest accounts || Preview changes

Figure 11-6 The final portion of the Edit Item screen

211

212

Chapter 11 Publishing Your Games

Deciding Between Packaged and Hosted Chrome Apps

The decision on whether to make your application a hosted or packaged app depends on
many factors. Free apps can use either model with ease, whereas paid apps have to take
extra pains for verification if deployed as packaged apps. Although the app updates can be
made available to users with a simple button click, updating packaged apps takes more
steps for the user. Although both hosted and packaged apps require code updates and
loading to your or Google’s servers, users of a hosted app will automatically have the
updated application whereas there might be a delay for users of a packaged app.

Google encourages developers to allow their users to have a limited free trial of their
applications. Hosted applications can handle both trial and paid users in the same code-
base, whereas for packaged applications, the suggested method is to prepare two packages:
one for the trial and the other for paid access. Size is also a concern. The maximum size
for a packaged app and all its included assets is 10MB. Though in beta at the time of this
writing, Chrome in-app payments will provide a way to convert a trial version to a paid
version of your app. However, developers aren’t locked into using Chrome Payments; they
can also elect to use their own payment providers—either directly in the application or
by requiring users to register and provide credentials on their website. The video-stream-
ing service Netflix does this with its native iOS and Android apps. Users have to register
and pay for Netflix before they can use the mobile application. The mobile app simply
asks for username and password.

Publishing Applications with TapJS

Tap]S is a game-hosting platform that allows you to seamlessly integrate the following
social elements into your games using a concise JavaScript API:

= Achievements
= Leader boards

= Player accounts

Integrating with Tap]S is simple: Just include the script tags shown in Listing 11-8 in
your head tag and you are ready to use the Tap]S APIs.

Listing 11-8 TapJS Script Tags

<script type="text/javascript"
src="https://ajax.googleapis.com/ajax/libs/jquery/1l.4.4/jquery.min.js"></script>

<script type="text/javascript"
src="http://YOUR-GAME-URL.tapjs.com/api/js"></script>

Publishing Applications with TapJS 213

Creating a TapJS Application

It’s also simple to create a Tap]S game: Simply fill in a title and click Continue, as shown
in Figure 11-7, and you are brought to a long form shown in sections in Figures 11-8
through 11-12. Figure 11-8 shows the areas where you can describe your app in more
detail, and Figure 11-9 shows the limited set of themes and layout options as well as
achievements.

My Games

Add A New Game

Game Name

| Continue ‘

Hey, you don't have any games! Maybe now is a good time to create one?

Figure 11-7 The Add a New Game screen

* Game Name
|
Game lcon
Choose File | o tie chosen
PG, CIF, PG only
Category s

Description & Instructions

B J =iz - o

Figure 11-8 Adding a description and category

214 Chapter 11 Publishing Your Games

Page Style And Layout

Layout Theme Dak *

* {Frame Height (px)

| 400

Tpicalty it s 2 good ke 10 et Lhis to 30305 Larger thee Ehe height of your game board

Display Highocores yes «

eect Yea" o you wan o dsplay high scores on your game page.

Display Badges |ves *

Select Yex” o your game uses Badges.

Display Comments | ves *

Select Yea® f yoas wank be diipley comments on your game page.

Display "AddThis" bar ves =

AT the Bar thuat aflows feople o eadly thare your game vias Facetook, Twitter and a long it of other Lervice.

Figure 11-9 Adding a theme, layout, and achievements

The subdomain defines the URL that you will give your friends and that Facebook
will use to access your game. This is shown in Figure 11-10. Figure 11-11 shows the per-
missions your game can ask for—that is, whether Internet Explorer 7 and 8 users will be
told to download a modern browser, whether mobile devices can access your game, and
whether your game is published and playable. Lastly, Figure 11-12 shows where you
would enter the Facebook-specific details.

* Subdomain
-tapjs.com

The walue will show up 44 subdomain, tagds. com

Or, Us A Custom Full Domain Hame

I yons writh 2 e yor cm dhomadn name, enter it here snd poind the A record to 171.795.711.313
hotpt A ukcdomain vakue il peed

Figure 11-10 Adding a subdomain

Permissions

Allow E7&E no v

I you d mot aliow IE 7 1 B, pliyers using Intennet Explorer 7 or I will be thown 4 error messape and ks to download either B9, Googhe Chrome o Firefax.

Allow on mobile devices no v

I you da ot allow your game on mobdle devicr, playen wing mobile devicn will be shown a meaage that this g b not available on mobile devicn

Status | De-sctivate *
Only games with a status of ACTIVE will be dsplayed and playable.

Private ho -

I yous B3 MOT mant your game prometed on ciher Tapdl game pages, tet a1 private. You may sha want o keep & private while testing

Figure 11-11 Adding permissions

Publishing Applications with TapJS

Facebook Integration

Available Only On Facebook ne +

App ID

Canvas Page URL

Figure 11-12 Adding Facebook integration

Packaging an Application for TapJS

Packaging an app for Tap]S is as easy as creating a zip (archive) file and you're all set.You
can include any of the following file types in the zip file:

= html

= ocss
w ttf

= S

n swi

» jpg, .png, .gif
= .mp3 and .ogg

You are free to use any folder structure you prefer. The only requirement is to include
the aforementioned script tags somewhere in your application and an index.html file.

Publishing a TapJS Application to Facebook

Tap]JS can also deploy applications to be used on Facebook.This choice does come with
compromises in regard to what functions you can call. You will first need to create a Face-
book application. We covered this briefly in Chapter 9, “Building a Multiplayer Game
Server,” but let’s revisit it with the changes needed for a Tap]S application. Figure 11-13
shows the Web Site tab of the Facebook Developer Application console.You needed to
set the Site URL to the URL you picked when you created the game on Tap]S (generally
http://YOUR GAME .tapjs.com).

On the Facebook Integration tab, the Canvas URL and Tab URL fields should be set
to your Tap]S URL.The IFrame Size option should be set to Auto-Resize. The Canvas
Page and Tab Name fields should be set as well. Figure 11-14 shows a screenshot of this
part of the developer console.

215

http://YOURGAME.tapjs.com

216 Chapter 11 Publishing Your Games

Absut Core Settings

Sccrst
Moblle and Devices Site URL D/ YOURGAME. tapjs.com
Creaits Site Domain
Advanced

Save Changos

Figure 11-13 Facebook Application Web Site tab

Beskmark URL

Socsl Diseavery # Enabies) Dsabled

b Mams youmpase

Figure 11-14 Facebook Application Facebook Integration tab

Tap]S’s Facebook API is rather concise. There are three functions on the tapjssocial
object. Their signatures are listed here:

» tapjsSocial.fbCheck ([callbackFunction])
= tapjsSocial.fbApp ([callbackFunction])

= tapjsSocial.fbWallPost (message [,link] [,caption] [,description]
[callbackFunction])

fbCheck determines whether the user is accessing the application from a Facebook
Canvas. This can be called to give your applications hints on Facebook-specific features to
turn on or off. One in particular is the Facebook ban on AdSense ads. £bapp retrieves
information about your app, such as the app ID and Canvas page URL. fbWallPost, as its
name implies, allows you to post to a user’s Facebook wall. The Tap]S API doesn’t cur-
rently support in-app payments such as Facebook Credits and Google Payments, although

Publishing HTML5 Applications to the Desktop

in-app payments are listed on the roadmap. Using Tap]S to deploy on Facebook is a good
means for performing a smoke test rollback on Facebook before trying to do something
more tailored to the platform.

Publishing Games with Kongregate

Kongregate is a online game-hosting platform that originally supported only Flash and
Unity games but is now able to host HTML5 games. It is very mature and boasts a large
number of users and developers. Konduit, its application platform, incorporates many of
the same elements as TapJS, and more, including the following:

» Chat integration
= Micropayments
= Guest game players (not signed in to Kongregate)

= User profiles

One point of interest is that when you deploy to Kongregate, you are also deploying
to Android. Kongregate publishes an Android app that grants access to all the games on its
platform. Konduit is a bit large to discuss with any justice here, but interested readers are
encouraged to read up on it at www.kongregate.com/developer_center/docs/
konduit-platform.

Publishing HTML5 Applications to the Desktop

As mentioned before, Webkit, the browser engine that powers Google Chrome and Apple
Safari, started its life as an open-source project called KHTML. Webkit’s open-source
roots means that it is addressable from many different programming languages that inter-
face with C/C++. Developers can write their own bindings from their language of
choice to Webkit or choose from ready-made solutions using the GTK (http://en.
wikipedia.org/wiki/GTK) or wxWidgets (http://en.wikipedia.org/wiki/WxWidgets)
widget libraries, each of which has bindings for many programming languages. These
libraries are additionally cross-platform. These bindings allow you to make your applica-
tion as rich or as basic as needed.You could just code a shell app that loads the application
like any other browser (as if often the case with XULRunner apps), or you could allow
your app to use gamepads or other peripherals that wouldn’t be available in a regular
browser.

XULRunner (http://en.wikipedia.org/wiki/XULRunner) is the runtime engine in
Mozilla products that allows you to build applications. XULRunner lags in language sup-
port behind Webkit and isn’t as open to being embedded as Webkit is. With a XULRun-
ner solution, you aren’t actually coding as much as you are composing an application.
Your application runs in an XULRunner instance, and for the most part, besides some
XUL layouts, you don’t address the app internals.

217

www.kongregate.com/developer_center/docs/konduit-platform
www.kongregate.com/developer_center/docs/konduit-platform
http://en.wikipedia.org/wiki/GTK
http://en.wikipedia.org/wiki/GTK
http://en.wikipedia.org/wiki/WxWidgets
http://en.wikipedia.org/wiki/XULRunner

218

Chapter 11 Publishing Your Games

HTMLS5 applications have even been published to the Mac App Store (www.apple.
com/mac/app-store/) with no changes to game code and only a little code to wrap a
WebView around the game. On Linux, the Ubuntu Software Center (http://developer.
ubuntu.com/), which initially allowed you to install free apps and libraries, as of late 2010
has added a paid app area. At the time of this writing, it was only open to a few partners
and eventually will be rolled out to the general public.

Summary

‘We covered a lot of ground in this chapter. We opened with some techniques to reduce
file sizes and make your apps run faster. We had a crash course in DNS routing for those
of you who might want to host your own site on commodity hardware lying around your
house. We then transitioned to looking at dedicated cloud Node.js hosting. For those who
don’t want to manage your own server, we discussed the social options that Tap]S pro-
vides—both as a standalone application on Tap]S’s servers and as an embedded Facebook
application. We dove into the options provided by the Chrome Web Store and had a
healthy discussion of the desktop options for deploying HTML5 applications, including
the Mac App Store (not to be confused with the 10S App Store) and the Ubuntu Soft-
ware Center. We also discussed the upcoming options (in beta at the time of this writing)
for in-app payments in Chrome apps and paid apps on the Ubuntu Software Center.

Exercises

1. How would you force new assets to be cached using a manifest file?

2. Does localStorage have a limit when accessed from a website not packaged in the
Chrome Web Store? If so, what is it?

3. What are the pros and cons of using Tap]JS to deploy applications to Facebook?

You can download chapter code and answers to the chapter exercises at www.
informit.com/title/9780321767363.

www.apple.com/mac/app-store/
www.apple.com/mac/app-store/
http://developer.ubuntu.com/
http://developer.ubuntu.com/
www.informit.com/title/9780321767363
www.informit.com/title/9780321767363

Numerics

2.5D, 84
2D, billboarding, 140
3D
Blender, 29, 129
Camera object (Three js), 128-129
lighting, 120
materials, 120
models,
loading with Three.js, 129-131
sourcing, 143
normal, 121
picking, 142
shading
flat shading, 121
Gouraud shading, 121
Lambertian shading, 121
Phong shading, 122
simulating in 2D space, 84
parallaxing, 85-87
perspective projection, 84
snowman scene
setting up in Three js, 123-127
viewing in Three js, 128-129
textures, 134-135
vertex, 118-119
3D Studio MAX, 129
37signals, 153

A

accessing drawing APIs with GWT, 151-152
actions performed in game loop, 53

adding functions to Raphael, 113

220

Al (artificial intelligence)

Al (artificial intelligence)
Pong, 68
Minimax algorithm, 69-70
tic-tac-toe, 68

AJAX (Asynchronous JavaScript and XML), 2,

43
aliases, CoffeeScript, 156
ambient lighting, 120
Android, 180
application layers, 182
applications, packaging

with Appcelerator Titanium,
193-194

with PhoneGap, 195-198
audio element support, 192
Angry Birds, 64
animating
cards, 107-110
models, 142-143
objects along paths, 113
animation
time-based, 140
Trident.js, 79
easing, 81-82
keyframes, 81
spritesheets, 83
timelines, creating, 80
z-ordering, 86
APIs
Canvas, 15-16
Components API, 58
Core API, 57-58

drawing APIs for GWT, accessing,
151-152

for Appcelerator Titanium, 191
for PhoneGap, 189

Geolocation API, 8-10
IndexedDB API, 7
JFugue, 89
networking, 58
node-cache, 168
storage APIs, Lawnchair, 183-185
SVG, 16
WebGL, 16
WebSQL API, 6-7
Appcelerator Titanium

Android applications, packaging,
193-194

APIs, 191

Application Cache, 5-6
applications, running offline, 201
manifest file, 201-203

application frameworks
Appcelerator Titanium, 191

Android applications, packaging,
193-194

APIs, 191
PhoneGap, 188

Android applications, packaging,
195-198

APIs, 189

documentation, 190

Event API, 189

FileR eader object, 190

FileUpload object, 190

FileWriter object, 190

applications

attributes, configuring, 210-211
deploying games as, 183
extensions, 206

hosted versus packaged, 212

packaging for Tap]S, 215
publishing
on Chrome Web Store, 206-208
with Kongregate, 217
with TapJS, 212, 215-217
simplifying with Express]S, 163
application structrue, 165
CofteeKup, installing, 166
CoffeeKup, layout files, 167-168
CofteeKup, registering, 167
session management, 165
URL routing, 163-165
Tap]S, creating, 213

uploading to Chrome Web Store,
208-210

applying textures to spheres, 135
arithmetic operators, JavaScript, 32
arrays
sets, 54
sorting, 55
Ars Technica, 153
aspect ratio, 128
Asteroids, 66-67
asynchronous connections, WebSQL API, 7

attributes of applications, configuring,
210-211

audio
Copy Me game tones, creating, 88-89
multiple sounds
playing at once, 90
playing sequentially, 91
audio element support (Android)192
audio tag (HTML5), controlling media, 13-14

Canvas 221

B

beginPath() function, 72

benchmarking

frame rate, checking with Stats.js, 144
with WebGL Inspector, 145
Berners-Lee, Tim, 1
Bezier curves, 112
Bezier, Pierre, 111
billboarding, 140
bitmap images, creating with SVG files, 105
Blender, 29, 84, 129
Blender Conference, 130
browser tools
Chromer Developer tools, 24-25
Firebug, 26
Safari Developer tools, 26
browsers
Geolocation API support, verifying, 8
Google Gears, 3
building Pong with SGF
Al 68
game physics, 64-66
game pieces, drawing, 61-63
host page, 59-60
main.js file, 60-61

C
CACHE section (Application Cache manifest
file), 201
caching data, 168
Camera object (Three.js), 128-129
Canvas, 15-16, 71
comparing with SVG, 95-96
displaying in Jo, 188

222

Canvas

drawing state, saving and restoring, 77
images, drawing, 79
paths, drawing, 72
sprites, drawing, 73-74
transformations, 75-77
capacitive screens, gestures, 181
Cappuccino, 158
cards
animating, 107-110
drawing, 105
flipping, 108
shuffling, 107
Chrome (Google), extensions, 25
Chrome Developer tools, 24-25
Chrome Frame, 3
Chrome Web Store
applications, publishing

hosted application, deploying,
207-208

metadata, describing, 206
packaged application,
deploying, 208
testing applications, 208
applications, uploading, 208-210
classes
CoffeeScript, 157-158
JavaScript, inheritance, 38-40
client-side scripting
JQTouch, 187
JQuery, 185
JQueryMobile, 185-186
Zepto.js, 187
client/server communication
Now]S, 171
Web Sockets, Socket.IO, 169-170

clipping planes, 128
code, minification, 199-201
CoffeeKup

installing, 166

layout files, 167-168

registering with Express]S, 167
CoffeeScript, 45

aliases, 156

classes, 157-158

conditional statements, 156

files, compiling, 153

for loops, 156-157

functions, 154

installing, 153

semicolons, use of, 154

splats, 155

var keyword, 154
collision detection (Pong), 65-66
color, specifying in Raphael, 103-104
color picking, 142
comments, minification, 199-201
Comparator (JavaScript), 55-56
comparing

CofteeScript and JavaScript, 154

microdata and microformats, 17

SVG and Canvas, 95-96

XML and JSON, 44
comparison operators (JavaScript), 34-35

compilers, Google Closure Compiler,
199-201

compiling CoffeeScript files, 153

Components API, 58

conditional loops (JavaScript)
for loops, 37
if-else statement, 35
switch-case statement, 36

while loops, 36

conditional statements, CoffeeScript, 156
configuring application attributes, 210-211
console debugging, 172-173
controlling
media in HTML, 13-14
program flow with loops (JavaScript)
for loops, 37
while loops, 36
Conway’s Game of Life, 136
Copy Me, 87
game text, drawing, 91
game text, styling, 92
game tones, creating, 88-91
objects, drawing, 87-88
Core API, 57-58
creating
Copy Me game tones, 88-91

game rooms with Now]S groups,
174-175

notifications, 11-12
particle systems in Three js, 140-141
physics system with JigLib]S, 139-140
Tap]S applications, 213
timelines in Trident.js, 80
vertex in Threejs, 118-119
Web Sockets, 4
cross-platform frameworks, Jo, 187-188
cross-site scripting, 44
CSS (Cascading Style Sheets), 92, 315
cube mapping, 135
Cufon, 100-102
curveto instruction (Raphael), 111
customizing fonts, 100-102

drawlmage function 223

data URIs, 78
Database API

IndexedDB API, 7

WebSQL API, 6-7
debugging Node applications, 172-173
deciding genre for game, 52-53
deploying

games

as applications, 183
as website, 181

hosted applications, 207-208

packaged applications, 208
describing metadata, 206
design document, writing, 51-52
desktop applications, JavaScript, 46-47
development tools

Blender, 29

Chrome Developer tools, 24-25

Eclipse IDE, installing, 20-21

Firebug, 26

GWT, installing, 22

Inkscape, 27

Java, installing, 19-20

Processing]S, 27

Raphael, 29

Safari Developer tools, 26

SVG-edit, 27
directional lighting, 120
displaying canvas in Jo, 188
documentation, PhoneGap, 190

drawlmage function, 78, 86

224

drawing

drawing

cards, 105-110

Copy Me game objects, 87-88, 91

images on Canvas, 79

Pong game pieces, 61-63
drawing APIs

Canvas, 15-16

for GWT, 151-152

SVG, 16

WebGL, 16

drawing state (Canvas), saving and restoring,
77

Dynamic DNS services, 204

E

easing, 81-82
Eclipse IDE, installing, 20-21
equals method, 54
Event API (PhoneGap), 189
events (JQuery), 43
exporting paths from SVG file, 112
ExpressJS, 163
application structure, 165
sessions, managing, 165
URL routing, 163-165
extending Raphael with plug-ins, 113-114

extensions, 25, 206

F

Facebook integration, TaplJS, 214-217

FALLBACK section (Application Cache
manifest file), 202

FileReader object (PhoneGap), 190
files (CoffeeScript), compiling, 153
FileUpload object (PhoneGap), 190
FileWriter object (PhoneGap), 190

filters, SVG, 113

Firebug, 26
first-class objects, 33-34
flat shading, 121
flipping cards, 108
fonts, Cufon, 100-102
for loops
CofteeScript, 156-157
JavaScript, 37
format, data URIs, 78
forward kinematics, 142
FOV (field of view), 128
fragment shaders, 121
frame rate, checking with Stats.js, 144

frames per second versus time-based
animation, 140

functions
adding to Raphael, 113
beginPath(), 72
CoffeeScript, 154
drawImage, 78, 86
JavaScript, 32-34, 38
node-cache API, 168
requestAnimationFrame, 123
updateDynamicsWorld, 139

G

game assets, loading in Raphael, 104-105
game loop, actions performed, 53
game physics
rigid body dynamics, 137-138
soft-body dynamics, 138
game pieces, drawing (Pong), 61-63

game play, managing for multiplayer games,
175-176

game rooms
creating with Now]JS groups, 174-175

moving between, 175

game server lobby, creating, 173-174
genre of game, deciding on, 52-53
Geolocation API, 3, 810
geometry shaders, 121
gestures, 181
JQTouch support, 187
JQueryMobile support, 186
Zepto.js support, 187
GLSL (OpenGL Shader Language), 131-133
GLUEscript, 46
Google App Engine, 23
Google Chrome
extensions, 25
V8§, 161
Google Chrome Frame, 3

Google Closure Compiler, minification,
199-201

Google Gears, 3

Google plugin for Eclipse, installing, 20-21

Google SketchUp, 143

Gouraud shading, 121

gradients, 103

Grouchnikov, Kirill, 79

GWT (Google Web Toolkit), 45, 147
drawing APIs, 151-152
gwt-html, 5-media module, 151
JSNI, 149
Pyjamas, 158
RaphaédIGWT, 150
widgets, RootPanel, 148-149
installing, 22

gwt-html, 5-media module (GWT), 151

H

host page, Pong, 59-60
hosted applications
deploying, 207-208
versus packaged applications, 212

HTML5 tools 225

hosted Node.js services, Nodester, 204-205
hosting your own server, 203-204
HTML host page, Pong, 59-60
HTML, 51
Application Cache, 5-6
applications, running offline, 201
manifest file, 201-203

applications, publishing to desktop,
217-218

canvas tag, 71

drawing state, saving and restoring,
77

paths, drawing, 72

sprites, drawing, 73-74

transformations, 75-77
data URIs, 78
drawing APIs

Canvas, 15-16

SVG, 16

WebGL, 16
Geolocation API, 8-10

gwt-html, 5-media module
(GWT), 151

IndexedDB API, 7

media elements, 13-14

microdata, 17

spritesheets, 78

unsupported media elements, handling
listing multiple sources, 14-15
with Modernizr, 15

Web Storage, 7-8

Web Workers, 4-5

WebSockets, 4

WebSQL API, 6-7

HTMLS5 tools

Inkscape, 27

Processing]S, 27

Raphael, 29

SVG-edit, 27

226

if-else statement

if-else statement (JavaScript), 35
images
bitmap, creating with SVG files, 105
drawing on Canvas, 79
serving, 78
IndexedDB API, 7
inertia, Newton’s first law, 63
inheritance, 38
CoffeeScript, 158
Prototype library, 39-40
injection attacks, cross-site scripting, 44
Inkscape, 27, 97
installing
CofteeKup, 166
CoffeeScript, 153
Eclipse IDE, 20-21
Google plugin for Eclipse, 20-21
GWT, 22
Java, 19-20
n script file, 162
node-inspector, 172
interacting with notifications, 12
inverse kinematics, 142
i0S, 179

is-a relationships (JavaScript), inheritance,
38

J

Java, installing, 19-20

JavaScript, 1
AJAX, 2
and CoffeeScript, comparing, 154
arithmetic operators, 32
as intermediary language, 45
basic types, 31
Comparator, 55-56

comparison operators, 34-35
conditional loops
for loops, 37
if-else statement, 35
switch-case statement, 36
while loops, 36
functions, 32-33
first-class objects, 33-34
setInterval, 38
setTimeout, 38
inheritance, 38-40
JQuery
AJAX, 43-44
events, 43
ready function, 41
selectors, 42
JSON, 44-45
linked lists, 56-57
mobile platforms, 45
modules, 48
on the desktop, 46-47
server-side, 48
set class, 54
Jetty, 98
JFugue, 89
JigLibJS
physics system, creating, 139-140
setting up, 138
Jo, 187-188
JQTouch, 187
JQuery, 41, 185
AJAX, 43
cross-site scripting, 44
events, 43
ready function, 41

selectors, 42

JQueryMobile, 185-186

JSNI (JavaScript Native Interface), 149
JSON, 44-45

JSONP (JSON with padding), 45

JVM (Java Virtual Machine), 48

K

key/value store databases, 183
keyframes, 81, 142

KHTML, 217

Knuth, Donald, 107

Kongregate, publishing games, 217

L

Lambertian shading, 121
launching games
as applications, 183
as website, 181
Lawnchair, 183
records
removing, 185
retrieving, 184
store, creating, 184
layout files, CoffeeKup, 167-168
libraries (JavaScript), Prototype, 39-40
lighting, 120-122
linear gradients, 103
lineto instruction (Raphael), 110-111
linked lists, 56-57

listing multiple media sources in HTML,
14-15

LiveScript, 31

loading
3D models with Three.js, 129-131
game assets in Raphael, 104-105

lobby for multiplayer games, creating,
173174

Minimax algorithm 227

Local Server module (Google Gears), 3
localStorage object (Web Storage), 7-8
LOD (level of detail), 121
loops
CoffeeScript, for loops, 156-157
JavaScript
for loops, 37
while loops, 36

M

main.js file, Pong, 60-61
MakeHuman, 143

managing

Express]S sessions, 165
multiplayer games, game play, 175-176
multiple Node versions, 162
manifest files, Application Cache, 201-203
manifest.json

hosted applications, deploying,
207-208

metadata, describing, 206
packaged applications, deploying, 208
materials, 120
matrices, 75-76
media elements (HTML5), 13
controlling, 13-14
unsupported, handling, 5
listing multiple sources, 14-15
with Modernizr, 15
metadata, describing, 206
methods, equals, 54
microdata, 17
microformats, comparing with microdata, 17
MIDI, creating Copy Me game tones, 88-91
minification, 199-201
Minimax algorithm, 69-70

228

mobile games

mobile games
Android, packaging applications

with Appcelerator Titanium,
193-194

with PhoneGap, 195-198
platform, selecting, 179

Android, 180

i0S, 179

WebOS, 180

Windows Phone 7, 180
mobile JavaScript platforms, 45
models, animating, 142-143

Modernizr, handling unsupported media
elements in HTML, 15

modules

Google Gears, 3

JavaScript, 48
momentum, Newton’s second law, 63
morph targets, 142
moveto instruction (Raphael), 110-111
moving between game rooms, 175
multiplayer games

game play, managing, 175-176

game rooms, creating with Now]JS
groups, 174-175

lobby, creating, 173-174
participants, managing, 175

multiple media sources, listing (HTML5),
14-15

multiple Node versions, managing, 162
multiple sounds

playing at once, 90

playing sequentially, 91

multitouch screens, gestures, 181

N

n script file, installing, 162

Network module (Appcelerator
Titanium), 191

NETWORK section (Application Cache
manifest file), 201

networking APls, 58
Newton’s laws, 63
Node applications, debugging, 172-173
Node Package Manager, 162
node-cache project, 168
node-inspector, installing, 172
Node.js, 23, 204
applications, debugging, 172-173
ExpressJS, 163
application structure, 165
CofteeKup, 166-168
installing, 166
layout files, 167-168
registering, 167
sessions, managing, 165
URL routing, 163-165
multiple versions, managing, 162
Node Package Manager, 162
require statement, 161-162
Socket.]1O, 169-170
nodes, 56-57
Nodester, 204-205
nonlinear timelines, creating, 81-82
normal, 121
NoSQL key/value stores, 183
notifications
creating, 11-12
interacting with, 12
requesting permission to display, 11
NowlJS, 171

NowlJS groups, creating game rooms,
174-175

NPM modules, managing with Nodester, 205

0

Objective-J, 158
objects, JavaScript, 31

offline access, running applications with
Application Cache, 201-203

OpenGL ES, 117
Opera Unite, 23

operating systems, selecting mobile
platforms

Android, 179-180

WebOS, 180

Windows Phone 7, 181
operator overloading, 55
ordering transformations, 76-77

orthographic projection, 84

P

packaged applications

deploying, 208

versus hosted applications, 212
packaging applications for TapJS, 215
paper (Raphael)

creating, 98-99

functions, adding, 113
parabolic arc, 64
parallaxing, 85-87

participants, managing in multiplayer
games, 175

particle systems, 66
Asteroids, 66-67
creating in Three.js, 140-141
paths
animating objects on, 113
creating with Raphael GWT, 150

platforms

drawing in Canvas, 72
exporting from SVG file, 112
RaphaelJS, 110

permission to display notifications,
requesting, 11

persistence
data caching, 168
Nodester, 205
perspective projection, 84
PhoneGap, 188

Android applications, packaging,
195-198

APIs, 189
documentation, 190
FileR eader Object, 190
FileUpload Object, 190
FileWriter Object, 190
Phong reflection, 122
Phong shading, 122
physics
Angry Birds, 64
applying to Pong game pieces, 64-66
forward kinematics, 142
Newton’s laws, 63-64
particle systems, 66
Asteroids, 66-67
creating in Three.js, 140-141
rigid-body dynamics, 137-138
soft-body dynamics, 138
physics engines, JigLibJS
physics system, creating, 139-140
setting up, 138
picking, 142
plane, 127
platforms
Android, application layers, 182

cross-platform JavaScript frameworks,
Jo, 187-188

deploying games for, 182

229

platforms

for mobile games, selecting, 179
Android, 180
i0S, 179
WebOS, 180
Windows Phone 7, 180
plug-ins (Raphael), extending, 113-114
point lighting, 120
Pong, building with SGF
Al 68
game physics, 64-66
game pieces, drawing, 61-63
host page, 59-60
mainjs file, 60-61
ProcessinglS, 27
program flow, controlling with loops
for loops, 37
while loops, 36
programming shaders, GLSL, 131-133

Prototype library (JavaScript), inheritance,
39-40

publishing applications
on Chrome Web Store
applications, testing, 208

hosted application, deploying,
207-208

metadata, describing, 206

packaged application, deploying,
208
Kongregate, 217
to desktop, 217-218
with TapJS, 212, 215-217
Pyjamas, 158

QR

radial gradients, 103-104
randomizing algorithm, shuffling cards, 107
Raphael, 29

color, specifying, 103-104

functions, adding, 113

game assets, loading, 104-105
paths, animating objects on, 113
plug-ins, 113-114
RaphaelGWT, 150
RaphaellS
cards
animating, 107-110
drawing, 105
flipping, 108
shuffling, 107
curveto instruction, 111

development environment, setting up,

97
fonts, customizing, 101-102
game text, creating, 99
moveto instruction, 110-111
paper, creating, 98-99
paths, 110
ray casting, 142
ready function (JQuery), 41
records
removing with Lawnchair, 185
retrieving with Lawnchair, 184
registering CoffeeKup with ExpressJS, 167
removing records with Lawnchair, 185
requestAnimationFrame function, 123

requesting permission to display
notifications, 11

requests (AJAX), performing in JQuery, 43
require statement (Node.js), 161-162
restoring Canvas drawing state, 77
retrieving
images
with data URIs, 78
with spritesheets, 78
records with Lawnchair, 184
reversing timelines, 81
rigging, 142-143

rigid-body dynamics, 137-138
RingoJS, 23, 48

Roosendaal, Ton, 129
RootPanel widget, 148-149

S

Safari Developer tools, 26
saving Canvas drawing state, 77
scene graphs, 123
scripting languages, JavaScript, 1
selecting
application frameworks
Appcelerator Titanium, 191
PhoneGap, 188-190
game genre, 52-53
mobile platform, 179
Android, 180
108, 179
WebOS, 180
Windows Phone 7, 180
selectors (JQuery), 42
semicolons in CoffeeScript, 154
server-side JavaScript, 48
servers, hosting your own, 203-204
serving images, 78

session management, ExpressJS, 165

sessionStorage object (Web Storage), 7-8

set class (JavaScript), 54
setinterval function (JavaScript), 38
sets, 54-55
setTimeout function (JavaScript), 38
setting up JigLibJS, 138
SGF, 57-59, 66-68
shaders, 121

GLSL, 131-133

variables, 132

starting

shading
flat shading, 121
Gouraud shading, 121
Lambertian shading, 121
Phong shading, 122
ShapeBuilder API, 152
shuffling cards, 107
simplifying applications with ExpressJS, 163
application structure, 165
CoffeeKup
installing, 166
layout files, 167-168
registering, 167
session management, 165
URL routing, 163-165
simulating 3D in 2D space, 84
parallaxing, 85-87
perspective projection, 84

showman scene, setting up in Three.js,
123-127

Socket.l0, 169-170
soft-body dynamics, 138
sorting arrays and sets, 55

sound, adding with gwt-htmi5-media module
(GWT), 151

sourcing 3D models, 143
specifying color in Raphael, 103-104
speed considerations for SVG, 114
spheres applying textures, 135
SpiderMonkey, 46
splats, 155
sprites, drawing in Canvas, 73-74
spritesheets, 78, 83
starting

applications with Nodester, 205

timelines in Trident.js, 80

231

232

Stats.js

Stats.js, checking frame rate, 144
storage APIs, Lawnchair, 183

records

removing, 185
retrieving, 184

store, creating, 184
Storage objects (Web Storage), 7-8
storing structured data

IndexedDB API, 7

WebSQL API, 6-7
structured data, storing

IndexedDB API, 7

WebSQL API, 6-7
styling text for Copy Me game, 92
Suzanne Awards, 130
SVG (Scalable Vector Graphics), 16, 95

Bezier curves, 112

comparing with Canvas, 95-96

files, converting to bitmap images, 105

filters, 113

paths, exporting, 112

speed considerations, 114
SVG-edit, 27
switch-case statement (JavaScript), 36

synchronous connection, WebSQL API, 7

T

tags, canvas, 71
drawing state, saving and restoring, 77
images, drawing, 79
paths, drawing, 72
sprites, drawing, 73-74
transformations, 75-77
TapJS
applications
creating, 213
packaging, 215
publishing, 212, 215-217

testing applications with Chrome, 208
texels, 134
text
Copy Me, game
drawing, 91
styling, 92
creating with RaphaelJS, 99
fonts, Cufon, 100-102
textures, 134
appying to spheres, 135
cube mapping, 135
UV mapping, 134
themes, 206
Three.js, 117, 136
3D models, loading, 129-131
Camera object, 128-129
lighting, 120
materials, 120
particle systems, creating, 140-141
ray casting, 142
snowman scene
setting up, 123-127
viewing, 128-129
vertex, creating, 118-119
Tic-Tac-Toe game
Al 68
sprites, drawing on canvas, 73-74

time-based animation versus frames per
second, 140

timelines, 83
creating in Trident.js, 80
keyframes, 81
nonlinear, creating, 81-82
reversing, 81
Titanium Appcelerator, 45
transformations, 75-76
drawing state, saving and restoring, 77
ordering, 76-77

transitions

JQTouch, 187

JQueryMobile support, 186
Trident.js, 79

easing, 81-82

keyframes, 81

spritesheets, 83

timelines, reversing, 81

timelines, creating, 80
TurboSquid, 143

U

unsupported media elements in HTML5,
handling

listing multiple sources, 14-15
with Modernizr, 15
updateDynamicsWorld function, 139

uploading applications to Chrome Web
Store, 208-210

URL routing with ExpressJS, 163-165
user input, 53
UV mapping, 134

\Y

V8, 161

var keyword (CoffeeScript), 154
variables for shaders, 132
vectors, normal, 121

verifying Geolocation API support on
browsers, 8

vertex, 118-119
vertex shaders, 121, 132-133
video tag (HTML5), 13-14

viewing snowman scene in Three.js,
128-129

widgets (GWT)

W

web browsers
Geolocation API support, verifying, 8
Google Chrome V8, 161
Google Gears, 3
MIDI files, playing, 89
web notifications
creating, 11-12
interacting with, 12
permission to display, requesting, 11
web server tools, 23
Web Sockets
simplifying with Now]S, 171
Socket. 1O, 169-170
Web Storage, 7-8
Web Workers, 4-5
WebGL, 16, 117
WebGL Inspector, 145
webhosting

hosted applications, deploying,
207-208

hosted Node.js services, Nodester,
204-205

hosting your own server, 203-204
packaged applications, deploying, 208
WebOS, 45, 180
websites
CSS§, 315
launching games as, 181
Nodester, 204
PhoneGap, 190
WebSockets, 4
WebSQL API, 6-7
while loops (JavaScript), 36
widgets (GWT), RootPanel, 148-149

233

234 Windows Phone 7

Windows Phone 7, 180
WorkerPool module (Google Gears), 3
writing
design document, 51-52
shaders in GLSL, 132-133

X-Y-Z

XML, comparing with JSON, 44
XMLHttpRequest object, 2
XULJet, 46-47

XULRunner, 46, 217

z-ordering, 85
Zepto.js, 187

Addison
Wesley

HALL

SAMS

and you love to
share them with your colleagues and friends...why
not earn some $$ doing it!

If you have a website, blog, or even a Facebook
page, you can start earning money by putting
InformIT links on your page.

Whenever a visitor clicks on these links and makes
a purchase on informit.com, you earn commissions*
on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post the links to
the titles you want, as many as you want, and we'll
take care of the rest.

It's quick and easy to apply.
To learn more go to:
http://www.informit.com/affiliates/

*Valid for all books, eBooks and video sales at www.informit.com

1

	Table of Contents
	Chapter 1 Introducing HTML5
	Beyond Basic HTML
	JavaScript
	AJAX

	Bridging the Divide
	Google Gears
	Chrome Frame

	Getting Things Done with WebSockets and Web Workers
	WebSockets
	Web Workers

	Application Cache
	Database API
	WebSQL API
	IndexedDB API

	Web Storage
	Geolocation
	Getting Users’ Attention with Notifications
	Requesting Permission to Display Notifications
	Creating Notifications
	Interacting with Notifications

	Media Elements
	Controlling Media
	Handling Unsupported Formats

	HTML5 Drawing APIs
	Canvas
	SVG
	WebGL

	Conveying Information with Microdata

	Chapter 2 Setting Up Your Development Environment
	Development Tools
	Installing Java
	Installing the Eclipse IDE and Google Plugin
	Google Web Toolkit

	Web Server Tools and Options
	Google App Engine
	Opera Unite
	Node.js and RingoJS

	Browser Tools
	Inside the Chrome Developer Tools
	Chrome Extensions
	Safari Developer Tools
	Firebug

	HTML5 Tools
	ProcessingJS
	Inkscape
	SVG-edit
	Raphaël

	3D Modeling Tools
	Blender

	Chapter 3 Learning JavaScript
	What Is JavaScript?
	JavaScript’s Basic Types
	Understanding Arithmetic Operators
	Understanding JavaScript Functions
	Functions as First-class Objects
	Comparison Operators

	Conditional Loops and Statements
	Controlling Program Flow with Loops
	Delayed Execution with setTimeout and setInterval

	Creating Complex Objects with Inheritance and Polymorphism
	Making Inheritance Easier with the Prototype Library

	Learning JQuery
	Manipulating the DOM with Selectors
	JQuery Events
	AJAX with JQuery
	Cross-Site Scripting

	JSON: The Other JavaScript Format
	JavaScript Outside of the Browser
	Mobile Platforms
	JavaScript as an Intermediary Language
	JavaScript on the Desktop

	Server-Side JavaScript

	Chapter 4 How Games Work
	Designing a Game
	Writing a Basic Design Document
	Deciding on a Game Genre
	The Game Loop
	Getting Input from the User

	Representing Game Objects with Advanced Data Structures
	Making Unique Lists of Data with Sets
	Creating Object Graphs with Linked Lists

	Understanding the APIs in Simple Game Framework
	Core API
	Components API
	Resources API and Networking APIs

	Building Pong with the Simple Game Framework
	Setting Up the Application
	Drawing the Game Pieces

	Making Worlds Collide with Collision Detection and Response
	Understanding Newton’s Three Laws
	Making the Ball Move
	Advanced Collision Detection and Particle Systems with Asteroids

	Creating Competitive Opponents with Artificial Intelligence
	Adding AI to Pong
	Advanced Computer AI with Tic-Tac-Toe

	Chapter 5 Creating Games with the Canvas Tag
	Getting Started with the Canvas
	Drawing Your First Paths
	Drawing Game Sprites for Tic-Tac-Toe

	Drawing Objects on the Canvas with Transformations
	Ordering Your Transformations
	Saving and Restoring the Canvas Drawing State

	Using Images with the Canvas
	Serving Images with Data URLs
	Serving Images with Spritesheets
	Drawing Images on the Canvas

	Animating Objects with Trident.js
	Creating Timelines
	Animating with Keyframes
	Creating Nonlinear Timelines with Easing
	Animating Game Objects with Spritesheets

	Simulating 3D in 2D Space
	Perspective Projection
	Parallaxing
	Creating a Parallax Effect with JavaScript

	Creating Copy Me
	Drawing Our Game Objects
	Making the Game Tones
	Playing MIDI Files in the Browser
	Playing Multiple Sounds at Once
	Playing Sounds Sequentially
	Drawing Our Game Text
	Styling Text with CSS Fonts

	Chapter 6 Creating Games with SVG and RaphaëlJS
	Introduction to SVG
	First Steps with RaphaëlJS
	Setting Up Our Development Environment
	Drawing the Game Board
	Drawing Game Text

	Custom Fonts
	Specifying Color
	Loading Game Assets
	Converting SVG Files to Bitmap Images

	Creating Our Game Classes
	Shuffling Cards
	Drawing and Animating Cards

	Creating Advanced Animations
	Paths
	moveto and lineto
	curveto
	Exporting Paths from an SVG File
	Animating Along Paths

	Extending Raphaël with Plugins
	Adding Functions
	SVG Filters

	Speed Considerations

	Chapter 7 Creating Games with WebGL and Three.js
	Moving to Three Dimensions
	Giving Your Objects Some Swagger with Materials and Lighting
	Understanding Lighting
	Using Materials and Shaders

	Creating Your First Three.js Scene
	Setting Up the View
	Viewing the World

	Loading 3D Models with Three.js
	Programming Shaders and Textures
	Using Textures
	Creating a Game with Three.js
	Simulating the Real World with Game Physics
	Revisiting Particle Systems
	Creating Scenes
	Selecting Objects in a Scene

	Animating Models
	Sourcing 3D Models
	Benchmarking Your Games
	Checking Frame Rate with Stats.js
	Using the WebGL Inspector

	Chapter 8 Creating Games Without JavaScript
	Google Web Toolkit
	Understanding GWT Widgets and Layout
	Exposing JavaScript Libraries to GWT with JSNI
	RaphaëlGWT
	Adding Sound with gwt-html5-media
	Accessing the Drawing APIs with GWT

	CoffeeScript
	Installing CoffeeScript
	Compiling CoffeeScript Files

	A Quick Guide to CoffeeScript
	Basics
	Functions and Invocation
	Aliases, Conditionals, and Loops
	Enhanced for Loop and Maps
	Classes and Inheritance

	Alternate Technologies
	Cappuccino
	Pyjamas

	Chapter 9 Building a Multiplayer Game Server
	Introduction to Node.js
	Extending Node with the Node Package Manager
	Managing Multiple Node Versions

	Making Web Apps Simpler with ExpressJS
	Serving Requests with URL Routing
	Managing Sessions
	Understanding the ExpressJS Application Structure
	Templating HTML with CoffeeKup

	Persisting Data with Caching
	Managing Client/Server Communication
	Communicating with Socket.IO
	Setting Up a Simple Socket.IO Application with Express
	Making Web Sockets Simpler with NowJS

	Debugging Node Applications
	Creating a Game Server
	Making the Game Lobby
	Creating Game Rooms with NowJS Groups
	Managing Game Participants and Moving Between Game Rooms

	Managing Game Play

	Chapter 10 Developing Mobile Games
	Choosing a Mobile Platform
	iOS
	Android
	WebOS
	Windows Phone 7

	Flick, Tap, and Swipe: A Quick Guide to Mobile Gestures
	Deciding Between an Application and a Website
	Storing Data on Mobile Devices
	Relaxing in Your Lawnchair: An Easier Way to Store Data
	Getting Started with Lawnchair

	Client-Side Scripting Simplified with JQuery and Zepto
	Using JQuery Variants
	Using Zepto.js

	Architecting Your Applications with JoApp
	Choosing an Application Framework
	PhoneGap
	Diving into the PhoneGap APIs
	Appcelerator Titanium
	Diving into the Appcelerator Titanium APIs

	Packaging Android Applications with Titanium and PhoneGap
	Packaging an Application with Titanium
	Packaging an Application with PhoneGap

	Chapter 11 Publishing Your Games
	Optimizing Your Game’s Assets
	Minification with Google Closure Compiler
	Running Applications Offline with Application Cache

	Hosting Your Own Server
	Deploying Applications on Hosted Node.js Services
	Publishing Applications on the Chrome Web Store
	Describing Your Application’s Metadata
	Deploying a Hosted Application
	Deploying a Packaged Application
	Testing Your Applications Locally
	Uploading Your Application to the Chrome Web Store
	Configuring Your Application
	Deciding Between Packaged and Hosted Chrome Apps

	Publishing Applications with TapJS
	Creating a TapJS Application
	Packaging an Application for TapJS
	Publishing a TapJS Application to Facebook

	Publishing Games with Kongregate
	Publishing HTML5 Applications to the Desktop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

