

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

Contents .. vi
About the Author ... xv
About the Technical Reviewers ... xvi

About the the Cover Image Artist ... xvii

Acknowledgments .. xviii

Introduction ... xix

Part I:JavaScript Animation Basics
Chapter 1 :Basic Animation Concepts ... 3
Chapter 2: Basics of JavaScript for Animation ... 9
Chapter 3: Trigonometry for Animation ... 35
Chapter 4: Trigonometry for Animation ... 69
Part II:Basic Motion
Chapter 5: Velocity and Acceleration .. 105
Chapter 6: Boundaries and Friction ... 131
Chapter 7: User Interaction: Moving Objects Around .. 153
Part III: Advanced Motion
Chapter 8: Easing and Springing ... 169
Chapter 9:Collision Detection ... 201
Chapter 10: Coordinate Rotation and Bouncing Off Angles 225
Chapter 11: Billiard Ball Physics .. 247
Chapter 12: Particle Attraction and Gravity .. 275
Chapter 13:Forward Kinematics: Making Things Walk .. 291
Chapter 14: Inverse Kinematics: Dragging and Reaching 319
Part IV: 3D Animation
Chapter 15:3D Basics .. 343
Chapter 16:3D Lines and Fills ... 383
Chapter 17:Backface Culling and 3D Lighting .. 413
Part V:Additional Techniques
Chapter 18: Matrix Math .. 431
Chapter 19:Tips and Tricks ... 443
Appendix ... 467
Index .. 475

xix

Introduction

This book is about how to create interactive animations for the web using computer code and math. But
don't worry if you can't remember anything from your high school algebra class, you'll just need a minimal
understanding to get started. The purpose of this book is to give you the tools to create and express your
ideas, it's not about memorizing equations or theory—although I do explain the underlying ideas—but the
practical application of techniques to incorporate in your work. These are concepts and formulas that you
will see working, in real-time, right in front of you. Think of this book as the elements of motion, a catalog of
ideas to mix, match, and reference.

There are plenty of examples to play with, and it's very satisfying to watch something you've created move
around on screen—as if almost alive. But it can be even more satisfying to share this experience with your
friends by simply giving them a link to follow in their web browsers—this is the great benefit to distribution
using the Internet.

This book is a rewrite of the brilliant work by Keith Peters, Foundation ActionScript Animation. However,
instead of targeting Flash, this book uses modern web technologies like the HTML5 and JavaScript. The
malleability of this book is a result of the portability of its underlying concepts—the math is the same.
When you understand these basic building blocks, you are no longer reliant on the tools provided by
someone else, but you can implement these ideas wherever your programming life takes you.

Since the examples in this book are implemented using HTML5 and JavaScript, I'll step you through the
particular programming techniques you'll need to understand them. JavaScript is a fun, powerful, and
relatively small language, but it can be quirky and idiosyncratic largely because of its flexibility. While
other, more structured, languages impose a particular way to program, JavaScript allows you to write code
in many different styles. This freedom is powerful, but it can be confusing for a beginner to work out the
main ideas of the language. If this is your first time using JavaScript, it would be wise to skim through a
proper introduction before working through the examples in this book. The biggest confusion when
learning JavaScript is the assumptions you bring from other languages. Keep the reference documentation
handy and, if in doubt, test your code snippets in your browsers development console. If you are Flash
developer, resist the temptation to think of JavaScript as a variation of ActionScript. It has it's own unique
program structure and style, and you will avoid problems later on by leaving behind any preconceived
ideas about the language now.

This was a fun book to write, and I hope you have fun working through it. Write your programs, experiment
with them, share, and learn from others. Creativity is an active process, and not something you sit around
and wait for, so let's get coding!

Part I

JavaScript Animation Basics

3

Chapter 1

Basic Animation Concepts

What we’ll cover in this chapter:

 What is animation?

 Frames and motion

 Dynamic versus static animation

Oh, how far the web browser has come! What started as a program for accessing text files over the
network, soon revolutionized how we communicate and share, and has now evolved into a fully graphical,
interactive programming environment. The most recent markup standard for these documents, HTML5,
adds graphics capabilities that were previously available only with native applications. After a period of
stagnation, modern web browsers benefit from a new wave of competition and innovation with HTML5 and
JavaScript. The new canvas element provides a way to create standards-compliant games, applications,
and animations that work across modern web browsers and mobile devices, including popular phones and
tablets such as iPhones, iPads, and Android devices.

This book covers programming, math, and physics techniques used to make animations with the HTML5
canvas element and JavaScript. As you'll see, this provides developers with levels of power, control, and
interactivity that, for the first time, are available in a standards-compliant web browser.

Before we dive into specific techniques and formulas for moving things around with JavaScript, let’s take a
quick look at exactly what animation is, some of the basic techniques behind it, and some concepts that
you can use for your animations to make them more dynamic and interesting.

Whether this is your first time drawing with computers or you have previous experience using tools such as
Adobe Flash, this book is a great guide to programmed animation. This book has undergone many
changes since being ported from Flash to JavaScript, but it also demonstrates that the underlying

CHAPTER 1

4

techniques and mathematical concepts are language-agnostic. We target the web browser here, but given
modest graphics support wherever your coding environment, these formulas and examples are applicable
anywhere.

Sure, you can skip this chapter if you can’t wait to write some code. But it's strongly suggested you come
back to it at some point. If nothing else, you’ll find some insights into how animation works.

What is animation?
Animation is motion. Motion is a change in the position of an object over time—one minute it is here, the
next minute it is over there—and space between those two points. By applying mathematical formulas to
an object’s location, you can determine its next position and affect the behavior of the movement—breathe
life into it.

But animation is not just movement, it's change in any visual attribute: shape, size, orientation, color, etc. A
ball squishes, plants grow, faces contort—something changes. Some of the earliest computer animations
cycled colors to simulate movement; for instance, you can make a waterfall composed of pixels in various
shades of blue that appears to alternate hues with such frequency to look like falling water, though nothing
on the screen has actually changed position.

Time is a fundamental component of animation. It is the mechanism used to express change in an object
from one position to the next. And without time, there is no motion—it is a still image and not an animation.
Consequently, without motion, we have no sense of time, even if it is present. Take for example, a video of
an empty parking garage from a security camera. Without movement, it is impossible to decide if you are
watching a live stream, a frame from 5 seconds ago, or an unchanging still image. Only when a plastic bag
blows across the screen are you assured that time is present and further change can occur. Without time,
nothing else happens in the picture.

This brings up another point, animation keeps us interested. If something changes, our brains naturally
become curious. What changed? Why did it change? Did I cause it to change? Does this change fit
within the mental model I’ve constructed for this object or do I need to adjust my assumptions?
Temporal media types such as music and film are compelling because, as in life, we are not sure what
will happen next. We may have a general idea, and discerning these patterns is pleasurable, but we find
joy in tickling the boundaries of the unexpected. Nontemporal media—images, paintings, text—do not
change; we may explore the details of the work and our understanding and interpretation might change
over time, but the work will not. This is what makes animation so gripping. Change is inherent to the
medium; it captures a part of our experience that we are naturally attuned to. Thus, we are able to get
lost in a movie for hours or enthralled by a video game for days. If something is going to happen,
generally we want to know what that is.

Frames and motion
Animation is a process that creates the illusion of motion. Nearly every form of projected motion media
uses frames to accomplish this.

BASIC ANIMATION CONCEPTS

5

Frames are a series of discrete images shown in rapid succession to simulate motion or change in an
object. Frames are the basis for anything you see on a computer, television, or movie screen. This idea
goes back to the earliest cartoons. Animators drew individual pictures on sheets of cellophane (known as
cells), and the earliest motion pictures used a similar technique with multiple photographs.

The concept is simple: You show a bunch of images that vary slightly from one to the next, and the mind
blurs them together as a single, moving image. But why do we insist on calling it an illusion of motion? If
you see a man walk across the room on a movie screen, is that not motion? Of course it’s only an image of
a man, not a real person, but that’s not the reason we don’t consider it motion.

Remember, moving objects travel from a point here to a point there by passing through the intervening
space. That is real motion; objects move through space smoothly, not in several jumps. But frame-based
motion does just that. It doesn’t move from spot to spot, it disappears and reappears in another location in
the next frame. The faster it’s moving, the bigger jump it takes.

If you were shown a picture of a man on the left side of a room and then a few seconds later another
picture of the same man on the right side of the room, you’d infer that there are two pictures, not an
animation. If you were shown a half dozen pictures of the man in the process of crossing the room, you’d
still interpret these as a series of individual photographs. (See Figure 1-1 for an example of this.) If the
images were presented fast enough, it wouldn’t change the fact they remain a bunch of still photos, but,
you would no longer see it that way. Your mind will process it all as a man moving across the room. It is no
more real motion than the original two photos were, but at some point, the mind gives up and buys into the
illusion.

Figure 1-1. A series of still photographs by Eadweard Muybridge

This point has been extensively examined by the film industry. Researchers have found that at a rate of 24
frames per second, people will accept these frames as a single moving image. Go much slower than that,
and the jumpiness gets annoying and starts to break the illusion. And it seems that the human eye can’t
distinguish frame rates higher than that—showing 100 frames per second won't make your animation
seem any more realistic (although higher frame rates in a programmed animation can result in more
responsive interaction and will seem smoother).

CHAPTER 1

6

Frames as records
The whole concept of frames makes three things possible: storage, transmission, and display. You can’t
store, transmit, and display an actual man walking across a room, but you can store many pictures of that
man walking across the room. You can also transmit the images and display them. Thus, you can show an
animation almost anywhere and at any time, as long as you can interpret the stored images and have a
means to display them.

Now, we need a more general definition of what a frame is. So far, we’ve referred to a frame as a still
image or a drawing. Let’s call it a record of a system at a specific point in time. That system can be the
midway point of a man walking across a room; then the record is that image. On the other hand, that
system can be a collection of virtual objects, and the record is their shapes, colors, and positions at a
particular moment in time. Thus, your animation becomes not a series of still images, but rather, it is a
series of image descriptions. Instead of displaying only the image, the computer takes that description,
creates the image from it, and then displays it. You can even take this idea a step further by using
programmed frames.

Programmed frames
Because you have at your disposal a computer that can perform calculations as needed, you don’t need a
long list of frame descriptions. You can cut it down to a description of the first frame, and then you follow
some rules for building the subsequent frames. Now the computer is not merely creating an image from a
description; it’s creating the description first, creating the image based on this description, and then finally
displaying the image.

Consider how much file space you can save using this approach. Images take up hard disk space and
bandwidth, and 24 images per second will add up fast. If you can decrease that to one description and a
set of rules, you can possibly reduce the file size to a fraction of what it was. Even a complex set of rules
for how the objects should move and react takes up less space than a single medium-sized image. Indeed,
one of the first things people notice about programmed animation is just how small the files are.

Naturally, there is a trade-off. As your system gets larger and your rules get more complex, the computer
must work furiously to calculate the next description, and then it must work additionally to display it. If
you’re trying to maintain a particular frame rate, that gives the computer a limited amount of time
(milliseconds) to process it. If the computer can’t calculate the scene in time, your frame rate suffers. On
the other hand, image-based animation doesn’t care about what’s in the scene or how complex it is; it just
shows the next picture, and generally it is right on time.

Dynamic versus static animation
The great advantage of programming an animation is that it becomes dynamic. The images are not
defined until runtime. Instead of watching a predetermined sequence of frames—such as a movie’s ending
that will never change no matter how many times you watch it—you can generate new images, effectively
creating a unique visual experience for each viewing. If you calculate an object’s position using user-
provided values, such as a mouse cursor, the media can responsively update the display to interact with
the user, creating a level of immersion not capable with other media types.

BASIC ANIMATION CONCEPTS

7

But a coded animation isn’t necessarily interactive. You can take an object and, using code, move it from a
particular position across the screen. Each time the animation is played, the same code runs, causing the
same movement. This is an example of what we'll call a static animation. Each frame, from start to finish,
is predefined. Similar to a movie, you’re watching a predetermined sequence of images that do not change
on another viewing.

But what if you create an object, and again, using code, determine a random point to place it and a
random direction and speed to move it? Now, each time you play the animation, something different
happens. Or, what happens if, when the animation starts, you determine the time of day and month of the
year, and use that data to create a scene—a winter morning, a summer afternoon, visually distinct images
depending on the date the program is run?

Or, maybe you have some factors in your animation that change using input from the keyboard and mouse
while it runs. This enables the user to interact with the objects on the screen, and about as far from static
as you can get.

Perhaps the most interesting aspect of dynamic animation, and the focus of this book, is the application of
real-world mathematics and physics principles to objects in the animation. You're not limited to moving an
object in some random direction; you can also give it some gravity, so that as it moves, it falls down. When
it hits the “ground,” it bounces, but not as high as it started out. Then it eventually settles down and just sits
there. You can also add some user interaction, enabling the user to “pick up” the object with the mouse or
move it around with the keyboard. As the user throws the object around, she gets the feeling of handling a
physical object.

With this kind of animation, the user is no longer a passive recipient of a sequence of frames that plays
out, but has entered an environment you created. You can construct a world that models the physical
constraints of your own, providing a more realistic experience, or, you can completely disregard such
worldly confines. As the programmer, you are free to express your vision as you see fit. These are the joys
of creative coding; by offloading tasks to the computer and having a constantly updating visual display, you
can create rich scenes that involve the viewer in a way no medium in human history has been able to do
before. How long will viewers stay there? They will remain as long as the environment keeps them
interested. The more they interact with it, the more likely they'll come back for more.

Summary
In this opening chapter, the basics of animation theory have been summarized. We build on the concepts
of frames and dynamism to create motion and interactivity in our animations.

In the following chapters, we examine the mathematical elements of movement and build a collection of
tools that you'll incorporate into your programmed animations to create motion, and include lessons on
how to use them. What you create with these tools is entirely your decision. The most obvious applications
of the techniques in this book are for game creation. Games are essentially interactive animations with
some goals for players to achieve. But this is not simply a game-programming book. These techniques are
applicable to a wide range of animated projects—from navigational systems, to advertisements, to
educational applications, and to interactive art.

CHAPTER 1

8

A new era of web programming creativity has begun thanks to the innovation driving modern browsers.
With the HTML5 canvas element, you have a standards-compliant, cross-platform component for creating
advanced web graphics. This book is an exploration into the principles of programmatically generated
movement for creating these next-generation graphic interactions.

9

Chapter 2

Basics of JavaScript for Animation

What we’ll cover in this chapter:

 Basic animation

 An introduction to HTML5

 Animating with code

 JavaScript objects

 User interaction

If the first chapter is a somewhat philosophical overview of animation, this one is a technical overview of
what it takes to create an HTML5 document and how to animate using a canvas element and JavaScript.
This chapter covers the essentials of document structure, animation loops, JavaScript objects, and user
interaction. The techniques you learn here are used throughout the rest of the book.

Basic animation
To start off, let’s review what Chapter 1 covers:

 Animation is made with frames, and each frame is slightly different in presenting the illusion of
motion.

 Frame-by-frame animation contains an image or a description of an image for each frame.

 Dynamic animation contains an initial description of an image and rules that are applied to alter
the description on each frame.

CHAPTER 2

10

This book focuses on the rules for dynamic animation, providing different techniques to change the image
description, which results in realistic motion. In this chapter, you see how to structure the initial description,
how to apply those rules on each frame, and how to tie the program together. You will create plenty of
working examples as you progress.

An introduction to HTML5
In this book, we create HTML5 documents that are viewed in a web browser. HTML5 is the latest iteration
of HTML, Hypertext Markup Language, a language for structuring and presenting content for the World
Wide Web. HTML elements are the building blocks of web pages. At the time of writing, the HTML5
specification is still in development, but a number of features are considered stable and ready to use, such
as the canvas element. HTML5 improves on HTML4, which was standardized in 1997, by adding new
elements and support for multimedia content, such as audio and video. Because these new, semantically
meaningful elements expose properties and controls that are accessible in the document, you can
manipulate them programmatically using JavaScript, giving you a powerful way to control and create
media.

HTML5 is a collection of individual features. When assessing a particular browser’s HTML5 support, this is
not an all-or-nothing classification; rather, you test if a browser supports a specific feature of the defined
specification. Different browsers have different support for different features. This can make it difficult to
target individual HTML5 elements without knowing how a user will view the document. As browsers
continue to improve, cross-platform feature detection becomes less of a concern, but for now, you should
always test the user's web browser for the HTML5 features you target and provide a backup solution if it
fails—even if it’s just a politely worded message instructing your user to upgrade his browser.

Canvas support
The good news, at least for this book, is that all the major browser vendors have implemented support for
the canvas element. This means that you can be relatively confident that your user can see the animation
you create, provided she has upgraded to a recent version of her browser. Games and animations provide
an excellent way to push users into upgrading their browsers, because, after decades of video games,
most people understand that cutting-edge graphics require the latest hardware and software. At least it’s
easier to convince someone to upgrade her browser rather than buy a brand new gaming console.

In case the canvas element is not supported in a web browser, in your HTML document, you can provide
backup content by including it within the canvas tags:

<canvas width="400" height="400">
 <p>This browser does not support the<code>canvas</code> element.</p>
</canvas>

The warning message appears only if the browser does not recognize the canvas tag. If the browser does
support it, then it renders the canvas element and ignores the nested <p> element.

To programmatically test whether the browser supports the canvas element, you can add the following
JavaScript to your document:

BASICS OF JAVASCRIPT FOR ANIMATION

11

if (document.createElement('canvas').getContext) {
 console.log("Success! The canvas element is supported.");
}

This code creates a new canvas element and tests for the existence of its getContext property, which the
object has if it's a valid HTML5 canvas element. If the browser does have support, it prints a message to
the debugging console letting you know.

Table 2-1 lists the most popular web browsers and the minimum version required for basic support of the
canvas element.

Table 2-1. Canvas Element Support for the Major Browsers

IE Firefox Safari Chrome Opera iOS Safari Android Browser

9 3.5 3.2 9 10.6 3.2 2.1

Performance
Programming graphics has always been—and for the foreseeable future, will be—a very computationally
demanding operation. The reason is simple: The more you can do, the more you want to do and the more
demands you place on the performance of the system. The past 25 years of video game history has been
an amazing journey of technical advances, evolving from the blocky characters featured in dedicated
arcade machines, to fully immersive 3D worlds run on today’s consoles. But still, we want more.
Sometimes we judge computer animation against features of the natural world: character realism, lighting
effects, and physics. It’s quite a marvel that these simulations can hold up to the scrutiny of human
perception, and yet, they often do. We’re still at the dawn of computer animation, and as long as
computers keep getting faster—with the help of Moore’s Law—and developers keep refining their
techniques, our abilities for visual creation in the future seem almost unlimited.

But animation on the web using the canvas element is at the incubation stage, only now considered a
viable alternative to using plug-ins like Adobe Flash. In recent years, developers have pushed the
boundaries of speed and performance in web browsers and JavaScript engines, and because this is still a
highly competitive area, we can look forward to more optimizations and improvements to come.

The examples in this book are written so they run at a smooth, reasonable performance on a relatively
modern computer and web browser. The capability of your computer will differ from mine, so as you
examine the source code in this book, feel free to adjust the values so the examples run smoothly on your
machine. Plus, there is no better way to learn how the formulas work than by experimenting with their
parameters and observing the output.

However, before you share any animations with the world, test them on as many different devices as you
can. As more people use mobile phones and tablets—instead of more traditional desktop computers—to
access the web, developers need to account for a wide range of device performance differences. Testing
and measuring on all these platforms is the only way to ensure your code remains performant.

CHAPTER 2

12

A basic HTML5 document
One of the best parts of web development is how easy it is to create and view a document—all you need is
a text editor and a web browser. This simple snippet provides the setup for all of the examples contained
in this book. After you walk through the structure of these elements, we’ll add a couple of minor additions
for clarity, but this is the basic HTML5 file you will use:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title></title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {
 //Our code here...
 };
 </script>
 </body>
</html>

Save this file as 01-skeleton.html and load it in your web browser. You won’t actually see anything
because it’s a blank document, but the page did load and is a completely valid HTML5 document. (You
can always view the source in your browser to confirm that something is there.)

Now let’s go through the elements step by step. The first line simply declares that this is an HTML5
document type. If you have any familiarity with all the various HTML4 document types, you’ll see that this
declaration is quite simple:

<!doctype html>

Next, we declare the root html element and the header:

<html>
 <head>
 <meta charset="utf-8">
 <title></title>
 <link rel="stylesheet" href="style.css">
 </head>

At the top of the head element, set the document character encoding to utf-8. UTF-8 is an encoding for
Unicode, which is a universal character set that defines the characters used in most of the world's
languages. The browser uses this encoding to read the characters from a file and display them as properly
formatted text. These documents are stored in a sequence of bytes contained in a file on a server
somewhere, transmitted across the network, then reassembled on the client's computer and displayed in a
web browser. The character encoding tells the browser how to convert this sequence of bytes into a
sequence of characters, which is then processed and displayed as a web page. If you don't include the
encoding declaration, the browser might attempt to guess the character encoding of the file (wrongly), or

BASICS OF JAVASCRIPT FOR ANIMATION

13

use a default setting (wrongly), causing the page to display incorrectly. It's best to explicitly set the
character encoding here and avoid the potential confusion.

All valid HTML5 documents contain a title element, which is also placed in the header. Because we use
a CSS stylesheet, create a link element that points to an external file. This contains the style definitions
for our document; we’ll look at the style.css file in a moment.

With the header set, let’s look at the rest of the document:

 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {
 //Our code here...
 };
 </script>
 </body>
</html>

In the body element, we place a canvas element. This is what we draw to and reference from our scripts.
Give the canvas an id name and a height and width value so you can see it, and use its id to access
the element with the DOM interface.

After the canvas element, add a script tag that includes the JavaScript code for each example. We’ve
placed the script after the other elements, right before the closing body tag, so that the browser loads
the rest of the document before executing the script. Also, if the script is loaded from a file—possibly from
a different server—it won’t hold up the rest of the document while waiting to download. This makes loading
faster and the document more responsive.

The skeleton script is simple and effectively does nothing. The window object is the top of the Document
Object Model and how we access the DOM. When the document has finished loading, the window object
executes the function assigned to its onload property:

<script>
window.onload = function () {
 //Our code here...
};
</script>

The example code in this book is placed within the window.onload callback function. Because this
method is executed after all the document elements have been loaded, we can be assured that the canvas
element is ready to go by the time the code is called. Consequently, if your document contains a lot of data
embedded in it, such as large images, you can wait a long time for window.onload to execute. In this
situation, it might be better to load the assets using JavaScript, which I show you how to do in Chapter 4.

Finally, we close out our script, body, and html tags. We’re finished creating a basic but perfectly valid
HTML5 document.

CHAPTER 2

14

CSS stylesheet
In the document header, we created a link to a CSS stylesheet. Now, let’s look at that file. The style
definitions for this book are intentionally minimal; only the background color of the document body and
canvas element has been declared. By default, the canvas background color is transparent, which might
be the color you want, but has been changed to white so you can see exactly where the element is
positioned in the document. Here’s the stylesheet for the style.css file:

body {
 background-color: #bbb;
}

#canvas {
 background-color: #fff;
}

This assumes the document contains an element with an id of 'canvas'. As a document gets more
complicated, so does its stylesheet. The HTML file defines the structure of the document, whereas the
CSS stylesheet defines the style or look of the elements. In general, it’s best to organize your content,
style, and scripts in separate files.

Additional scripts
As the examples get more complicated and you need to reuse portions of code, it becomes convenient, if
not necessary, to move these pieces into separate files for clarity. This is done when declaring new
classes that are used across multiple exercises and for functions whose verbosity would distract from the
point at hand.

Throughout this book, we'll maintain a file of these utility functions; it’s named utils.js. This script
contains functions that set up boilerplate code for the examples, so that you can concentrate on the
underlying animation principles. Each function is explained as they are introduced, so you don’t have to
think of this file as a black box.

In this file, many of the utility functions will be added as properties to a global JavaScript object named
utils. This way, you can avoid cluttering up the global namespace with a bunch of functions. Be sure that
at the top of the utils.js file you’ve declared an empty object like the following:

var utils = {};

To import this file and other scripts into your document, create a script element and set its src attribute
to the location of the file. Include these immediately before the example code to be certain that everything
has loaded properly before attempting to use it:

<script src="utils.js"></script>
<script>
window.onload = function () {
 //Our code here...
};
</script>

4

BASICS OF JAVASCRIPT FOR ANIMATION

15

Debugging
One of the most important aspects of writing code is debugging it. Back in the old days of web
development, this usually meant throwing pop-up alert windows. Thankfully, web browsers now offer
increasingly sophisticated debugging tools for code introspection and performance analysis. These tools
enable you to step through a running application and interact with it, so you know exactly what’s going on
in your code at a given time.

It’s a safe bet that every modern, HTML5-capable browser has some built-in developer tools and a console
to input JavaScript statements and print out the results. You might have to dig around the menus of the
application, but they’re in there somewhere.

For example, in the Chromium web browser, click the wrench icon near the upper right corner, scroll down
to Tools, and then click JavaScript Console. This is where the logging messages print out. Figure 2-1
shows an open debugging session in Chromium. The Firefox web browser has something similar: In the
File menu, click Tools, and then click Web Console. Likewise, Internet Explorer 9 and Opera each has its
own developer environments. It’s important you get comfortable with these tools in all the major browsers
because to maintain cross-browser compatibility, you debug in all of them. If you’re having trouble finding a
particular browser's web development tools, be sure to check its help section.

Figure 2-1. The Chromium browser debugging console

CHAPTER 2

16

After you have opened a web developer console, you can type JavaScript expressions directly into the
browser and have them evaluated. Try it by entering these statements:

console.log("Hello, World!");
2 + 2

From the console, you can access DOM elements and script variables to inspect their values (provided
they are in the proper scope), which makes it easy to reason about how your program runs. This is a great
way to test and debug small sections of code before committing them to a larger program. Find those bugs
as early as possible!

Animating with code
With the document structure in place, you should now understand enough of the basics to start coding.
You need a text editor to input the examples and an HTML5-capable web browser to run them. For
debugging, you should be familiar with your browser’s built-in developer console. After you have these
tools—which may already be on your computer—you’re ready to go. Let’s dive in to some animation!

Animation loops
Almost all programmed animation is expressed as some kind of loop. If you think about a frame-by-frame
animation, you might create a flowchart resembling a series of images, where each frame just needs to be
drawn, as shown in Figure 2-2.

Figure 2-2. Frame-by-frame animation

When you start drawing shapes, though, things are a bit different. JavaScript code won’t create and store
a new image for each frame, even in a frame-by-frame animation. For each frame, we store the position,
size, color, and other attributes of every object drawn to the canvas. So, if you had a ball moving across
the screen, each frame would store the position of the ball on that frame. Maybe frame 1 would indicate
the ball is 10 pixels from the left side, frame 2 would indicate it’s 15 pixels, and so on. The code reads this
data, draws the object according to the description given, and displays that frame. From that process, you
can derive a flowchart, as shown in Figure 2-3.

Figure 2-3. Rendering and then displaying frames

BASICS OF JAVASCRIPT FOR ANIMATION

17

But when you consider how we described a dynamic, coded animation, the flowchart looks more like
Figure 2-4.

Figure 2-4. Scripted animation

As you see in Figure 2-4, there is no concept of frame 1, frame 2, and so on. Programmed animation
generally can, and usually does, all occur in just one frame. Here, you can start to see what we mean by a
loop.

First, you set up an initial state, such as by drawing a circle to the screen using the built-in canvas drawing
API. You then render and display the frame. Next, you apply your rules. The rules can be as simple as,
“The ball will move 5 pixels to the right,” or they can be made up of dozens of lines of complex
trigonometry. The examples in the book cover that entire spectrum. Applying the rules results in a new
state—a new description that is then rendered and displayed. Then you apply the same rules all over
again.

The same set of rules is applied over and over; you don’t have one set of rules for the first frame, and then
another set for the next. So, your challenge is to come up with a set of rules that can handle every possible
situation that can arise in your scene. What happens when the ball moves so far to the right that it’s off the
canvas? Your set of rules needs to account for this. Do you want the user to interact with the ball using a
mouse? Your rules need to take that into account as well.

It sounds daunting, but it’s not that complex. You start off with some simple behavior by creating a rule or
two, and when that works, you add another rule. The “rules” we’ve been referring to are actually
programming statements. Each rule can be a single statement or composed of several statements. In the
example of moving the ball 5 pixels to the right, the rule is expressed in JavaScript like this:

ball.x = ball.x + 5;

This says to take whatever the ball’s x position (horizontal axis) is, add 5 to it, and make that its new x
position. You can even simplify the expression like this:

ball.x += 5;

The += operator adds the value on the right to the variable on the left and assigns the result back to that
variable.

Here’s a more advanced set of rules that you’ll see later in the book:

var dx = mouse.x – ball.x,
 dy = mouse.y – ball.y,
 ax = dx * spring,
 ay = dy * spring;

CHAPTER 2

18

vx += ax;
vy += ay;
vy += gravity;
vx *= friction;
vy *= friction;

ball.x += vx;
ball.y += vy;
ball.draw(context);

Don’t worry about what it all means, just know that we need to run this code over and over to generate
each new frame.

So, how do these loops run? Here's a misguided attempt, which reflects an error that many beginning
programmers make. It’s based on the while loop structure that exists in almost every programming
language. You set up a loop to run indefinitely, updating the ball from within:

while (true) {
 ball.x += 1;
}

It seems simple: The while evaluation always passes because we’re testing a value of true, so the loop
keeps executing. We increment the ball’s x position by 1 each time through the loop, from 0 to 1 to 2, 3, 4,
etc. Each time it moves across the canvas from left to right.

If you’ve made the same mistake, you know that the ball doesn’t move across the canvas, and in fact you
won’t see it at all—it’s already moved past the right side of the screen. Why doesn’t it move to all the
points in between? Actually, it did! But you didn’t see it because the canvas element was never updated.
Figure 2-5 is another flowchart that shows essentially what happens.

Figure 2-5. Why you can’t animate with a while loop

You applied the rules and moved the ball into position, creating a new scene, but it never got displayed
because you didn’t draw the object to the canvas at the end of a frame. This is an important point.

Here is the sequence of actions you must take on each frame to animate:

1. Execute all the code that needs to be called for that frame.

2. Draw all objects to the canvas element.

3. Restart the process to render the next frame.

BASICS OF JAVASCRIPT FOR ANIMATION

19

Keeping these steps in mind, we’ll create a function that we can call repeatedly to update the object’s
position and draw it to the canvas element. We then create a JavaScript timer to set up the loop:

function drawFrame () {
 ball.x += 1;
 ball.draw(context);
}

window.setInterval(drawFrame, 1000/60);

Here, we’ve set up the drawFrame function to update the ball and render it to the canvas using its draw
method (which we haven’t created yet). We pass drawFrame as an argument to window.setInterval,
which repeatedly executes the function at an interval specified in milliseconds by the second argument. In
this example, that’s 1000/60, which is 60 frames a second, or about 17 ms.

For a long time, this was the way developers had to set up an animation loop using JavaScript. If you
really wanted to, you could still use this method in the example code throughout this book. The problem is
that JavaScript timers were never intended to be used for animation. They are not accurate to the
millisecond—timer resolutions vary across browsers—so you cannot count on them for high quality
animations. Furthermore, the delay specified by the second argument is only a request to be executed at a
given time. If there are other jobs in the browser’s execution queue that need to be run, then the animation
code has to wait.

Because animation was never a feature of the previous HTML specification, browser vendors had not
placed much priority on these kinds of optimizations. However, with HTML5’s canvas element and a new
emphasis on multimedia content, browsers are once again competing against each other on performance
and speed. Recognition that animation has become an increasingly important component of web
applications has led browser vendors to invent new solutions to handle the demands placed on them.

An animation loop using requestAnimationFrame
Because of the increased interest in HTML5-based animation, web browsers have implemented an API
that lets developers indicate they're using JavaScript specifically for animation, which allows for browser-
based optimizations. The function window.requestAnimationFrame accepts a callback function as an
argument and executes it prior to redrawing the screen. In some browsers, a second, optional parameter is
implemented that specifies an HTML element that provides the visual bounds of the animation. Changes to
the program that are made in this function argument happen before the next browser repaint. To create an
animation loop, chain together multiple calls to requestAnimationFrame:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);

 //animation code...
}());

This might be a small snippet of code, but it’s important you understand exactly how it works because it
provides the core animation loop used in the book examples. We’ve defined a function, drawFrame, that
contains the animation code to run on every frame. On the first line in this function, we make a call to
window.requestAnimationFrame and pass a reference to the same drawFrame function that we’re

CHAPTER 2

20

defining. The second optional argument is the canvas element that we’ll draw to. You might find it
surprising that we can pass a function as an argument to another function before we have finished defining
it. Just keep in mind, by the time it is needed here as an argument, it has already been defined.

When we execute the drawFrame function, window.requestAnimationFrame queues the drawFrame
function to be run again at the next animation interval, which repeats this process. Because we keep
requesting that the function run again, we’ve chained together a loop. Therefore, any code we place in this
function is called again and again, allowing us to animate the canvas at discreet intervals.

To start the loop, after drawFrame has been defined, wrap the function in parentheses and immediately
invoke it. This is a more space-efficient—and arguably clearer—alternative to defining the function first,
then immediately invoking it on the following line.

Because requestAnimationFrame is a relatively new feature, browsers are still working on their own
implementations of it. Because you want your code to be cross-platform, here is a little code snippet that
you can use to normalize the function across multiple browsers:

if (!window.requestAnimationFrame) {
 window.requestAnimationFrame = (window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 function (callback) {
 return window.setTimeout(callback, 1000/60);
 });
}

This code tests whether the function window.requestAnimationFrame is defined, and if it’s not, runs
through the known browser implementations and assigns that as the function. If it cannot find a browser-
specific version of the function, then it falls back to a JavaScript timer-based animation using setTimeout
at an interval of 60 frames a second.

Because this environment check is used in all of the examples, include it in the utils.js file to import into
our documents. This way, you can be sure the animation loop works across multiple browsers, keeping the
scripts uncluttered so we can concentrate on understanding the core ideas of each exercise.

JavaScript objects
In this book, the focus is on the various principles and formulas needed to create animations with
JavaScript instead of teaching specific coding methodologies. As such, we won’t create large framework
libraries or complex data structures; instead, we'll keep things as simple as possible.

The animation concepts you learn here can be incorporated into more advanced JavaScript projects;
however, the goal is not to hand you a collection of pre-built code for you to copy and paste, but to convey
an understanding of the principles that make each one work.

Because this book is written using JavaScript, you need to know some of the main ideas of the language
to appreciate what's going on in the examples. Since the most important things in JavaScript are objects
and functions (which is just a special kind of object), we'll look at those first.

BASICS OF JAVASCRIPT FOR ANIMATION

21

Basic objects
JavaScript has been designed as a simple object-based system. An object is a data structure that contains
properties. These properties can be variables, functions, or other objects. When a function is assigned to a
property, it is known as an object’s method. Objects are predefined in the browser, or you can create your
own. For example, to create an empty object and store it in a variable to reference later, you write:

var objA = {};

This creates an object with no properties and stores it in the variable objA. Because JavaScript objects
can be modified by default at any time, we can add a new property to it like this:

objA.name = "My Object A";

This creates a new property called name on the objA object and assigns it a string value "My Object A".
You can always access the object’s property value using the notation objA.name. You can also create
properties when declaring a new object, as follows:

var objB = {
 name: "My Object B",
 hello: function (person) {
 console.log("Hello, " + person);
 }
};

Here, we’ve created a new object, objB, that contains two properties: the property name, which contains a string,
and the property hello, within which we’ve stored a function. Because a function is also an object in JavaScript,
you can pass it around and assign it to variables like any other value. This example method takes a string as an
argument and prints a message to the browser’s debugging console:

objB.hello("Gentle Reader"); //prints: "Hello, Gentle Reader"

Creating new kinds of objects
We’ve declared objects with properties as we’ve needed them, but what if you want to create multiple objects with the
same property definitions? You can create them one by one, but it’s more efficient to use a constructor function. A
constructor is a special kind of function that creates a new object based on the properties assigned to that constructor.
After it's set up, you can create a new object instance by invoking the constructor with the new command. To distinguish a
constructor function from a regular function, use the convention of starting the name with a capital letter:

function MyObject (person) {
 this.name = person;
 this.say = function () {
 console.log("It's " + this.name);
 };
}

var objA = new MyObject("Gentle Reader");

objA.say(); //prints: "It's Gentle Reader"

CHAPTER 2

22

In the constructor, notice the special object this, which we can add properties to. This is the object that is
returned from the constructor. Any variables declared in the constructor function that are not attached to
the this object cannot be directly accessed from outside the constructor.

Prototypes
Using constructors to create object instances is exactly what we'd do in a more class-based language. In
fact, when you see references to classes in JavaScript documentation, this is typically what it's referring to,
the constructor function. Sometimes this terminology overlooks that JavaScript is, in fact, a prototype-
based language.

When you create a new object instance in JavaScript, you actually create a new object that inherits
properties from its constructor object—this is its prototype. You can directly access this object from the
constructor’s prototype property. Any properties you assign to the prototype are shared by all objects
derived from its type. Building off the previous example constructor, here is the code:

MyObject.prototype.hello = function () {
 console.log("Hello, " + this.name);
};

objA.hello(); //prints: "Hello, Gentle Reader"

var objB = new MyObject("Inspired Coder");

objB.hello(); //prints: "Hello, Inspired Coder"

Here we’ve added the hello function to the constructor prototype, and in doing so, we added this method
to both object instances: the one previously declared and a newly created object.

Throughout this book, we create classes (a constructor function and prototype properties) that are shared
across many examples. Typically, we keep these in a separate file that can be imported into documents.

Functional style
One strength of the JavaScript language is that functions are first-class objects. This means you can
assign functions to variables, pass them around, and use them as arguments to other functions. This is a
powerful concept and a feature that is not available in many programming languages. Although the
implications of this idea can be fairly complex, the concept is simple, and something we take advantage of
throughout the book. If you can understand it, you're on your way to becoming a successful JavaScript
programmer.

You’ve already used functional arguments earlier in the chapter when you created an animation loop:
setInterval and requestAnimationFrame each take function callbacks as parameters. But, we
can also use functions to structure code clearly. For example, here is a typical for loop used to iterate
over values in an array. We create a counter variable, i, that increments each loop cycle, using it to
access the array values. We’ve declared an array of three elements and printed each one in turn to the
console:

BASICS OF JAVASCRIPT FOR ANIMATION

23

var arr = [1, 2, 3];
for (var i = 0, len = arr.length; i < len; i++) {
 console.log(arr[i]);
}

You can also express iteration functionally. Every JavaScript array object has a method named forEach,
which takes a function as an argument. forEach iterates over all the array elements, passing each one as
the first argument to the user-defined function, and the second, optional, argument is the element's index
position. Here’s how the previous example looks using this method:

var arr = [1, 2, 3];
arr.forEach(function (element, i) {
 console.log(element);
});

This code snippet does the same thing as the previous one—printing out each array element value to the
console—but it is structurally different. There are a couple of benefits to this approach. For one, we didn’t
declare any temporary variables used only for iteration that linger around after this code has executed. But
perhaps more important, this style allows you to reason about the code at a functional level. This means
you can understand how the code works by examining the function that is passed as an argument and the
parameters it accepts. You do not have to worry about the state of the loop or if any dependent variables
are setup correctly. This can have advantages when debugging, because when something goes wrong,
you can dig down through the function calls in the stack trace to determine where exactly the error
occurred.

The drawback to functional iteration is that it's typically slower than a for-loop, due to the increased
computation needed to execute the function. As is often the case when writing programs, the developer
needs to consider both readability of the code and the speed of its execution, and that can be determined
only by testing. Generally, you should write programs that are clear and easy to understand, and let the
browser makers worry about getting the code to run fast.

We use both kinds of iteration throughout this book, depending on speed requirements and the need for
clarity. More often, and central to working with JavaScript and the DOM, is the need to pass function
arguments as event handlers. We look at how these work in the next section on user interaction.

User interaction
User interaction is probably one of the main reasons you’re reading this book. After all, if it weren’t for
interaction or some sort of dynamic input going into the animation, you might as well watch a movie. User
interaction is based on user events, and these are generally mouse events, touch events, and keyboard
events. Let’s quickly go through the various user event types and how to handle them.

Events and event handlers
To understand events, you must understand a couple of additional concepts: listeners and handlers. A
listener determines whether an element should act on a particular event, and a handler is a function that is
called when the event occurs.

CHAPTER 2

24

The shapes that we draw to the canvas element have no built-in means for detecting events. But, the
HTML elements do, which means that we can capture user input using the DOM interface, calculate where
the event occurred relative to the drawn objects, and make decisions based on this information. In this
section, we look at how to capture DOM events, and in later chapters, we'll see how to use them to add
interaction to an animation.

Listeners and handlers
As just stated, a listener is an object that listens for events. You can specify a DOM element as a listener
for a particular event by calling its method addEventListener. You pass it a string as the first argument,
which is the type of the event to listen for, and a handler function that is called when the element receives
this event. Here’s what the syntax looks like:

element.addEventListener(type, handler [, useCapture]);

The third argument is usually optional, however, in some browser implementations it is not. For that
reason, in this book, we always pass a value of false for useCapture, which is the default. This affects
how an event bubbles up the DOM tree, but is not applicable to the examples in this book. For details
about DOM event model flow, see the specification at http://www.w3.org/TR/DOM-Level-3-
Events/#event-flow.

A typical example is listening for a mouse press on a canvas element (mouse events are discussed
shortly):

canvas.addEventListener('mousedown', function (event) {
 console.log("Mouse pressed on element!");
}, false);

The first argument, the event type 'mousedown', is a string. Make sure you double-check the spelling of
the event type you're listening for, because a typo here can mean you're waiting for an event that doesn't
exist. addEventListener happily listens for any event type you specify, so this can be a difficult bug to
track down (and you won't be happy when you do).

Now, I’ve said a listener listens for events, but perhaps a more accurate description is that a listener is
notified of events. Internally, the object that generates events keeps a list of every object that has added
itself as a listener. If an object is capable of generating different types of events, such as mousedown,
mouseup, and mousemove, it keeps a list of listeners for each event type it can generate. Whenever one of
these events occurs, the object runs through the corresponding list and lets each object in that list know
what event has occurred.

Another way of describing events is that the object that becomes a listener is subscribing to a particular
event. The object that generates the event is broadcasting the event to all its subscribers.

Additionally, if you no longer want an object to listen for a particular event, you can tell it to stop listening,
or unsubscribe, by calling its removeEventListener method. Notice it has the exact same parameters as
the addEventListener method:

element.removeEventListener(type, handler [, useCapture]);

http://www.w3.org/TR/DOM-Level-3-Events/#event-flow
http://www.w3.org/TR/DOM-Level-3-Events/#event-flow

BASICS OF JAVASCRIPT FOR ANIMATION

25

This tells the object to remove the listener from its list of listeners for that particular event, so it will not
receive further notifications.

Let’s go ahead and see this in action. Start out with the skeleton document presented earlier, and add the
code to that:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Event Demo</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas');

 canvas.addEventListener('mousedown', function (event) {
 console.log("mouse down");
 }, false);

 canvas.addEventListener('mouseup', function (event) {
 console.log("mouse up");
 }, false);
 };
 </script>
 </body>
</html>

In this example, first we accessed the canvas element (that has an id of 'canvas') through the DOM
interface using document.getElementById and stored it at the variable canvas. We then added listeners
for two events, mouseup and mousedown. As handlers, we passed in callback functions that are defined in-
line (remember, functions are objects that can be passed around), which print a message to the debugging
console. The handlers get passed an event object as an argument that contains some information about
the event; minimally, it contains the name of the event and information about what object triggered it. In the
case of mouse events, it contains information about the mouse location at the time of the event, which
mouse button was pressed (if any), and so on. For keyboard events, it would have information about what
keys were pressed at the time of the event.

Save this example as 02-event-demo.html. When you load the file in your web browser, you’ll see that it
prints a message to the debugging console each time the mouse is pressed or released on the canvas
element. Make sure you get this exercise working, and the path to your CSS file is correct. It’s a simple
exercise, but it’s a good test to ensure your development environment is set up correctly.

If you are new to JavaScript and can get this example working and understand it, congratulations—you've
just moved from beginner up to intermediate status!

Now that you know a little bit more about handlers, you can get a better understanding of listeners. An
object generates an event, broadcasts that event, or notifies its listeners of the event. How does it do that

CHAPTER 2

26

exactly? Well, all it does is call the function on that object that has the correct handler name. In the
previous example, document 02-event-demo.html added the canvas element as a listener for a couple
of mouse events. Internally, the element keeps a list for each event. So it has a list for the mousedown
event and another list for the mouseup event.

When the user presses the mouse button on the canvas element, the element responds, “Hey! Mouse
down! Must notify listeners!” It then goes through its mousedown list and sees what is in there. The element
finds a reference to the function that was specified as a handler and then calls that function on the listener.
If other objects had registered as listeners to the mousedown event, they would also be on the list, and
whatever handlers they had defined would be called.

The same thing happens when the mouse is released, except it looks at its mouseup list.

Those are the basics of events and handlers. Next, we introduce you to some of the event types used for
interaction.

Mouse events

To capture a mouse event, you must add a listener to a DOM element to handle the event. Mouse event
types are defined by strings, and different browsers have varying levels of support for particular events.
Here is a list of the most common ones:

 mousedown

 mouseup

 click

 dblclick

 mousewheel

 mousemove

 mouseover

 mouseout

These mouse event types are self-explanatory. To get a feel for them, create and run the following
document, which prints to the console each mouse event as it occurs on the canvas element. You can find
this file with the rest of the example code, 03-mouse-events.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Mouse Events</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {

BASICS OF JAVASCRIPT FOR ANIMATION

27

 var canvas = document.getElementById('canvas');

 function onMouseEvent (event) {
 console.log(event.type);
 }

 canvas.addEventListener('mousedown', onMouseEvent, false);
 canvas.addEventListener('mouseup', onMouseEvent, false);
 canvas.addEventListener('click', onMouseEvent, false);
 canvas.addEventListener('dblclick', onMouseEvent, false);
 canvas.addEventListener('mousewheel', onMouseEvent, false);
 canvas.addEventListener('mousemove', onMouseEvent, false);
 canvas.addEventListener('mouseover', onMouseEvent, false);
 canvas.addEventListener('mouseout', onMouseEvent, false);
 };
 </script>
 </body>
</html>

Notice that we’re using the same handler function for every mouse event type, and it prints the type of
event that has been dispatched.

Because we can reference only the canvas element, and not what has been drawn to it, we can't add an
event listener to specific lines or shapes. If you've drawn a rectangle to use as a button, the canvas has no
way of determining where the button boundaries are. To detect a button click, it's up to you to capture the
canvas element’s mouse event, determine the position relative to the button, and perform the calculation
yourself. As we work through the book examples, you'll see some ways to do this.

Mouse position

Every mouse event contains two properties to determine the current location of the mouse cursor: pageX
and pageY. By combining these values and the offset of the canvas element, you can determine where on
the canvas element the mouse is. Unfortunately, these mouse event properties are not supported across
all browsers, so in these cases, you can use clientX and clientY.

Having to calculate the offset every time you need the mouse position is a bit unwieldy. Because we want
to keep the examples uncluttered, add this cross-platform mouse position code into an utility function
utils.captureMouse to include in the file utils.js. We import this into our documents:

utils.captureMouse = function (element) {
 var mouse = {x: 0, y: 0};

 element.addEventListener('mousemove', function (event) {
 var x, y;
 if (event.pageX || event.pageY) {
 x = event.pageX;
 y = event.pageY;
 } else {
 x = event.clientX + document.body.scrollLeft +
 document.documentElement.scrollLeft;
 y = event.clientY + document.body.scrollTop +
 document.documentElement.scrollTop;

CHAPTER 2

28

 }
 x -= element.offsetLeft;
 y -= element.offsetTop;

 mouse.x = x;
 mouse.y = y;
 }, false);

 return mouse;
};

This function takes a DOM element as an argument, attaches a mousemove event handler to it, and returns
an object with x and y properties. When the mouse moves over the element, the event handler calculates
the mouse position using the event’s location (as supported by the browser) and the document offset
position of the element. It then assigns these values to the object we returned, which we can access from
our main script. The mouse x and y positions are relative to the top-left corner of the element, which is the
coordinate (0, 0).

For example, you invoke this function at the start of the script, passing the canvas element as an
argument:

var canvas = document.getElementById('canvas'),
 mouse = utils.captureMouse(canvas);

After the mouse object has been initialized, you can query its x and y properties whenever you need to
determine the current location of the mouse cursor. Here’s a complete example that demonstrates how
this function is used throughout the rest of the book:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Mouse Position</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 mouse = utils.captureMouse(canvas);

 canvas.addEventListener('mousedown', function () {
 console.log("x: " + mouse.x + ", y: " + mouse.y);
 }, false);
 };
 </script>
 </body>
</html>

Run this file (04-mouse-position.html) in your browser with the debugging console open. Make sure
you’ve included the utils.captureMouse function in utils.js and imported that file into the document.

BASICS OF JAVASCRIPT FOR ANIMATION

29

When you click on the canvas element, you’ll see a message displaying the current mouse position using
the mouse.x and mouse.y properties.

Touch Events

Because touch screen devices are gaining in popularity, it's a good idea to see how to use them with
JavaScript. Touch events are similar to mouse events, but have a few key differences. A touch point can
be thought of like a mouse cursor; however, a mouse cursor will always stay on the screen, whereas a
finger will press, move, and release from the device, so there will be times when no cursor is available.
When querying the touch position, you must take this into consideration. Secondly, there is no touch event
equivalent to mouseover—there is either a touch or there isn’t, there is no finger hovering. Finally, multiple
touches can occur at the same time. Each touch is stored in an array on the touch event, but for these
examples we just use the first one.

Here’s the touch events we use to interact with our animations:

 touchstart

 touchend

 touchmove

These are demonstrated in example 05-touch-events.html, so if you want to see this in action then
make sure you are on a device or emulator that can support touch events:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Touch Events</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas');

 function onTouchEvent (event) {
 console.log(event.type);
 }

 canvas.addEventListener('touchstart', onTouchEvent, false);
 canvas.addEventListener('touchend', onTouchEvent, false);
 canvas.addEventListener('touchmove', onTouchEvent, false);
 };
 </script>
 </body>
</html>

This code does the same thing as the mouse events example (03-mouse-events.html): When a touch
event is detected on the canvas element, it prints out the type to the debugging console.

CHAPTER 2

30

Touch position

Like the utils.captureMouse function, you can use the utils.captureTouch utility to determine the
location of the first finger touch on an element. The two functions are similar, but because there might not
be a finger touching the screen, the property isPressed has been added to the returned object. This
property contains a Boolean value indicating whether a touch is detected. Also, when there is no active
touch present, the properties x and y are set to null. Add the following function to the utils.js file:

utils.captureTouch = function (element) {
 var touch = {x: null, y: null, isPressed: false};

 element.addEventListener('touchstart', function (event) {
 touch.isPressed = true;
 }, false);

 element.addEventListener('touchend', function (event) {
 touch.isPressed = false;
 touch.x = null;
 touch.y = null;
 }, false);

 element.addEventListener('touchmove', function (event) {
 var x, y,
 touch_event = event.touches[0]; //first touch

 if (touch_event.pageX || touch_event.pageY) {
 x = touch_event.pageX;
 y = touch_event.pageY;
 } else {
 x = touch_event.clientX + document.body.scrollLeft +
 document.documentElement.scrollLeft;
 y = touch_event.clientY + document.body.scrollTop +
 document.documentElement.scrollTop;
 }
 x -= offsetLeft;
 y -= offsetTop;

 touch.x = x;
 touch.y = y;
 }, false);

 return touch;
};

The function definition is similar to the mouse position version, but with a few extra event listeners. It takes
an element argument and returns an object with properties x, y, and isPressed. The touchmove event
handler keeps track of the position of the first touch relative to the element, using some cross-browser
code to calculate the offset. There are also also event handlers added for touchstart, which sets
isPressed to true, and touchend, which sets isPressed to false. It also sets the x and y properties to
null, because there is no longer an active position.

You can initialize the touch object like before:

BASICS OF JAVASCRIPT FOR ANIMATION

31

var canvas = document.getElementById('canvas'),
 touch = utils.captureTouch(canvas);

You must be certain that there is a touch present before accessing the x and y properties; otherwise, their
values will be null and potentially mess up the animation calculations. Therefore, for any touch location
queries, be sure to check whether there is an active touch press:

if (touch.isPressed) {
 console.log("x: " + touch.x + ", y: " + touch.y);
}

Touch events won't be used much in this book because we’re concentrating on the underlying math that
makes the examples work. But, this should give you an idea about how to use them if you wanted to
experiment with a touch device.

Keyboard events

Keyboard event types, like all event types, are defined as strings. There are only two:

 keydown

 keyup

You can listen for keyboard events on elements that support character input—such as a text area
element—the same way you listened for mouse events on the canvas element. But, you first need to set
the focus to that element to capture these keyboard events. Assuming you have an HTML textarea
element stored at the variable textarea, you can set its focus and capture a keydown event, like so:

textarea.focus();
textarea.addEventListener('keydown', function (event) {
 console.log(event.type);
}, false);

In many cases, though, it makes more sense to listen for keyboard events on the web page, regardless of
what has focus. To do that, attach a keyboard event listener on the global window object. The following
example detects when you press and release a key, regardless of what element has focus (example 06-
keyboard-events.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Keyboard Events</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <script>
 window.onload = function () {

 function onKeyboardEvent (event) {
 console.log(event.type);
 }

CHAPTER 2

32

 window.addEventListener('keydown', onKeyboardEvent, false);
 window.addEventListener('keyup', onKeyboardEvent, false);
 };
 </script>
 </body>
</html>

Key codes

More often than not, within the event handler function, you’ll want to know which key has been pressed.
Earlier, when introducing events, you saw that an event handler gets passed an event object, which
contains data about the event that just occurred. In a keyboard event, you can use the keyCode property
to determine what key was involved with the event.

The keyCode property contains a numeric value that represents the physical key that was pressed. If the
user pressed the “a” key, the keyCode would contain the number 65, regardless of what other keys were
pressed. If the user pressed the Shift key first and then “a,” you would get two keyboard events: one for
Shift (keyCode 16) and one for “a” (keyCode 65).

In the next example, we’re testing the keyCode against a set of known values, the numbers of the
directional arrow keys: 37, 38, 39, and 40. If it matches any of these numbers, we print a message to the
console displaying the direction that has been pressed. Otherwise, we just print out the keyCode value of
the unknown key. Here is the document 07-key-codes.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Key Codes</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <script>
 window.onload = function () {

 function onKeyboardEvent (event) {
 switch (event.keyCode) {
 case 38:
 console.log("up!");
 break;
 case 40:
 console.log("down!");
 break;
 case 37:
 console.log("left!");
 break;
 case 39:
 console.log("right!");
 break;
 default:
 console.log(event.keyCode);

BASICS OF JAVASCRIPT FOR ANIMATION

33

 }
 }

 window.addEventListener('keydown', onKeyboardEvent, false);
 };
 </script>
 </body>
</html>

Often, you won’t know the exact numeric value of the key you want to capture. To make finding
this information easier, we've created a file keycode.js to use as a reference cheat-sheet or to
include in your document, so you can lookup a key by name instead of number—this makes your
code much easier to understand. This script creates a global object keycode that contains the
property names of most keyboard keys and maps them to their associated keyCode value. You
can find this file, as the rest of the source code for this book, at www.apress.com, or,
http://github.com/lamberta/html5-animation.

Let's rewrite the previous example using key names instead of key codes. Place the file
keycode.js in the same directory as the example and include it in the document 08-key-
names.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Key Names</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <script src="keycode.js"></script>
 <script>
 window.onload = function () {

 function onKeyboardEvent (event) {
 switch (event.keyCode) {
 case keycode.UP:
 console.log("up!");
 break;
 case keycode.DOWN:
 console.log("down!");
 break;
 case keycode.LEFT:
 console.log("left!");
 break;
 case keycode.RIGHT:
 console.log("right!");
 break;
 default:
 console.log(event.keyCode);
 }
 }

http://www.apress.com
http://github.com/lamberta/html5-animation

CHAPTER 2

34

 window.addEventListener('keydown', onKeyboardEvent, false);
 };
 </script>
 </body>
</html>

You can see this example—like the previous example, 07-key-codes.html—prints the same messages
to the console, but, because we're now using key names instead of key codes, our switch statement is
easier to understand. Not only is it clearer, but it prevents you from accidentally typing a wrong number.

We won't use the keycode.js file in this book because the exercises are relatively simple and I want you
to see exactly what's going on in the examples. But it can make your code more readable, so in more
complex programs it's something you should consider using.

Summary
This chapter covered just about all the JavaScript basics you need to understand the rest of the examples
found in this book. You now know about setting up an HTML5 document, debugging, loops, events, and
handlers. We’ve touched on JavaScript objects, basic user interaction, and created a few utility functions
to make things a little easier. That’s a lot of material! Don’t worry if some of these areas are still a little
vague. Most of the topics here are shown in more detail as we get into specific techniques, and you can
always come back here to brush up on the basics. At the very least, now you are familiar with the terms
and concepts, and you’re ready to move forward.

35

Chapter 3

Trigonometry for Animation

What we’ll cover in this chapter:

 What is trigonometry?

 Angles

 Trigonometry functions

 Rotation

 Waves

 Circles and ellipses

 Pythagorean Theorem

 Distance between two points

This chapter is near the beginning of the book because trigonometry is used extensively for animation
techniques, starting with the examples in Chapter 5. And in fact, we'll even touch on it in Chapter 4 on
rendering techniques. However, feel free to jump ahead if you already know basic trigonometry or are just
anxious to animate things. You can always come back here when you come across something you don’t
understand.

Many people shy away from math and trigonometry, using excuses like: “I’m not good with numbers.” The
interesting thing about programming with trigonometry is that you are hardly dealing with numbers at all.
It’s more about visualizing shapes and relationships. For the most part, you deal with variables containing
positions, distances, and angles, and you never see the actual numbers. It’s mostly a matter of
understanding various relationships, and in fact, about 90% of the trigonometry you need for basic
animation comes down to two functions: Math.sin and Math.cos.

CHAPTER 3

36

What is trigonometry?
Trigonometry is the study of triangles and the relationship of their sides and angles. If you look at any
triangle, you see that it has three sides and three angles (hence, the name tri-angle). It happens that these
sides and angles have specific relationships. For example, if you take any triangle and make one of the
angles larger, the side opposite of that angle gets longer (assuming the other two sides stay the same
length). Also, the other two angles get smaller. Exactly how much each of these things changes takes a bit
of calculation, but the ratios have all been figured out and codified.

A specific type of triangle has one of its angles equal to exactly 90 degrees. This is called a right-angle
triangle and is indicated by a little square in the corner of that angle. It happens that in a right-angle
triangle, the various relationships are far simpler and quite easy to figure out with some basic formulas.
This makes a right-angle triangle a useful construct, and all of the trigonometry in this chapter, and most of
what you see in the rest of the book, deals with right-angle triangles.

Angles
Because trigonometry is mostly about angles, let’s look at that subject first. An angle is simply the shape
formed by two intersecting lines, or the space in between those lines. The more space, the higher the
measurement of the angle. Actually, two intersecting lines form four angles, as you can see in Figure 3-1.

Angle D Angle A

Angle BAngle C

Figure 3-1. Two lines form four angles.

Radians and degrees
The two major systems for measuring angles are degrees and radians. You are probably familiar with
degrees, and could probably draw a 45- or 90-degree angle if I asked you to. The system of 360 degrees
in a circle has become a part of our culture. People say they're “doing a 180,” meaning “going in the
opposite direction,” even when we are not talking about physical direction, but referring to taking an
opposite viewpoint. But it turns out that computers have a lot more affinity for radians when it comes to
representing angles. So, like it or not, you need to know about radians.

A radian is equal to approximately 57.2958 degrees. At first glance, that number may seem arbitrary, but
there is some actual logic to it. A full circle, or 360 degrees, works out to 6.2832 radians. Remember pi—

TRIGONOMETRY FOR ANIMATION

37

that symbol, π? That is equal to about 3.1416, meaning that a circle (6.2832 radians) measures exactly 2
pi. It still might not seem too logical now, but work with it enough, and you’ll get used to thinking of 360
degrees as 2 pi, 180 degrees as pi, 90 degrees as pi/2, and so on. Figure 3-2 illustrates some common
radian measurements.

270 degrees
3 pi/2 radians

90 degrees
pi/2 radians

57.2958 degrees
1 radian

180 degrees
pi radians

0 or 360 degrees
0 or 2 pi radians

Figure 3-2. Radians and degrees

Now, we can leave the discussion there and just tell you that you can use radians from here on out. You
might sigh a bit, and then get used to it and be fine with using radians exclusively. But you’re going to
encounter many situations where you need to use degrees with radians. For example, when rotating an
image on the canvas element, we use the context.rotate(angle)method, using radians for the angle.
However, in many examples we set up the objects in our scene using the more human-friendly degrees,
so we need a way to easily convert the values.

So why use two completely different systems? Well, you don’t have to. You can keep everything as
radians since that is what the canvas expects. However, it’s often convenient to think of angles in terms of
degrees, for ourselves and others, simply because it’s how most people think of angles. I’m sure most
designers would look at you cross-eyed if you told them to enter a radian value to rotate the text for the
logo they are creating. When working with HTML, programmers must straddle the line between design and
development, and JavaScript, like most programming languages, uses radians. Because you’ll likely be
working with both, you need to know how to convert degrees to radians and back again. Here are the
formulas:

radians = degrees * Math.PI / 180
degrees = radians * 180 / Math.PI

As you go through this book, you run into a lot of formulas. Here and there, I'll point out a formula as one
that you should memorize—burn these into the backs of your eyelids. These conversion formulas are the

CHAPTER 3

38

first ones. They should just roll off your fingers onto the keyboard whenever you need them. If you can't
remember them yet, just write it down on a piece of paper and tape it to your computer monitor. They are
even in JavaScript, using Math.PI, because that’s how you type them over and over.

From this, you can easily see that 180 degrees is about 3.14 … radians. In other words, half a circle is pi
radians, which makes sense because a full circle is 2 pi. Going the other way, you can see that one radian
is roughly 57.29 … degrees.

The canvas coordinate system
Although we are on the subject of angles, this is a good time to describe how space is laid out in the
canvas element, numerically speaking. If you’ve dealt with any coordinate systems prior to this, you might
get a little dizzy here, because everything is upside down and backward.

The most common two-dimensional coordinate systems signify horizontal measurements with x and
vertical measurements with y—the canvas element does this, too. However, the zero x, zero y position (0,
0) is usually shown in the center, with positive x going off to the right, negative x to the left, positive y going
up, and negative y going down, as shown in Figure 3-3.

3

3–3

–3

2

2–2

–2

1

1–1

–1

0,0

Figure 3-3. A standard coordinate system

The canvas element, however, is based on a video screen coordinate system, where 0, 0 is at the top left,
as shown in Figure 3-4. The x values still increase from left to right, but the y axis is reversed, with positive
values going down and negative values going up. This system has its historical roots in the way the
electron gun scans the screen to build the picture—left to right, top to bottom—but it doesn’t really matter.
That’s the way it works, and it’s not going to change anytime soon.

TRIGONOMETRY FOR ANIMATION

39

1 2 3 4 5 6

1

2

3

4

5

6

0, 0

Figure 3-4. The canvas element coordinate system

But wait, there’s more! Let’s measure some angles. In most systems, angles are measured
counterclockwise, with 0 degrees being shown as a line extending into the positive x axis, as shown in
Figure 3-5.

30 degrees
(positive)

–30 degrees
(negative)

Figure 3-5. The usual angle measurements

Again, the canvas element has it backward, as illustrated in Figure 3-6. It rotates its angles clockwise as
they go positive. Counterclockwise means a negative angle.

CHAPTER 3

40

–30 degrees
(negative)

30 degrees
(positive)

Figure 3-6. Angle measurements on the canvas element

You can work out a system to reverse the angles before rendering, or conserve the computation and learn
to live with it. It's suggested you do the latter, and this is the tactic used for all the code in this book.

Triangle sides
There’s not too much to say about the sides of a triangle by themselves, but there are some specific terms
to cover. Until further notice, we are referring to right-angle triangles, where one of the angles is 90
degrees. In this case, the sides have special names, as shown in Figure 3-7. The two sides that touch the
90-degree angle are called legs, and the opposite side is called the hypotenuse. The hypotenuse is always
the longest side.

Hypotenuse
Opposite

Angle

Adjacent

Leg

Leg

90 degrees

Figure 3-7. The parts of a right-angle triangle

When referring to the side opposite an angle, we're talking about the side that does not touch that angle.
When referring to an adjacent side, we mean one of the sides that does touch the angle. Most of the time,

TRIGONOMETRY FOR ANIMATION

41

examples deal with one of the two non-90-degree angles. In this case, when we say “adjacent,” it means
the adjacent leg, not the hypotenuse.

The interesting thing about triangles is the relationships between the measurements of the sides and the
measurements of the angles. These relationships become useful for animation, so let’s look at them next.

Trigonometry functions
JavaScript has trigonometry functions for calculating the various triangle relationships: sine, cosine,
tangent, arcsine, arccosine, and arctangent. In this section, I'll define these and the JavaScript functions
for accessing them. Then we get to some real-life uses for these functions.

Sine

Here is your first bit of real-life trigonometry: The sine of an angle is the ratio of the lengths of the side of
the triangle opposite the angle and the hypotenuse. (When referring to sine, we always refer to the sine of
an angle.) In JavaScript, you can use the function Math.sin(angle).

Figure 3-8 shows the sine of an angle that is 30 degrees. The opposite leg has a measurement of 1, and
the hypotenuse has a measurement of 2. The ratio is thus one to two, or mathematically speaking, 1/2 or
0.5. Thus, you can say that the sine of a 30-degree angle is 0.5. You can test this in your browser’s
debugging console by entering the following:

console.log(Math.sin(30));

Figure 3-8. The sine of an angle is the opposite leg/hypotenuse.

But that prints out -0.988031624092862, which is not even close. Can you spot the error? We forgot to
convert to radians. You will probably make this mistake on occasion, so get used to looking for it. Here’s
the corrected code, with the conversion:

console.log(Math.sin(30 * Math.PI / 180));

Success! That prints 0.5.

CHAPTER 3

42

Actually, you might get something like 0.4999 … something, which is not an error in your program but the
way binary computers sometimes end up representing floating-point numbers. It’s close enough, though,
that you can consider it 0.5.

Now, it’s fine for an abstract triangle like that to say that the angle is 30 degrees, and the measurements of
the sides are 1 and 2, but let’s move it into the real world, or at least the world of the canvas coordinate
system. Remember that in the canvas element, positive vertical measurements go down, and positive
angle measurements go clockwise. So, in this case, the opposite side and the angle are both negative, as
you can see in Figure 3-9.

Figure 3-9. The same triangle in the canvas coordinate space

The ratio becomes -1/2, and we are talking about the sine of -30. We say that the sine of -30 degrees is -
0.5. Go ahead and change the JavaScript console.log statement to verify that:

console.log(Math.sin(-30 * Math.PI / 180));

That wasn’t too painful, was it? Let’s take a look at another trigonometry function: cosine.

Cosine

You can access cosine in JavaScript with Math.cos(angle). Cosine is defined as the ratio of the adjacent
leg of an angle to the hypotenuse. Figure 3-10 shows that relationship.

TRIGONOMETRY FOR ANIMATION

43

Figure 3-10. The cosine of an angle is the adjacent leg/hypotenuse.

Figure 3-10 shows the same angle as Figure 3-9, but now we added the approximate measurement of the
adjacent leg: 1.73. Notice that it goes to the right, so as an x measurement, it’s positive. The cosine of the
angle is thus 1.73/2, or 0.865. So we can say that the cosine of -30 degrees is 0.865. Test it as follows:

console.log(Math.cos(-30 * Math.PI / 180));

This is the same as the last print out, but with the call to Math.cos, rather than to Math.sin. This prints to
0.866025403784439, which is close to 0.865. The difference is due to the fact that we rounded off the
length of the adjacent leg. For the triangle shown, the actual length is closer to 1.73205080756888. If you
divide that by 2, you get close to the actual cosine of -30 degrees.

So far, everything is taken from the lower-left angle. What if you look at things from the viewpoint of the
top-right angle? Well, first you need to reorient the triangle so that the angle in question aligns with the
coordinate system, as you can see in Figure 3-11. This is known as putting the angle in standard position
(even though the canvas element “standard” is upside down and backward from the usual “standard”).
That angle is equal to 60 degrees, and as it’s going clockwise, it’s positive. The vertical measurement now
goes down from that angle, so it’s positive. The horizontal measurement goes to the right, so it’s positive,
too. (We added plus signs in the figure to point out the difference, but in general, this is not necessary;
values are positive unless specifically indicated as negative.)

CHAPTER 3

44

1.73

1

2

+60
degrees

Figure 3-11. Looking at the opposite angle

The sine of that angle is its opposite leg over the hypotenuse, or 1.73/2 (0.865), and the cosine is the
adjacent over the hypotenuse, 1/2, or 0.5. So, basically, the cosine of one angle is the same as the sine of
the other angle, and the sine of one is the cosine of the other. This might not be useful in your code, but
it’s important to note that these are just relationships and ratios, and everything is connected.

Tangent

Another major trigonometry function is tangent, used in JavaScript with Math.tan(angle). This is the
relationship of the opposite leg to the adjacent leg, as shown in Figure 3-12.

Figure 3-12. The tangent of an angle is the opposite leg/adjacent leg.

TRIGONOMETRY FOR ANIMATION

45

Here, the ratio works out to -1/1.73, or -0.578. For more accuracy, verify it directly in your browser’s
debugging console:

console.log(Math.tan(-30 * Math.PI / 180));

You get -0.577350269189627.

Truth be told, you won’t use tangent much in your day-to-day animation code. You’ll find yourself using
sine and cosine a lot more, although tangent can be used to create some interesting effects now and then.

On the other hand, arctangent can be extremely useful, as you see shortly, so keep that tangent ratio in
your head.

Arcsine and arccosine

Similar to tangent, arcsine and arccosine are not that useful in your normal animation endeavors.
However, it’s important to know that they are there and how to use them. These basically do the reverse of
sine and cosine; or in other words, you feed in a ratio, and you get back an angle (in radians). The
JavaScript functions are Math.asin(ratio) and Math.acos(ratio). Let’s just give them a quick test to
make sure they work.

You learned that the sine of 30 degrees is 0.5, so it follows that the arcsine of 0.5 should be 30 degrees.
Check it out:

console.log(Math.asin(0.5) * 180 / Math.PI);

Remember to convert back to degrees to see the approximate value of 30, not 0.523, which is the
equivalent value in radians.

The cosine of 30 degrees is roughly 0.865. Remember that if you test this value, which is rounded off, you
won’t get exactly 30 because of the way computers represent decimal numbers, but it will be close enough
to prove the point. Here’s the test:

console.log(Math.acos(0.865) * 180 / Math.PI);

You should get 30.1172947473221 (or close) as the result. If you want to go back and plug in the actual
cosine of 30 degrees, you should get a more accurate result.

See, this stuff isn’t so hard, is it? And you’re almost finished learning the basic functions. You just have
one more to go, and then you look at what you can actually do with trigonometry.

Arctangent

As you no doubt have already guessed, arctangent is simply the opposite of tangent. You feed it the ratio
of the opposite and adjacent sides, and it gives you back the angle. In JavaScript, you have two functions
to check arctangent. The first is named and works just as you expect from the previous examples. It’s
Math.atan(ratio), and you supply it the fraction you got by dividing the opposite and adjacent sides.

For example, you know from the earlier discussion that the tangent of 30 degrees is 0.577 (rounded off).
You can try the following:

CHAPTER 3

46

console.log(Math.atan(0.577) * 180 / Math.PI);

You get back something close to 30. Now, that seems so basic and straightforward, why would you ever
need another function to do the same thing? Well, to answer that, look at the diagram shown in Figure 3-
13.

–1

D

C

–2 2

A

B

–26.57

26.57 –26.57

26.57

1

–1

1

Figure 3-13. Angles in four quadrants

Figure 3-13 shows four different triangles: A, B, C, and D. Triangles A and B have a positive x value, and
triangles C and D extend into negative x dimensions. Likewise, triangles A and D are in the negative y
space, whereas triangles B and C have positive y measurements. So, for the ratios of the four inner
angles, you get the following:

 A:-1/2 or -0.5

 B: 1/2 or 0.5

 C: 1/ -2 or -0.5

 D: -1/ -2 or 0.5

Let's say you divide the opposite leg by the adjacent leg and come up with a ratio of 0.5. You feed
that in with Math.atan(0.5), convert it to degrees, and you get approximately 26.57. But which
triangle are you talking about now: B or D? There is no way of knowing, because they both have a
ratio of 0.5. This might seem like a minor point, but as you see in some real-life examples later in
this chapter, it becomes quite important.

Welcome Math.atan2(y, x). This is the other arctangent function in JavaScript, and it is quite a
bit more useful than Math.atan(ratio). And in fact, you will probably use this one exclusively.
This function takes two values: the measurement of the opposite side and the measurement of the
adjacent side. For most purposes, this measurement is the position of an x and y coordinate. A

TRIGONOMETRY FOR ANIMATION

47

common mistake is to enter them as x, y, rather than y, x, as specified. For the example given, you
enter Math.atan2(1, 2). Go ahead and try it out, remembering to convert to degrees:

console.log(Math.atan2(1, 2) * 180 / Math.PI);

This should give you the angle, 26.565051177078, which is correct for triangle B as shown
previously. Now, knowing that -1/ -2 (triangle D) gave us some confusion, let’s try that out.

console.log(Math.atan2(-1, -2) * 180 / Math.PI);

This gives you the possibly unexpected result of -153.434948822922. What is that all about?
Perhaps the diagram in Figure 3-14 will explain.

D –153.43

26.57

Figure 3-14. Two ways of measuring an angle

Although the inner angle of triangle D is indeed +26.57, as taken from its own bottom leg,
remember that in the canvas, angles are measured clockwise from the positive x axis. Thus, from
the canvas element’s viewpoint of screen measurements, the angle you are looking at is -153.43.

How is this useful? Well, let’s get to the first practical application of trigonometry using the canvas
element.

Rotation
Here is the challenge: You want to draw an object and rotate it so that it always points to the
mouse. Rotation is a useful tool to add to your toolbox, it can be used in games and interface
elements, among other things. And in fact, rotation is not just limited to the mouse. Because the
mouse coordinates are just x and y values, you can extend this technique to force an object to aim
itself at any particular point, such as another object or the center or corner of the screen.

Let’s work through an example. You can follow along with the steps or just open the document 01-
rotate-to-mouse.html and arrow.js file (which you can download from the book’s page at
www.apress.com, along with all of the other code for this book) to have all the work done for you.

First, you need something to rotate. This is an object that contains commands to draw an arrow to
a canvas element using the given canvas context. Because you will use this arrow object again,
make it into a class so each instance can have its own properties. Add the following JavaScript code
to the file arrow.js, which we import into our main HTML document:

http://www.apress.com

CHAPTER 3

48

function Arrow () {
 this.x = 0;
 this.y = 0;
 this.color = "#ffff00";
 this.rotation = 0;
}

Arrow.prototype.draw = function (context) {
 context.save();
 context.translate(this.x, this.y);
 context.rotate(this.rotation);
 context.lineWidth = 2;
 context.fillStyle = this.color;
 context.beginPath();
 context.moveTo(-50, -25);
 context.lineTo(0, -25);
 context.lineTo(0, -50);
 context.lineTo(50, 0);
 context.lineTo(0, 50);
 context.lineTo(0, 25);
 context.lineTo(-50, 25);
 context.lineTo(-50, -25);
 context.closePath();
 context.fill();
 context.stroke();
 context.restore();
};

The draw(context) method uses the canvas drawing API (which we discuss in Chapter 4) to draw an
arrow using the passed canvas context parameter. Now, whenever you need an arrow object, you just call
new Arrow(). You can see the result in Figure 3-15. When drawing any content made to rotate like this,
make sure that it is “pointing” to the correct, or positive x axis, because this is how it will look when rotated
to 0 degrees.

Figure 3-15. The arrow drawn with the canvas drawing API

You create an instance of the Arrow class, placing it in the center of the canvas element and having it
point at the mouse (see Figure 3-16).

TRIGONOMETRY FOR ANIMATION

49

mouse.x ,
mouse.y

arrow.x
arrow.y

arrow.rotation

dx
(mouse.x - arrow.x)

dy
(mouse.y - arrow.y)

Figure 3-16. This shows what you will calculate next.

Look familiar? It’s the same triangle you’ve worked with for a while now, just mapped to the mouse and
arrow coordinates. When we include the utils.js file and capture the mouse position using mouse =
utils.captureMouse(canvas), its coordinates can be read from the mouse.x and mouse.y properties.
You can get the location of the arrow with its x and y properties. Subtracting these, you get the length of
the two triangle legs. Now, you simply need to use Math.atan2(dy, dx) to find the angle and set the
arrow’s rotation property to the result. It will look like the following:

var dx = mouse.x – arrow.x,
 dy = mouse.y – arrow.y;
arrow.rotation = Math.atan2(dy, dx); //in radians

Of course, to get animation, you need to set up a loop. As discussed in detail in Chapter 2, we use the
window.requestAnimationFrame function to clear the canvas, draw our frame, then call it again at the
next scheduled interval. Here's the complete HTML file for 01-rotate-to-mouse.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Rotate to Mouse</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="arrow.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 arrow = new Arrow();

 arrow.x = canvas.width / 2;
 arrow.y = canvas.height / 2;

 (function drawFrame () {

CHAPTER 3

50

 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = mouse.x – arrow.x,
 dy = mouse.y – arrow.y;

 arrow.rotation = Math.atan2(dy, dx); //radians
 arrow.draw(context);
 }());
 };
 </script>
 </body>
</html>

Make sure that you have the arrow.js file in the same directory as the 01-rotate-to-mouse.html file
and run this example in your favorite HTML5 capable web browser. If everything is set up correctly, move
your mouse around the canvas element and the arrow should follow it!

Now, suppose that you don’t have Math.atan2. You can get the ratio of opposite to adjacent angle by
dividing dy by dx and pass that in to Math.atan. Just change the Math.atan2 line in the preceding code
to use Math.atan instead, as follows:

var radians = Math.atan(dy / dx);

Try that one out, and you see the problem quickly. If the mouse is to the left of the arrow, the arrow will not
point to it, but directly away from it. Can you figure out what is going on? Going back to the diagram
showing triangles A, B, C, and D (Figure 3-13), remember that triangles A and C share the same ratio, as
well as triangles B and D. There is no way for our JavaScript code to know which angle you are referring
to, so it returns A or B. So, if your mouse is in the D quadrant, we get the angle for the B quadrant and
rotate the mouse into that area.

You can now see the benefits of Math.atan2, and you will use it many times throughout the book.

Waves
Let’s see some more concrete uses of trigonometry with the canvas element. You’ve probably heard the
term sine wave before, and you’ve probably seen the shape shown in Figure 3-17, which is a graphical
representation of a sine wave.

TRIGONOMETRY FOR ANIMATION

51

Figure 3-17. A sine wave

But what exactly does that shape have to do with the sine function? It is the graph of the results of the sine
function, when fed in all the angles from 0 to 360 (or 0 to 2 pi in radians). From left to right is the value of
the angle used, and the y value of the graph is the sine of that particular angle. In Figure 3-18, we indicate
some specific values.

Now you can see that the sine of 0 is 0. The sine of 90 degrees, or pi/2 radians, is 1. The sine of 180
degrees, or pi radians, is 0 again. The sine of 270 degrees, or 3/2 pi, is -1. The sine of 360 degrees, or 2
pi, is back to 0 again. Let’s play with this sine wave a bit in JavaScript. Enter the following code into your
debugging console and test it:

for (var angle = 0; angle < Math.PI * 2; angle += 0.1) {
 console.log(Math.sin(angle));
}

From here on out, you should get used to radians alone. Leave degrees behind, except when you actually
need them for rotation or some other purpose.

1

0 90 180

0

–1

270 360

Figure 3-18. Values of sine

CHAPTER 3

52

In this example, the variable angle starts out as 0 and increments by 0.1 until it’s greater than Math.PI *
2. It then prints the sine of that angle. In the list of results, you see it starts at 0, goes up to almost 1, then
down to almost -1, and back to around 0. You never reach exactly 1 or 0 because, using an increment of
0.1, you never get an exact multiple of pi or pi/2.

Smooth up and down motion
So what can you use Math.sin(angle) for? Have you ever needed to move something up and down or
back and forth smoothly? Then this is your function. Consider this: Instead of just going from 0 to 1 and -1
and back to 0, and stopping there, keep adding on to the angle. You keep getting the wave over and over
again. And instead of taking the 1 and -1, multiply those values by some higher value, say 100, and you
have a stream of values that goes from 100 to -100, back and forth, continuously.

The next example uses a new object, defined by the Ball class. You can see the file, ball.js, here:

function Ball (radius, color) {
 if (radius === undefined) { radius = 40; }
 if (color === undefined) { color = "#ff0000"; }
 this.x = 0;
 this.y = 0;
 this.radius = radius;
 this.rotation = 0;
 this.scaleX = 1;
 this.scaleY = 1;
 this.color = utils.parseColor(color);
 this.lineWidth = 1;
}

Ball.prototype.draw = function (context) {
 context.save();
 context.translate(this.x, this.y);
 context.rotate(this.rotation);
 context.scale(this.scaleX, this.scaleY);
 context.lineWidth = this.lineWidth;
 context.fillStyle = this.color;
 context.beginPath();
 //x, y, radius, start_angle, end_angle, anti-clockwise
 context.arc(0, 0, this.radius, 0, (Math.PI * 2), true);
 context.closePath();
 context.fill();
 if (this.lineWidth > 0) {
 context.stroke();
 }
 context.restore();
};

This draws a circle when it is passed a canvas context as a parameter to its draw method. When you
create the ball, you can initialize it with a radius and a color if you want. If not, it uses the default
arguments of 40 for the radius and red for the color. This class is simple, but so useful that you will see it
many times throughout the rest of the book. So keep it handy.

TRIGONOMETRY FOR ANIMATION

53

This example creates an instance of the Ball class, adds it to the canvas, and sets up an animation loop
using the drawFrame function and window.requestAnimationFrame that causes the ball to bob up and
down, as seen in the document 02-bobbing-1.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Bobbing 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 angle = 0;

 ball.x = canvas.width / 2;
 ball.y = canvas.height / 2;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball.y = canvas.height / 2 + Math.sin(angle) * 50;
 angle += 0.1;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

First, you need to create an angle property and initialize it to 0. In the drawFrame function, you take the
sine of that angle and multiply it by 50. This gives you a range of values from 50 to -50. If you add that to
the height of the canvas divided by 2, your values will be from 250 to 150 (based on a 400-pixel high
canvas element). Make that the y position of the ball. Then add 0.1 to the angle for the next time around.
You get a smooth up and down motion.

Play around with the various values. You’ll notice that changing the 0.1 to another value changes the
speed of the motion. This makes sense, because the faster or slower the angle is increasing, the faster or
slower the return values from Math.sin will go from 1 to -1. Obviously, changing the 50 changes how far
the ball moves, and changing the canvas.height / 2 to some other value changes the point that it
oscillates around. From this, you can abstract the values into variables like the following (showing the
additional or changed parts of the script):

CHAPTER 3

54

// At the top of the script:
var angle = 0,
 centerY = 200,
 range = 50,
 speed = 0.05;

// And the animation function:
(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball.y = centerY / 2 + Math.sin(angle) * range;
 angle += speed;
 ball.draw(context);
}());

Keeping actual numbers out of your motion code is a good practice, and you should strive to do it as much
as possible. In this case, it’s all pretty much in the same place anyway. But what happens when your code
spans multiple pages, and those values are used in several places throughout? Every time you want to
change the speed, you need to locate every instance of that 0.1 value and modify it. You can perform a
search and replace, but if something else in the file has 0.1 in it, then that gets replaced as well. By
keeping the numbers out of the code, preferably at the top of the listing, you know exactly where all your
variables are.

Linear vertical motion
In the 04-wave-1.html example, we add linear vertical motion, just to give you some inspiration for your
own animation. Here’s the code for that document:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Wave 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 angle = 0,
 centerY = 200,
 range = 50,
 xspeed = 1,
 yspeed = 0.05;

3

TRIGONOMETRY FOR ANIMATION

55

 ball.x = 0;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball.x += xspeed;
 ball.y = centerY / 2 + Math.sin(angle) * range;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

Pulsing motion
One important thing to keep in mind is that you can apply sine values to other properties besides the
position. In the 05-pulse.html example, we used the values to affect the scale of the ball instead. This
gives it a pulsating appearance. Here’s the code:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Pulse</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 angle = 0,
 centerScale = 1,
 range = 0.5,
 speed = 0.05;

 ball.x = canvas.width / 2;
 ball.y = canvas.height / 2;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball.scaleX = ball.scaleY = centerScale + Math.sin(angle) * range;
 angle += speed;
 ball.draw(context);
 }());

CHAPTER 3

56

 };
 </script>
 </body>
</html>

The principles are the same. You have a center point (which is 100% scale, in this case), a range, and a
speed. But don’t stop there—you can apply sine waves to different kinds of properties to create interesting
visual effects.

Waves with two angles
Here’s another idea to get you started: Rather than just a single angle, set up two angles, along with
separate centers and speeds for both. Apply one sine wave to one property and the other sine wave to
another property, such as position and scale.

Here's something to get you started. This example takes two angles, speeds, and centers, and applies one
of the angles to the ball’s x position and the other angle to the y position. The result is something like a bug
flying around a room. Although it is mathematically predetermined, it looks pretty random. Here’s the code
(document 06-random.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Random</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 angleX = 0,
 angleY = 0,
 range = 50,
 centerX = canvas.width / 2,
 centerY = canvas.height / 2,
 xspeed = 0.07,
 yspeed = 0.11;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball.x = centerX + Math.sin(angleX) * range;
 ball.y = centerY + Math.sin(angleY) * range;
 angleX += xspeed;
 angleY += yspeed;

TRIGONOMETRY FOR ANIMATION

57

 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

Waves with the drawing API
In the next example, 07-wave-2.html, the ball has been removed and the canvas drawing API is used to draw
the sine wave. The call to context.clearRect in the drawFrame function has also been removed so that the
canvas element is not erased every frame, and the drawing remains. Here is the code for that file:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Wave 2</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 angle = 0,
 range = 50,
 centerY = canvas.height / 2,
 xspeed = 1,
 yspeed = 0.05,
 xpos = 0,
 ypos = centerY;

 context.lineWidth = 2;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);

 context.beginPath();
 context.moveTo(xpos, ypos);
 //Calculate the new position.
 xpos += xspeed;
 angle += yspeed;
 ypos = centerY + Math.sin(angle) * range;
 context.lineTo(xpos, ypos);
 context.stroke();
 }());
 };
 </script>
 </body>
</html>

CHAPTER 3

58

The canvas drawing API is discussed in detail in Chapter 4, but you should have fun seeing the various
waves you can draw with it. The sine wave is upside down again because the y axis is reversed in the
canvas element.

Circles and ellipses
Now that you’ve mastered sine waves, let’s move on to their lesser-known cousins, cosine waves. These
are formed in the same way as sine waves, but use the cosine function instead of sine. If you recall from
the earlier discussion about how sine and cosine basically end up being the inverse of each other, you
won’t be surprised to learn that the two waves form the same shape, but in a different position. Figure 3-19
shows a cosine wave.

This shows that the cosine of 0 is 1. As it moves to 2 pi radians, or 360 degrees, it goes to 0, -1, 0, and
then back to 1. It’s essentially the same curve as produced by the sine wave, just shifted over a bit.

1 1

360

0
270180900

0

–1

Figure 3-19. A cosine wave

Circular movement
You can use cosine in place of sine in just about any situation where all you need is an oscillating motion.
But cosine has a much more common and useful function when used in coordination with sine: moving an
object in a circle. Figure 3-20 shows an object at several points as it moves around a circle.

TRIGONOMETRY FOR ANIMATION

59

y

x

x

y

x y

x x

y

Figure 3-20. Positions of an object as it moves around a circle

If you take the circle in Figure 3-20 and turn it on its edge from the right, you see the object going up and
down. Its center is the center of the circle, and its range is the radius of the circle. You calculate its position
as you did in the first sine experiment, take the sine of the angle times the range. In this case, sine is the
appropriate function to use. If you look at the triangle formed, you calculate the length of y—the leg
opposite the angle.

Now, imagine that you are looking at the circle from its bottom edge instead. In this view, you see the
object moving back and forth, left to right. This time, you calculate the length of x—the leg adjacent to the
angle—so you should use cosine.

These calculations operate off the same angle, unlike the 06-random.html example you saw previously,
which used two different angles to compute the x and y positions. You use sine to calculate y and cosine
to calculate x. Here’s what this example looks like:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Circle</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 angle = 0,
 centerX = canvas.width / 2,

CHAPTER 3

60

 centerY = canvas.height / 2,
 radius = 50,
 speed = 0.05;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball.x = centerX + Math.sin(angle) * radius;
 ball.y = centerY + Math.cos(angle) * radius;
 angle += speed;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

You can create this document yourself or use the example file 08-circle.html, which has all the work
done for you. Verify that you have a perfect circle.

Notice that the range in both cases is the hypotenuse of the triangle, and it’s equal to the radius of the
circle. Thus, we changed range to radius, to reflect that.

The code uses cosine to get the x position and sine to get the y position. You should get used to those
relationships. When coding animations, almost any time you are talking about x, you should immediately
think cosine, and you should almost always connect y with sine. In fact, spend as much time as you need
to fully understand that last bit of code. It is going to be one of the most useful tools in your animation
toolbox.

Elliptical movement
While circles are lovely, sometimes a perfect circle isn’t exactly what you need. What you might be looking
for is more of an oval or ellipse. The problem is with the radius, it makes the ranges of the x motion and y
motion the same, which is why you get a circle.

To make a more oval shape, use different values for the radius when you calculate the x and y positions.
Let's call them radiusX and radiusY. Here’s how they fit in to our document 09-oval.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Oval</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {

TRIGONOMETRY FOR ANIMATION

61

 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 angle = 0,
 centerX = canvas.width / 2,
 centerY = canvas.height / 2,
 radiusX = 150,
 radiusY = 100,
 speed = 0.05;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball.x = centerX + Math.sin(angle) * radiusX;
 ball.y = centerY + Math.cos(angle) * radiusY;
 angle += speed;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

Here, radiusX is 150, which means that the ball is going to go back and forth 150 pixels from centerX as
it circles around. radiusY is 100, which means it goes up and down only 100 pixels each way. So, now
you have an uneven circle, which is not a circle anymore, but an ellipse.

Pythagorean Theorem
Now we've come to the Pythagorean Theorem, another formula that you will use a lot. Pythagoras was a
Greek mathematician, philosopher, and mystic who is credited with a convenient way of measuring a
triangle. To put simply, the theorem says: A squared + B squared = C squared. We will explore this
theorem in more depth.

A more descriptive statement of the theorem is: The sum of the squares of the two legs of a right-angle
triangle is equal to the square of the hypotenuse. Let’s say you have the triangle shown in Figure 3-21.
The two legs, A and B, have measurements of 3 and 4. The hypotenuse, C, measures 5. The Pythagorean
Theorem tells us that A2 + B2 = C2. Let’s test it. Plug in the numbers, and you have 32 + 42 = 52, which is 9
+ 16 = 25. That works out pretty well.

CHAPTER 3

62

Figure 3-21. A right-angle triangle

If you happen to know all three measurements, the Pythagorean Theorem is nothing more than an
interesting relationship. But if you only know two of the measurements, it becomes a powerful tool to
quickly find the third. When programming, the most common situation is where you know the lengths of the
two legs and you want to know the hypotenuse. Specifically, you want to find the distance between two
points.

Distance between two points
Say you have two objects on the canvas element and you want to find out how far apart they are. This is
the most common use of the Pythagorean Theorem when programming animation.

What do you have to work with? You have the x and y positions of each object. Let’s call the position of
one x1, y1, and the other x2, y2. This is a situation like the one illustrated in Figure 3-22.

x1, y1

x2, y2

dist
?

Figure 3-22. What is the distance between the two objects?

If you have been following this chapter closely, you see a right-angle triangle forming in the diagram in
Figure 3-22, with the distance line as the hypotenuse. In Figure 3-23, we finish and add some actual
numbers.

TRIGONOMETRY FOR ANIMATION

63

x2, y2
(58, 50)

x1, y1
(50, 56) dx = 8

dy = –6

dist
?

Figure 3-23. Turn it into a right-angle triangle.

Here, dx is the distance between the two objects on the x axis, and dy is the distance on the y axis. You
can now find dx by subtracting x1 from x2: 58 - 50 = 8. Similarly, you subtract y1 from y2 to get dy, which
is −6. Now, using the Pythagorean Theorem, if you square both of these and add them together, you get
the square of the distance. In other words −62 + 82 = dist2. Breaking that down, you get 36 + 64, or 100 =
dist2. With some basic algebra, you can reduce that to .100 = dist. And from that, you can easily figure
out that the distance between the two objects is 10.

Let’s abstract that a bit so you have a formula that you can use in any situation. Given two points, x1, y1
and x2, y2, you figure the x distance and y distance, square them, sum them, and take the square root.
Here it is in JavaScript:

var dx = x2 – x1,
 dy = y2 – y1,
 dist = Math.sqrt(dx * dx + dy * dy);

Pay particular attention to these lines because they make up the next big tool in your toolbox. The first two
lines get the distances on each axis. If you are interested in the distance and won’t use dx and dy to
calculate any angles, it doesn’t matter whether you subtract x1 from x2 or vice versa. The final result for
dist is always positive. The last line performs three steps in one shot: It squares each of the values, adds
them, and finds the square root. For clarity, you can break down the steps into separate statements. After
you are familiar with that single line, it will be clear to you. You see it and think “Pythagorean Theorem.”

Let’s try it in a real world example. The next example, 10-distance.html, creates a couple of rectangles,
randomly positions them, and then calculates and prints the distance between them.

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Distance</title>
 <link rel="stylesheet" href="style.css">
 </head>

CHAPTER 3

64

 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <textarea id="log"></textarea>
 <script src="utils.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 log = document.getElementById('log');

 //Create a black square, assign random position.
 var rect1 = {
 x: Math.random() * canvas.width,
 y: Math.random() * canvas.height
 };
 context.fillStyle = "#000000";
 context.fillRect(rect1.x - 2, rect1.y - 2, 4, 4);

 //Create a red square, assign random position.
 var rect2 = {
 x: Math.random() * canvas.width,
 y: Math.random() * canvas.height
 };
 context.fillStyle = "#ff0000";
 context.fillRect(rect2.x - 2, rect2.y - 2, 4, 4);

 //Calculate the distance between the two squares.
 var dx = rect1.x - rect2.x,
 dy = rect1.y - rect2.y,
 dist = Math.sqrt(dx * dx + dy * dy);

 //log output of distance value to screen
 log.value = "distance: " + dist;
 };
 </script>
 </body>
</html>

Run this file in your web browser and you will see the distance between the two rectangles printed out to
the textarea element in our document. Each time you run it, the two rectangles will be in different
positions. It shouldn’t matter if one is to the right, left, top, or bottom of the other, you’ll always get a
positive value for the distance.

Well that’s interesting, but not dynamic. Just to show you that you can do this in real time, try the next
example, 11-mouse-distance.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Mouse Distance</title>
 <link rel="stylesheet" href="style.css">
 </head>

TRIGONOMETRY FOR ANIMATION

65

 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <textarea id="log"></textarea>
 <script src="utils.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 log = document.getElementById('log'),
 rect = {x: canvas.width / 2, y: canvas.height / 2};

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = rect.x - mouse.x,
 dy = rect.y - mouse.y,
 dist = Math.sqrt(dx * dx + dy * dy);

 //draw square
 context.fillStyle = "#000000";
 context.fillRect(rect.x - 2, rect.y - 2, 4, 4);
 //draw line
 context.beginPath();
 context.moveTo(rect.x, rect.y);
 context.lineTo(mouse.x, mouse.y);
 context.closePath();
 context.stroke();

 //log output of distance value to screen
 log.value = "distance: " + dist;
 }());
 };
 </script>
 </body>
</html>

Here, dx and dy are calculated by subtracting the current mouse position from rect’s position. The dist
value is displayed in the textarea element, and a line is drawn from the rectangle to the mouse location
(you find more on the canvas drawing API in Chapter 4).

Test the file and move your mouse around. A line connects it to the rectangle, and you get a constant
readout of the length of that line.

In later chapters when discussing collision detection, we mention some weaknesses with the generic
testing functions, and see how you can use the Pythagorean Theorem formula to create a distance-based
method of collision detection. This theorem is also useful in calculating forces such as gravity or springs,
where the force between two objects is proportional to the distance between them.

CHAPTER 3

66

Important formulas in this chapter
Look at this. You have a brand-new shiny programming toolbox, and already you have more than a half-
dozen tools to put in it. The full set of tools also appears in Appendix A, but let’s look at what you added so
far. I kept these formulas as simple and abstract as possible, so they don't include variable declarations.
It’s up to you to work the formulas into your own scripts using the proper syntax required for the situation.

Calculate basic trigonometric functions
sine of angle = opposite / hypotenuse
cosine of angle = adjacent / hypotenuse
tangent of angle = opposite / adjacent

Convert radians to degrees and degrees to radians
radians = degrees * Math.PI / 180
degrees = radians * 180 / Math.PI

Rotate to the mouse (or any point)
//substitute mouse.x, mouse.y with the x, y point to rotate to
dx = mouse.x – object.x;
dy = mouse.y – object.y;
object.rotation = Math.atan2(dy, dx) * 180 / Math.PI;

Create waves
// assign value to x, y or other property of an object,
// use as drawing coordinates, etc.
(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);

 value = center + Math.sin(angle) * range;
 angle += speed;
}());

Create circles
//assign position to x and y of object or drawing coordinate
(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);

 xposition = centerX + Math.cos(angle) * radius;
 yposition = centerY + Math.sin(angle) * radius;
 angle += speed;
}());

Create ovals
//assign position to x and y of object or drawing coordinate
(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);

 xposition = centerX + Math.cos(angle) * radiusX;

TRIGONOMETRY FOR ANIMATION

67

 yposition = centerY + Math.sin(angle) * radiusY;
 angle += speed;
}());

Get the distance between two points
//points are x1, y1 and x2, y2
//can be object positions, mouse coordinates, etc.
dx = x2 – x1;
dy = y2 – y1;
dist = Math.sqrt(dx * dx + dy * dy);

Of course, this book is not just a list of formulas. So look these over and make sure you fully understand
how each one works. If you have any questions, go back to the point in the chapter where it was
introduced, experiment with it, and research it more if you need to, until you can really think with the
concept.

Summary
This chapter covered nearly all the trigonometry you need for animating with the canvas element using
JavaScript. There is one principle, called The Law of Cosines, that we left out for now, because it is a lot
more complex and deals with triangles that are not right-angle triangles (they have no angle measuring 90
degrees). If you are now addicted to trigonometry and just can’t get enough, you can jump ahead to
Chapter 14, which covers inverse kinematics, where trigonometry really comes in handy.

But, for now, you know about sine, cosine, and tangent, and their opposites: arcsine, arccosine, and
arctangent, as well as the JavaScript functions to calculate each one.

Best of all, you got some hands-on experience using most of them with the canvas element, with some of
the most common real-life uses of them. As you move through the book, you see many more ways in
which these techniques become useful. But you now have a solid footing with the concepts, and when you
come across those examples, you should have no problem understanding them or how they work.

The next chapter covers some of the more common rendering techniques for putting graphics on the
screen, including the all-important canvas drawing API. As you go through that chapter, see whether you
can find ways to use the rendering methods to visualize some of the trigonometry functions you learned
here. You should have no trouble creating so

69

Chapter 4

Trigonometry for Animation

What we’ll cover in this chapter:

 Colors on the canvas

 The drawing API

 Loading images

 Pixel manipulation

So far, the graphics drawn in the book example programs have used a few simple commands, and the
“canvas drawing API” has been alluded to a number of times. But for the most part, the code has been
provided without much explanation.

In this chapter, we look at creating visual content using the canvas element. Specifically, you'll see how to
work with color using JavaScript, and take a brief tour of the canvas drawing API.

Colors on the canvas
Colors applied to the canvas element are specified using CSS-style strings, which can be formatted in a
few ways:

 "#RRGGBB"—Hexadecimal format, with red-green-blue components in the range 0-9, a-f.

 "#RGB"—Hexadecimal format using short notation, is converted into the six-digit form by copying
the component values, not by adding 0. E.g., "#fb0" becomes "#ffbb00" .

CHAPTER 4

70

 "rgb(R, G, B)" —Functional notation format, with red-green-blue components as integers in
the range 0-255.

 "rgba(R, G, B, A)" —Functional notation format with alpha, is the same as the previous
string, but the alpha value is a decimal number in a range of 0-1. If a color requires transparency,
this is the format you must use.

Although the final color value is serialized as a string, you may want to manipulate individual color
components as numbers. So you must convert the JavaScript types using a few parsing and
concatenation techniques. After this is demonstrated, a pair of utility functions are introduced later in the
chapter that will make this process easier, and are used throughout the book examples.

A color value can be any integer from 0 to 16,777,215 for what is called 24-bit color. That number is
significant because there are 256 × 256 × 256 possible color values. The canvas element uses RGB color,
which means that every color is described by its red, green, and blue components. Each of these
component values can be an integer from 0 to 255. So, there are 256 possible shades each of red, green,
and blue, resulting in the nearly 16.8 million colors.

This system is called 24-bit color because it takes eight bits—ones or zeros—to represent the number 256.
Eight bits times three (red, green, and blue) means it takes 24 bits to represent the 16.8 million possible
colors. Additionally, there is a 32-bit color system, which uses an extra value for transparency.

Now, because it’s difficult to visualize what color 16,733,683 looks like, developers often use another
system of representing such numbers: hexadecimal. If you’ve used color values in HTML, this should be
familiar to you, but let’s cover the basics anyway.

Using hexadecimal color values
Hexadecimal, or hex, is a base 16 system. In other words, each digit can be from 0 to 15, rather than 0 to
9 as in the usual base 10 (decimal) system. Since there are not any single digits to represent the numbers
10 to 15, we borrow the first six letters of the alphabet, A to F. So, each digit in a hex number can be from
0 to F. (In JavaScript, hex values are not case-sensitive, so you can use A through F or a through f.) To
signify that we are using a hex number with the HTML canvas element, we prefix the string with the
character '#'. In JavaScript, as with many other languages, we add a prefix 0x to the number. For
example, the number 0xA is equal to decimal number 10, 0xF is equal to 15, and 0x10 is equal to 16.
Respectively, the HTML hexadecimal string representations of these values would look like: '#A', '#F',
and '#10'.

In decimal, each digit is worth ten times the digit to its right; so, the number 243 means two times 100, four
times 10, and three times 1. In hex, each digit is worth 16 times its right-hand neighbor. For example,
0x2B3 means two times 256, B (or eleven) times 16, and three times 1.

For 24-bit colors, this goes all the way up to 0xFFFFFF, and, if you do the math, is equal to 16,777,215.
Furthermore, those six hex digits can be separated into three component pairs. The first pair represents
the red component, the second pair represents the green, and the last two digits represent blue. This is
often referenced as 0xRRGGBB. (You would never put R, G, or B into an actual hex number; this is merely
a symbolic way of telling you what color channel each digit controls.)

RENDERING TECHNIQUES

71

Remember that each component color can have a value anywhere from 0 to 255, or in hex, 0x00 to 0xFF.
Thus, the color red can be represented as 0xFF0000, which denotes full red, zero green, and zero blue.
Likewise, 0x0000FF is completely blue.

If you take the earlier mentioned example number, 16,733,683, and convert it to hex (you will see an easy
way to do that), you get 0xFF55F3. You can easily separate the components into red = FF, green = 55,
and blue = F3. Examining these values, you see that the red and blue are rather high, and green is much
lower. So you can guess that this color is purplish, which is something you can't easily determine from the
decimal value.

For any JavaScript operation that requires a number, it doesn’t matter which format you use, decimal or
hex. The numbers 16733683 and 0xFF55F3 have the same value; it’s just that one is more readable to us
humans. However, when working with the canvas element, you must remember to convert whichever
numeric format into a proper CSS-style string.

You might wonder how to convert between these formats. Well, converting from hex to decimal is easy—
just print the value. The console.log function in your debugging console prints to decimal for you:

console.log(0xFF55F3);

This prints 16733683. To see the hexadecimal representation of a decimal number, use the
Number.toString method, specifying 16 as the radix:

var hex = (16733683).toString(16);
console.log(hex);

As the method name indicates, this converts the number to a string, and prints out the hexadecimal
'ff55f3'. To use that value as a CSS-style formatted string, prepend the '#' character:

var hexColor = '#' + (16733683).toString(16);

This sets hexColor to a string value of '#ff55f3'. To convert this back into a decimal number, first chop
off the '#' character at the beginning of the string using the String.slice method, then pass the
remaining string to the built-in function window.parseInt, with a radix of 16:

var color = window.parseInt(hexColor.slice(1), 16);
console.log(color);

This prints out the number 16733683, and you can see we're right back where we started.

Combining colors
Let's say you want to combine three red, green, and blue numbers to form a valid overall color value. If
you have three variables, red, green, and blue, and each of them holds an integer value from 0 to 255,
here’s the formula to do just that:

color = red << 16 | green << 8 | blue;

For example, to create the purple color value from separate components, set the red value to max, or
0xFF (decimal 255), the green component to 0x55 (decimal 85), and the blue value to 0xF3 (decimal 243):

CHAPTER 4

72

var color = 0xFF << 16 | 0x55 << 8 | 0xF3;

This sets color to a value of 16733683, which is equal to the hex value 0xFF55F3. This formula uses two
bitwise operators you might not have used before. Bitwise operators manipulate numbers on a binary
level—on the ones and zeros. We look at how they work in the next section.

Bitwise combination

If you were to list the bits of a 24-bit color value, you would have a string of 24 ones and zeros. Breaking
up the hex 0xRRGGBB into binary, there are eight bits for red, eight for green, and eight for blue:

RRRRRRRRGGGGGGGGBBBBBBBB

In the previous color combination formula, the first bitwise operator is <<, which is the bitwise left-shift
operator. This shifts the binary representation of the value to the left by the specified amount of places. A
red value of 0xFF, or decimal 255, can be represented in binary as follows:

11111111

Shifting it 16 places to the left gives you the following:

111111110000000000000000

As a 24-bit color number, this is red. In hex, this is 0xFF0000—again, red. Now, a green value of 0x55
(decimal 85) looks like the following in binary:

01010101

Shift this eight places, and you get this:

000000000101010100000000

The original eight bits now fall completely in the green range.

Finally, a blue value of 0xF3 (decimal 243) is this in binary:

11110011

Because these bits already fall into the blue range, you don’t need to change it.

Now you have three values for red, green, and blue:

111111110000000000000000
000000000101010100000000
000000000000000011110011

You can add the values together to get a single 24-bit number, but there’s a simpler way: Use the bitwise
OR operator, the | symbol. This compares the digits of two numbers on a binary level and if either digit is
equal to one, the result will be one. If both digits are zero, the result is zero. You can use OR for the red,
green, and blue values together to say, “If this OR this OR this is one, the result is one.” This joins the
three components into a single color value—and is readable once you understand how the operators work.
Combine the example values and you get this result:

RENDERING TECHNIQUES

73

111111110101010111110011

If you convert that to hex, you get 0xFF55F3. Of course, in JavaScript, you never see the bits or deal with
the ones or zeros at all. You just write this:

var color = 0xFF << 16 | 0x55 << 8 | 0xF3;

Or, if you are working with decimal values, you can use this form:

var color = 255 << 16 | 85 << 8 | 243;

Again, it doesn't matter whether you use hex or decimal numbers; it's the same value.

Extracting component colors
You might have a color from which you want to extract the individual component values. Here's the
formula to extract the red, green, and blue values from a composite color value:

red = color >> 16 & 0xFF;
green = color >> 8 & 0xFF;
blue = color & 0xFF;

If the value of color is 0xFF55F3, then red will be set to 255, green: 85, and blue: 243. Again, this
formula uses two bitwise operators, which we walk through in the next section.

Bitwise extraction

In the previous formula, you probably guessed that >> is the bitwise right-shift operator, which shifts the
bits so many places to the right. You can’t have fractional bits, so any bits that are shifted too far right are
discarded. Looking at the color value in binary representation, and beginning with red:

111111110101010111110011

When you shift the color value 16 places to the right, it becomes this:

11111111

This is simply 0xFF, or 255. For green, shift the color value eight places, and you get this:

1111111101010101

Here, you knocked the blue values out, but you still have the red ones hanging around. This is where you
use another bitwise operator, &, which is called AND. Like OR, this compares two values, but says, “If this
digit AND this digit are both one, then the result is one. If either one is zero, the result is zero.” You
compare the value to 0xFF, so you compare these two numbers:

1111111101010101
0000000011111111

Because all the red digits are compared with zero, they all result in zero. Only the digits that are both one
fall through, so you get this:

0000000001010101

CHAPTER 4

74

This is the value 0x55. With blue, you don’t need to shift anything. Just AND it with 0xFF, which preserves
the blue and knocks out the red and green. This returns the value 0xF3.

Transparency
If you want to apply a color with transparency to the canvas element, you must use a string formatted in
the CSS-style functional notation: "rgba(R, G, B, A)". In this format, the red-green-blue components
are integer values in the range of 0-255, whereas the alpha component is a decimal number in the range
of 0-1. An alpha value of 0 is completely transparent, whereas a value of 1 indicates a color that is fully
visible. For example, a color containing an alpha value of 0.5 has 50% opacity.

If you work with separate color components, you must concatenate them into a properly formatted string to
use the color with the canvas element. For example:

var r = 0xFF,
 g = 0x55,
 b = 0xF3,
 a = 0.2,
 color = "rgba(" + r + "," + g + "," + b + "," + a + ")";

console.log(color);

This assembles and prints the string: "rgba(255,85,243,0.2)", which represents a light-purple color, at
20% visibility, properly formatted to use with the canvas element.

Because these types of conversions are rather bothersome, we create a couple of utility functions to
simplify this process in the next section.

Color utility functions
Now that we explained the process of combining and extracting color components, we create a pair of
utility functions to do the work for us. This gives us a succinct way to convert color values from numbers to
strings, and back again, while keeping the sample code uncluttered. Often when animating the canvas
element, you need to manipulate the numeric color values using JavaScript, then format them as a CSS-
style string.

The first utility function, utils.colorToRGB, takes a color value as an argument—as a number or
hexadecimal string—and extracts its individual red, blue, and green components. Then, it concatenates
them into a CSS-style string using the functional notation, which it returns. Additionally, the function
accepts a second, optional, argument to indicate an alpha value, which is a decimal number between 0
and 1.

For example, passing the hexadecimal number 0xFFFF00 or string "#FFFF00" to utils.colorToRGB
returns a string value: "rgb(255,255,0)". If we call it with an alpha value like
utils.colorToRGB(0xFFFF00, 0.5), it returns "rgba(255,255,0,0.5)", which is the format that the
canvas element is looking for.

RENDERING TECHNIQUES

75

Add the function to our global utils object and include it in the utils.js file, which we import in our
documents. Remember, you can download this script, like all the other code in this book, from
www.apress.com. Here's what the function definition looks like:

utils.colorToRGB = function (color, alpha) {
 //if string format, convert to number
 if (typeof color === 'string' && color[0] === '#') {
 color = window.parseInt(color.slice(1), 16);
 }
 alpha = (alpha === undefined) ? 1 : alpha;

 //extract component values
 var r = color >> 16 & 0xff,
 g = color >> 8 & 0xff,
 b = color & 0xff,
 a = (alpha < 0) ? 0 : ((alpha > 1) ? 1 : alpha); //check range

 //use 'rgba' if needed
 if (a === 1) {
 return "rgb("+ r +","+ g +","+ b +")";
 } else {
 return "rgba("+ r +","+ g +","+ b +","+ a +")";
 }
};

The second utility function is simple, but saves us some headache when converting colors back and forth
between numbers and strings. The function, utils.parseColor, converts a color number value to a
hexadecimal formatted string, or can convert a hexadecimal formatted string to a number.

Calling the function with a hexadecimal number like utils.parseColor(0xFFFF00), returns the string
value: "#ffff00". Passing a CSS-style hexadecimal string returns the same string unmodified. The
function also accepts a second, optional, parameter toNumber, which if set to true, returns a numeric
color value. For example, calling utils.parseColor("#FFFF00", true) or
utils.parseColor(0xFFFF00, true), both return the number 16776960.

This function enables us to use numbers when we need to, and easily convert back to the properly
formatted strings that the canvas element requires. Again, we add this function to the utils global object
in the file utils.js:

utils.parseColor = function (color, toNumber) {
 if (toNumber === true) {
 if (typeof color === 'number') {
 return (color | 0); //chop off decimal
 }
 if (typeof color === 'string' && color[0] === '#') {
 color = color.slice(1);
 }
 return window.parseInt(color, 16);
 } else {
 if (typeof color === 'number') {
 //make sure our hexadecimal number is padded out
 color = '#' + ('00000' + (color | 0).toString(16)).substr(-6);

http://www.apress.com

CHAPTER 4

76

 }
 return color;
 }
};

These utility functions are provided only for convenience, because you already know how they work from
the previous sections. Perhaps you'll create a different function, or write the conversion explicitly in your
own code, but they're here if you need them.

Now that you know how colors work in JavaScript and the canvas element, let’s start using them.

The Drawing API
An API, or application programming interface, generally refers to the methods and properties that you can
use in your program to access a collection of related functionality that is provided for you. In particular, the
canvas drawing API is the properties and methods that enable you to draw lines, curves, fills, and so on,
using JavaScript. This API has only a few methods, but they provide the foundation for all the animation
we create in this book. Here are some of the commands we look at:

 strokeStyle

 fillStyle

 lineWidth

 save()

 restore()

 beginPath()

 closePath()

 stroke()

 lineTo(x, y)

 moveTo(x, y)

 quadraticCurveTo(cpx, cpy, x, y)

 bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y)

 arcTo(x1, y1, x2, y2, radius)

 arc(x, y, radius, startAngle, endAngle [, anticlockwise])

 createLinearGradient(x0, y0, x1, y1)

 createRadialGradient(x0, y0, r0, x1, y1, r1)

 clearRect(x, y, width, height)

 fillRect(x, y, width, height)

RENDERING TECHNIQUES

77

Because this chapter serves as an overview for you to get the foundation to work through the rest of the
book, we won't go into the details for each method. For a more exhaustive treatment of the canvas
drawing API, see the specification at http://developers.whatwg.org/the-canvas-element.html, or
read one of the more detailed guides listed at the beginning of this book.

The canvas context
Every canvas element contains a drawing context, an object that exposes the drawing API. To access the
context, use the following code:

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d');

The first line uses the DOM interface to find our canvas element with an id of 'canvas'. Call this object's
method getContext with the string argument '2d', which specifies the type of drawing API to use.

It's worth mentioning, this is the only standardized drawing context at the time of this writing. Although
some vendors have experimented with a 3D API, this has not been implemented across browsers and is
not part of the HTML5 specification.

Now that we have our canvas element and access to its context, we can start drawing with it!

Removing the drawing with clearRect
In most animations, we must clear the canvas every frame before drawing something else, which is how
we simulate motion. By drawing something, erasing it, and drawing it someplace else, we can make a
series of images look like a single object that has moved, rather than two frames displayed sequentially.

The method context.clearRect(x, y, width, height) clears the specified rectangle by erasing
every pixel inside it, setting them to transparent black. As such, any previously drawn graphics, such as
lines or fills, will no longer be visible. Because we use this method to clear entire animation frames, you
will see it called in the examples like this:

context.clearRect(0, 0, canvas.width, canvas.height);

This creates a rectangle the size of the entire canvas element and positions it at the canvas origin, clearing
everything that was previously drawn.

This is a complete canvas clear, but there are a few optimizations to consider. If you know that an
animation will only affect a portion of the frame, you can specify a smaller rectangle in clearRect to save
some processing. It's also possible to stack multiple canvas elements on top of each other. Because
they're transparent, you see the composite image. This can be useful if you have a background image that
you do not want to draw every frame. You can just place it as a background canvas or image element and
animate over top of it.

http://developers.whatwg.org/the-canvas-element.html

CHAPTER 4

78

Setting the line appearance
The context has a number of properties that change the appearance of subsequently drawn lines.
Changing these properties does not affect previously drawn lines. Other than clearing them or drawing on
them, there is no way to affect lines and fills that have already been drawn.

The most common line style properties you use are the color and width of the line:

 strokeStyle: This property is used for setting the line color. The value can be a color value
(CSS-style string), a gradient object, or a pattern object. By default, the line color is black:
"#000000".

 lineWidth: This sets the line thickness from the path. So if using the default value of 1, the line
width would extend a half-pixel to both sides; you cannot draw the line inside or outside of this
path. lineWidth must be a positive number.

There are some additional line style properties, but we just use their default values in this book:

 lineCap: How the end point of each line is drawn, if it's flat, round, or sticks out. Possible values
are butt, round, and square, with butt as the default.

 lineJoin: Determines how connecting segments are joined together, or how the “elbow” of the
connection is drawn. Possible values are round, bevel, or miter, with miter as the default.

 miterLimit: When used with lineJoin set to miter, this property determines how far the
outside connection point will be placed from the inside connection point. It must be a finite
number greater than 0, and the default value is 10.

To jump between different styles, use the methods context.save() and context.restore().
context.save() pushes the current state of the canvas onto a stack. This includes styles, such as
strokeStyle and fillStyle, and also transformations that have been applied to the canvas. Additional
style changes will be applied to subsequent draw commands. To return to the previous canvas state, call
context.restore() to pop the current state off the stack and use the next one.

Drawing paths with lineTo and moveTo
There are a couple of different ways to implement line drawing in a graphics language. One is to have a
line command that takes a starting point and an ending point, and draws a line between them. The other
way is to have a lineTo command that takes a single point: the ending point of the line. This is how the
canvas drawing API works, and it stores this information in a path.

The canvas context always has a current path, and there is only one current path. A path has 0 or more
sub-paths, each consisting of a list of points connected by straight or curved lines. A closed path is one
where its last point is connected to its first point by a straight line. To indicate that you're starting a new
drawing path, call context.beginPath(). Because a path is just a list of positions for a line, to render it to
the canvas you call context.stroke().

You move the path's position around on the canvas and draw lines to it. Because we need to start
somewhere to draw from, we first move to point 0, 0 in this example:

RENDERING TECHNIQUES

79

context.beginPath();
context.moveTo(0, 0);
context.lineTo(100, 100);
context.stroke();

On the canvas, there's now a line drawn from the top-left corner (0, 0), to 100, 100. After you draw a line,
the ending point for that line is the starting point for the next one. Or, you can use the method
context.moveTo to specify a new starting point for the next line.

Think of the drawing API as a robot holding a pen on a piece of paper. First, you move the pen to the start
position at 0, 0. When you tell the robot to draw a line to a point, it moves the pen across the paper to that
new position. For each new line, it moves from wherever it left off, to the next new point. context.moveTo
is like saying, “Okay, now lift up the pen and move it to this next point.” Although it does not result in any
new graphic content, it will affect how the next command is carried out. You generally call
context.moveTo as your first graphics command to place the drawing API “pen” where you want to begin.

You now have enough drawing commands to do something interesting. Let’s create a simple drawing
program that will rely on the canvas drawing API for its content. Here’s the example:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Drawing App</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas);

 function onMouseMove () {
 context.lineTo(mouse.x, mouse.y);
 context.stroke();
 }
 canvas.addEventListener('mousedown', function () {
 context.beginPath();
 context.moveTo(mouse.x, mouse.y);
 canvas.addEventListener('mousemove', onMouseMove, false);
 }, false);

 canvas.addEventListener('mouseup', function () {
 canvas.removeEventListener('mousemove', onMouseMove, false);
 }, false);
 };
 </script>
 </body>
</html>

CHAPTER 4

80

You can find this file among the book’s downloadable files (available from www.apress.com) as 01-
drawing-app.html. In addition to the drawing functions, this program makes good use of event handlers
(discussed in Chapter 2). Let's go through it piece by piece.

The example is based on the skeleton document found in Chapter 2, which you should be used to by now.
At the top of the script, it uses the utility function utils.captureMouse to keep track of the mouse
position. We imported this from the file utils.js. Event listeners for the mousedown and mouseup events
are also added.

The mousedown event handler gets called whenever the user presses a mouse button on the canvas
element; this is when the user wants to start drawing a line at the current mouse cursor position. The
handler starts a new path and puts the virtual pen down at the mouse location by calling context.moveTo
and passing in the mouse coordinates. It then adds a listener for the mousemove event.

At this point, every time the user moves the mouse, the onMouseMove function is called. It’s the core of the
program, but is simple. It draws a line to the current mouse location and strokes the path outline.

Finally, there’s the mouseup event handler, which removes the mousemove handler so that nothing else is
drawn to the canvas.

This is a fun little sketching program. If you set up some simple controls, you can build it into a full-featured
drawing application. Create variables for color and width, use some HTML form elements to change
them, and set the strokeStyle and lineWidth properties with the new values. But this left as an
exercise for you to do on your own, if you are interested.

Drawing curves with quadraticCurveTo
The canvas drawing API provides a number of methods for drawing curves on a path. In the next couple of
examples, we look at the method context.quadraticCurveTo, which connects two points with a curve
using a control point. It starts off the same as context.lineTo, in that it begins its drawing at the point
where the last drawing ended, or at the point where the last context.moveTo command moved the pen
to. It also uses line styles in the same way as context.lineTo. The only difference is the shape of the
line drawn.

context.quadraticCurveTo(cpx, cpy, x, y) takes two points as arguments: The first is a control
point that affects the shape of the curve, and the second is the ending point of the curve. The shape is
determined by a standard algorithm known as a quadratic Bézier curve. This function calculates a curve
from one point to another, curving toward—but never touching—the control point. It’s more like the curve is
attracted to it.

Let’s see it in action in the following document, 02-drawing-curves.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Drawing Curves</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>

http://www.apress.com

RENDERING TECHNIQUES

81

 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 x0 = 100,
 y0 = 200,
 x2 = 300,
 y2 = 200;

 canvas.addEventListener('mousemove', function () {
 context.clearRect(0, 0, canvas.width, canvas.height);

 var x1 = mouse.x,
 y1 = mouse.y;
 //curve toward mouse
 context.beginPath();
 context.moveTo(x0, y0);
 context.quadraticCurveTo(x1, y1, x2, y2);
 context.stroke();
 }, false);
 };
 </script>
 </body>
</html>

Load this file in your browser and move the mouse around. The script has two preset points for the
beginning and ending points, and uses the mouse position for the control point. Notice that the curve never
reaches the control point, but gets about halfway there.

Curving through the control point

If you want the curve to hit a point, the following formula calculates a control point, so the curve goes
through the point you specify. Again, you start with x0, y0 and x2, y2 as the end points, and x1, y1 as
the control point. We call the point you want to curve through xt, yt (t for target). In other words, if you
want the curve to be drawn through xt, yt, what x1, y1 do you need to use? Here’s the formula:

x1 = xt * 2 - (x0 + x2) / 2;
y1 = yt * 2 - (y0 + y2) / 2;

Basically, you multiply the target by two, and subtract the average of the starting and ending points. You
can graph the whole formula and see exactly how it works. Or, you can test it, see that it works, and
assume that it always will.

To see it in action, using the mouse coordinates as xt, yt, you need to change only two lines from the
previous example. Change the following lines:

x1 = mouse.x;
y1 = mouse.y;

to the following:

CHAPTER 4

82

x1 = mouse.x * 2 - (x0 + x2) / 2;
y1 = mouse.y * 2 - (y0 + y2) / 2;

Or you can check out 03-curve-through-point.html, where we did it for you.

Creating multiple curves
Next, you might want to create multiple curves, where instead of a single curve, you have a long line that
curves smoothly in several directions. First, here is the wrong way to solve this problem, which is a
common first attempt. In this example, you start out with a number of points, draw a curve from the first
through the second to the third, then through the fourth to the fifth, then through the sixth to the seventh,
and so on. Here it is in code (in document 04-multi-curve-1.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Multi Curve 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 points = [],
 numPoints = 9;

 //array of random point objects
 for (var i = 0; i < numPoints; i++) {
 points.push({
 x: Math.random() * canvas.width,
 y: Math.random() * canvas.height
 });
 }

 //move to the first point
 context.beginPath();
 context.moveTo(points[0].x, points[1].y);

 //and loop through each successive pair
 for (i = 1; i < numPoints; i += 2) {
 context.quadraticCurveTo(points[i].x, points[i].y, points[i+1].x, points[i+1].y);
 }
 context.stroke();
 };
 </script>
 </body>
</html>

RENDERING TECHNIQUES

83

The first for loop in the window.onload function sets up an array of nine points. Each point is an object
with an x and y property, and they are randomly placed on the canvas.

We begin a new path, and the pen is moved to the first point. The next for loop starts at one and
increments by two each time, drawing a curve through point one to point two, then through three to four,
then through five to six, and then through seven to eight. The loop stops there, which is perfect because
point eight is the last one. There must be a minimum of three points, and the number of points must be
odd.

It seems like a well-reasoned program, until you test it. As shown in Figure 4-1, it doesn’t look curvy at all.
In fact, it looks a bit spiky. The problem is that there is no coordination between one curve and the next,
except that they share a point.

Figure 4-1. There are multiple curves going the wrong way. You can see where one curve ends and the next begins.

You must plug in a few more points to make it look right. Here’s the strategy: Between each set of two
points, you need a new point that sits exactly in the middle. You then use these as the starting and ending
points for each curve, and use the original points as the control points.

Figure 4-2 illustrates the solution. In the figure, the white dots are the original points, and the black dots
are the in-between points. You can see there are three context.quadraticCurveTo methods used here.

CHAPTER 4

84

Figure 4-2. Multiple curves with midpoints

Notice in Figure 4-2 that the first and last midpoints are not used, and the first and last original points
remain terminal points for the curves. You need to make in-between points only for the second point up to
the second-to-last point. Here’s an updated version of the previous random curves example (document
05-multi-curve-2.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Multi Curve 2</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 points = [],
 numPoints = 9,
 ctrlPoint = {};

 for (var i = 0; i < numPoints; i++) {
 points.push({
 x: Math.random() * canvas.width,
 y: Math.random() * canvas.height
 });
 }

 //move to the first point
 context.beginPath();
 context.moveTo(points[0].x, points[1].y);

 //curve through the rest, stopping at each midpoint

RENDERING TECHNIQUES

85

 for (i = 1; i < numPoints - 2; i++) {
 ctrlPoint.x = (points[i].x + points[i+1].x) / 2;
 ctrlPoint.y = (points[i].y + points[i+1].y) / 2;
 context.quadraticCurveTo(points[i].x, points[i].y, ctrlPoint.x, ctrlPoint.y);
 }

 //curve through the last two points
 context.quadraticCurveTo(points[i].x, points[i].y, points[i+1].x, points[i+1].y);
 context.stroke();
 };
 </script>
 </body>
</html>

In the new code, the second for loop starts at 1 and ends at numPoints - 2. This prevents it from
processing the first and last pairs of points. It creates a new x, y control point, which is the average of the
next two points in the array. Then, it draws a curve through the next array point to the new average point.
When the loop ends, the index, i continues pointing to the second-to-last element; thus, you can draw a
curve through that to the last point.

This time, you come up with a nice smooth shape—rather than those spikes—as shown in Figure 4-3. You
are not limited to an odd number of original points anymore. As long as you start with at least three points,
you’ll be fine.

As a variation on this theme, the following code, document 06-multi-curve-3.html, creates a closed
curve using the same technique. It computes an initial midpoint, which is the average of the first and last
points, and moves to that. Then it loops through all the rest, figuring midpoints for each one, finally drawing
its last curve back to the initial midpoint (see Figure 4-4).

Figure 4-3. Smooth multiple curves

CHAPTER 4

86

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Multi Curve 3</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 points = [],
 numPoints = 9,
 ctrlPoint = {},
 ctrlPoint1 = {};

 for (var i = 0; i < numPoints; i++) {
 points.push({
 x: Math.random() * canvas.width,
 y: Math.random() * canvas.height
 });
 }

 //find the first midpoint and move to it
 ctrlPoint1.x = (points[0].x + points[numPoints-1].x) / 2;
 ctrlPoint1.y = (points[0].y + points[numPoints-1].y) / 2;
 context.beginPath();
 context.moveTo(ctrlPoint1.x, ctrlPoint1.y);

 //curve through the rest, stopping at each midpoint
 for (i = 0; i < numPoints - 1; i++) {
 ctrlPoint.x = (points[i].x + points[i+1].x) / 2;
 ctrlPoint.y = (points[i].y + points[i+1].y) / 2;
 context.quadraticCurveTo(points[i].x, points[i].y, ctrlPoint.x, ctrlPoint.y);
 }

 //curve through the last point, back to the first midpoint
 context.quadraticCurveTo(points[i].x, points[i].y, ctrlPoint1.x, ctrlPoint1.y);
 context.stroke();
 };
 </script>
 </body>
</html>

RENDERING TECHNIQUES

87

Figure 4-4. Multiple closed curves

Additional curves
Besides the context.quadraticCurveTo method we've been using, there are a few other methods for
drawing curves, each with their own characteristic shape:

 bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y): Adds a point to the current path
connected by a cubic Bézier curve with the two control points.

 arcTo(cp1x, cp1y, cp2x, cp2y, radius): Adds an arc to the path using two control points
and radius, connected to the previous point by a straight line.

 arc(x, y, radius, startAngle, endAngle [, antiClockwise]): Adds an arc to the path
described by the circumference of a circle, from the start angle to end angle, in the given direction
(defaulting to clockwise), connected to the previous point by a straight line.

These methods are not used much in this book; however, context.arc shows up throughout the example
code because it's an easy way to draw a circle. For example, this is how to draw a circle at point 100, 100
with a radius of 50:

context.beginPath();
context.arc(100, 100, 50, 0, (Math.PI * 2), true);
context.closePath();
context.stroke();

Creating shapes with fill
Now that we've drawn several paths using lines and curves, we use them to create shapes. The
context.fill() method fills in the sub-paths with the current fill style.

The context.fillStyle property, like context.strokeStyle, is set using a CSS-style color string in
hexadecimal or RGB format. The default is black, or "#000000". If you want to use a transparent color,
recall that you need to format it as a proper RGBA string.

CHAPTER 4

88

You can issue a context.fill() command almost any time during the process of drawing. This
computes a shape from the current location on the sub-path to the beginning point. Generally, the drawing
sequence is as follows:

 beginPath

 moveTo

 lineStyle (if any)

 fillStyle (if any)

 A series of lineTo and quadraticCurveTo methods (or similar curves)

 closePath (to close the shape)

 fill (shape color)

 stroke (shape outline)

You can use the first four methods in just about any order without affecting what is drawn. It's not required
to specify a line or fill style, but if you do not, you will use the default color: black.

If you do not draw a line back to the original point from which you started, the canvas will still fill in the
shape when you call the command context.fill—but it will not close the path and draw the completed
outline. To do that, call the method context.closePath and the path will be automatically closed.

Go ahead and play around with drawing fills. You can even use the closed curve example from the
previous section (06-multi-curve-3.html), because this example is already generating a closed shape.
Throw in a context.fillStyle statement before the first context.quadraticCurveTo—for example,
context.fillStyle = "#ff0000"—and finish off the code with context.fill().

If you do this, notice where sections of the curve cross over itself—here the fill kind of disappears. There’s
not much you can do about that, but for the most part, you won't draw shapes that intersect like this. On
the other hand, you can use that behavior to create some interesting shapes.

Creating gradient fills
A gradient fill is a fill of at least two colors. A part of the shape starts out one color, and it slowly blends into
another color, possibly transitioning through one or several other predefined colors on its way.

Specifying the gradient type

There are two types of canvas gradient fills: linear and radial. In a linear gradient fill, the gradient of colors
lies along a line from one point to the other. Create a linear gradient with
context.createLinearGradient(x0, y0, x1, y1), which paints along the line between point (x0, y0)
and point (x1, y1). Figure 4-5 shows a few examples of linear gradient fills.

RENDERING TECHNIQUES

89

Figure 4-5. Linear gradient fills

A radial gradient fill starts in the center of the space you define and radiates outward in all directions,
creating a circle. The first color you specify is at the center of the circle, and the final color is the edge. The
method, context.createRadialGradient(x0, y0, r0, x1, y1, r1), takes arguments representing
two circles each specified by a coordinate and a radius. Figure 4-6 shows an example of a radial fill.

Figure 4-6. Radial gradient fill

Setting gradient color stops
To see a gradient fill, you need at least two different color stops, or color positions, on the gradient. If that’s
all you specify, the fill blends from the first to the second. If you add more colors, the fill blends smoothly
from the first, to the second, to the third, and so on, until it arrives at the last one.

You must also specify the position of each color in the fill by assigning it a decimal number from 0 to 1,
where 0 is the start of the fill and 1 is the end. These numbers, one for each color, are called the ratio of
the fill. For example, if you want a two-color fill, specify 0 and 1 as the ratios. To make an even blend of
three colors, use 0, 0.5, and 1 as ratios—this puts the second color exactly in the middle of the other two.
If you use 0, 0.1, 1 as ratios, the first color almost immediately blends into the second, and then very
slowly blends into the third. Keep in mind that these are not pixel values, but fractions of 1.

With a ratio and color, add a color stop using the gradient's method Gradient.addColorStop(ratio, color):

var gradient = context.createLinearGradient(0, 0, 100, 100);
gradient.addColorStop(0, "#ffffff");
gradient.addColorStop(1, "#ff0000");

This creates a linear gradient from point (0, 0) to point (100, 100). It then defines two color stops using a
start ratio of 0 and end ratio of 1. This gradient color starts as white and blends into red at the end.

The next step is to assign the gradient to context.fillStyle and draw a shape with it:

context.fillStyle = gradient;
context.fillRect(0, 0, 100, 100);

CHAPTER 4

90

Here we use the convenience method context.fillRect. This draws and fills a rectangle path in the
same way as our line drawing commands, but does not move the pen around much. Let's see how it all
looks together on the canvas in the document 07-gradient-fill-1.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Gradient Fill 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 pt1 = {x: 0, y: 0}, //gradient start point
 pt2 = {x: 100, y: 100}, //gradient end point
 gradient = context.createLinearGradient(pt1.x, pt1.y, pt2.x, pt2.y);

 //gradient from white to red
 gradient.addColorStop(0, "#ffffff");
 gradient.addColorStop(1, "#ff0000");

 context.fillStyle = gradient;
 context.fillRect(0, 0, 100, 100);
 };
 </script>
 </body>
</html>

Test this in your browser and you see a white-to-red gradient square. Now, let’s draw the square in a
different location by altering the drawing code. Change the x and y position where you start the square (in
08-gradient-fill-2.html):

context.fillRect(100, 100, 100, 100);

The square is all red, what happened? The gradient starts at point 0, 0 and ends at point 100, 100, which
is where the square begins. At this position, the gradient has already reached full red, and it’s red from
there on out. So again, you want the x, y of the gradient to start at the top-left point of the shape, like so:

pt1 = {x: 100, y: 100}, //gradient start point
pt2 = {x: 200, y: 200}, //gradient end point
gradient = context.createLinearGradient(pt1.x, pt1.y, pt2.x, pt2.y);

Here, the starting point of the gradient is the same as the starting point of the square. Using the same square, you
can play around with gradient color stops to see what kind of effects you can create. First, try three colors:

//gradient from white to blue to red
gradient.addColorStop(0, "#ffffff");
gradient.addColorStop(0.5, "#0000ff");
gradient.addColorStop(1, "#ff0000");

RENDERING TECHNIQUES

91

Move the middle ratio around to see how that affects the gradient. Instead of 0.5, try 0.25 or 0.75.

The next example is a straight alpha blend. The colors are the same; only the alpha changes:

//all black alpha blend
gradient.addColorStop(0, "#000000"); //alpha 100%
gradient.addColorStop(1, "rgba(0, 0, 0, 0)"); //alpha 0%

Finally, instead of using points, define two circles and use a radial gradient:

c1 = {x: 150, y: 150, radius: 0},
c2 = {x: 150, y: 150, radius: 50},
gradient = context.createRadialGradient(c1.x, c1.y, c1.radius,
 c2.x, c2.y, c2.radius);

You can try all the same tricks that you used for the linear gradient fill in the radial version. Or, see how
this looks in example 09-gradient-fill-radial.html.

Loading and drawing images
You might want to draw an external image into your animation. There are two ways to access the image:
Load a URL while the script is running or use the DOM interface to access an embedded image element.
After the image has loaded, you can render it to the canvas using the drawing API.

Loading images
To load an image at runtime, create a new Image object and set its src property to the URL path of an
image file. When the image has finished loading, it executes the callback function set as its onload
method. In this simple example, we draw the image to the canvas after it has been completely loaded
(document 10-load-image.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Load Image</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 image = new Image();

 image.src = "picture.jpg";
 image.onload = function () {
 context.drawImage(image, 0, 0);
 };
 };

CHAPTER 4

92

 </script>
 </body>
</html>

We drew the image to the canvas using the method context.drawImage, which takes an image element
and an x and y position on the canvas. This code is placed within the image.onload callback; otherwise,
the command would have executed before the image loaded, rendering nothing.

The context.drawImage method can be invoked in three ways, using multiple arguments:

 drawImage(image, dx, dy): Draws an image at the canvas position (dx, dy), which is the
upper-left corner of the image.

 drawImage(image, dx, dy, dw, dh): Scales the image using dw for width and dh for height
and draws it to the canvas position (dx, dy).

 drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh): Clips an image to the rectangle (sx,
sy, sw, sh), scales it to (dh, dw), and draws it at position (dx, dy).

Using image elements
You can also access an image element in your HTML document using the DOM. This has the advantage
of already loading the image by the time the script gets to it. If you do it this way, use some CSS to hide
the image element or you might see it rendered twice in your document. Here’s the completed example
(11-embed-image.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Embed Image</title>
 <link rel="stylesheet" href="style.css">
 <style>
 #picture {
 display: none;
 }
 </style>
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>

 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 image = document.getElementById('picture');

 context.drawImage(image, 0, 0);
 };
 </script>
 </body>
</html>

RENDERING TECHNIQUES

93

Using video elements
Similar to drawing a still image, we can also render a video to the canvas—one frame at a time. The video
element is an exciting addition to the HTML5 specification that allows movies to play in the web browser,
without having to use plug-ins like Adobe Flash. While this isn't the kind of animation that this book is
about, you can still create some interesting effects once it's displayed on the canvas.

To include a video in your document, add the following element to your HTML:

<video controls autobuffer>
 <source src="movieclip.mp4" type="video/mp4"/>
 <source src="movieclip.webm" type="video/webm"/>
 <source src="movieclip.ogv" type="video/ogg"/>
 <p>This browser does not support the <code>video</code> element.</p>
</video>

Here, the controls attribute adds buttons for the user to play and stop the video. autobuffer tells the
browser to begin downloading the file immediately, so it's ready to play when the user starts it. The <p>
element is provided as a fallback to warn the user if their browser does not support HTML5 video; and if it
is supported, the warning is not displayed.

There are multiple <source> tags to provide alternatives for the video format. Due to licensing restrictions,
different browsers support different video file formats. To make sure a video plays across HTML5-capable
browsers, you must supply multiple versions of the it. MP4 is a closed format which, at the time of writing,
is required by IE and Safari. WebM and Ogg are both open, royalty-free, formats that can be played in
Chrome, Firefox, and Opera. Since this is a rapidly evolving area, test your videos and formats in as many
browsers as you can to make sure they play correctly.

In the next example, we load a video and draw it frame-by-frame to the canvas element. Since a video is
just a collection of still images played in order, the canvas is updated in an animation loop, which draws
the current frame of the video. In this document, the canvas element is set to the same dimensions as the
sample video in order to display the entire frame; you may need to adjust this depending on the size of
your video. Here's the code (12-video-frames.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Video Frames</title>
 <link rel="stylesheet" href="style.css">
 <style>
 #movieclip {
 display: none;
 }
 </style>
 </head>
 <body>
 <canvas id="canvas" width="640" height="360"></canvas>

 <video id="movieclip" width="640" height="360" autoplay>
 <source src="movieclip.mp4" type="video/mp4"/>

CHAPTER 4

94

 <source src="movieclip.webm" type="video/webm"/>
 <source src="movieclip.ogv" type="video/ogg"/>
 <p>This browser does not support the <code>video</code> element.</p>
 </video>
 <script src="utils.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 video = document.getElementById('movieclip');

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);

 context.drawImage(video, 0, 0);
 }());
 };
 </script>
 </body>
</html>

The important parts in bold. The autoplay attribute has been added to the video element which starts
playing it as soon as the page loads. We need a way to start the video, since its HTML element has been
hidden using CSS, and we do not have access to its built-in controls. If you don't have any videos handy,
you can use the samples provided with the source code of this book at www.apress.com.

The video element is related to the audio element, which is also new in HTML5. But let's not get ahead of
ourselves, you see how to add sound to your animations in Chapter 19.

Pixel manipulation
The drawing API provides direct access to the pixels that compose the image on the canvas. You can
create, read, and write the pixel data, which can be used to make some really cutting-edge effects and
animations in the web browser.

While direct pixel access is a powerful feature, manipulating them in a coherent way is an advanced topic.
The code here is intended to demonstrate some interesting visual effects that you can create when
working with pixels. Since we won't use these techniques anywhere else in the book, you can consider this
section as optional. If you get a little confused by the code (the implementation is not the most straight-
forward), or just want to move on to good stuff in the next chapter, feel free to skip over it. You can always
come back later.

Getting pixel data
Direct access to the pixels is provided by the ImageData object of the canvas context. To return a copy of
the pixel data for a rectangular area on the canvas element, call:

var imagedata = context.getImageData(x, y, width, height);

http://www.apress.com

RENDERING TECHNIQUES

95

This returns an object containing three properties: width, height, and data. The width and height
properties are the size of the image in pixels, and data is an array representing the image data. We will
look at this in more detail shortly.

To create a new, blank, ImageData object, specify the rectangle dimensions and call:

var imagedata = context.createImageData(width, height);

Alternatively, you can invoke this function with another ImageData object, e.g.
context.createImageData(anotherImageData). This creates a new object with the same dimensions
as the argument. The pixels of the new object are set to transparent black, as this method does not copy
the image data.

When reading pixel data, any external asset rendered to the canvas—image or video—
is served from the same domain as the document running the script. If a cross-origin
image is drawn to the canvas, it is marked as dirty, and you will no longer be able to
read the pixels; instead, a security exception error is thrown to the debugging console.
This is in the HTML5 specification and is consistent with the same-origin security policy
used by most web browsers. Consequently, even testing some examples on your local
machine might be impossible. Unless your browser provides options to ignore this
security policy, you'll need to upload everything to a server and test it from there.

Accessing pixel components

The data property of an ImageData object returns a one-dimensional array containing the values of the
pixel component colors in RGBA order, specified as integers in the range 0 to 255. (Note that alpha is also
assigned a value in this range; not the 0.0 to 1.0 range used in the CSS-style color format.) The pixels are
ordered left to right, row by row, from top to bottom.

For example, here's an array representing the image data of a 2 × 2 square. Each of the four pixels is set
to full red:

var pixels = [255, 0, 0, 255, 255, 0, 0, 255,
 255, 0, 0, 255, 255, 0, 0, 255];

The color components of the first pixel are marked in bold, and the array continues in groupings of four
elements—RGBA—for every pixel in the image. Each has its red and alpha channels set to full (255), and
its green and blue channels set to none (0).

You can access the values of any particular pixel by specifying an offset index for the array. Since each pixel is
represented by four elements, you can iterate over the image data, pixel by pixel, using the following:

for (var offset = 0, len = pixels.length; offset < len; offset += 4) {
 var r = pixels[offset], //red
 g = pixels[offset + 1], //green
 b = pixels[offset + 2], //blue
 a = pixels[offset + 3]; //alpha
}

CHAPTER 4

96

Sometimes you may want to access the pixel at a specific coordinate in the image. Here's how you can
determine its offset in the image data array:

var offset = (xpos + ypos * imagedata.width) * 4;

Once you have the offset index, you can access the pixel's component colors as before.

Painting pixel data
To paint an ImageData object onto the canvas, call context.putImageData(imagedata, x, y), where
x and y specify the top-left corner of the canvas to start drawing.

A pixel can be changed by isolating it in the image data array and assigning new values to its color
components. The updated pixel values can be painted to the canvas by passing it as the first argument to
putImageData.

For example, to remove the red color channel from an image on the canvas, iterate over each pixel, setting
its red component to 0:

var imagedata = context.getImageData(0, 0, canvas.width, canvas.height),
 pixels = imagedata.data

for (var offset = 0, len = pixels.length; offset < len; offset += 4) {
 pixels[offset] = 0; //red
 pixels[offset + 1] = pixels[offset + 1]; //green
 pixels[offset + 2] = pixels[offset + 2]; //blue
 pixels[offset + 3] = pixels[offset + 3]; //alpha
}

context.putImageData(imagedata, 0, 0);

Here, the image data array is assigned to pixels. (JavaScript objects—and hence arrays—are assigned
by reference, so a change to the pixels array is a change to imagedata.data, as they are the same
object.) We iterate over the pixels, jumping four elements at a time, and assign the values for the color
components. When we are finished, the updated imagedata object is drawn back to the canvas.

We'll use the same pixel iteration process in the next example. First, some red, green, and blue stripes are
drawn to the canvas so we have some image data to work with. Then, new color values are calculated for
each pixel by inverting the old ones, keeping in mind each component must be an integer from 0 to 255.
Here's the code for exercise 13-invert-color.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Invert Color</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {

RENDERING TECHNIQUES

97

 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d');

 //draw some red, green, and blue stripes
 for (var i = 0; i < canvas.width; i += 10) {
 for (var j = 0; j < canvas.height; j += 10) {
 context.fillStyle = (i % 20 === 0) ? "#f00" : ((i % 30 === 0) ? "#0f0" : "#00f");
 context.fillRect(i, j, 10, 10);
 }
 }

 var imagedata = context.getImageData(0, 0, canvas.width, canvas.height),
 pixels = imagedata.data;

 //pixel iteration
 for (var offset = 0, len = pixels.length; offset < len; offset += 4) {
 //invert each color component of the pixel: r,g,b,a (0-255)
 pixels[offset] = 255 - pixels[offset]; //red to cyan
 pixels[offset + 1] = 255 - pixels[offset + 1]; //green to magenta
 pixels[offset + 2] = 255 - pixels[offset + 2]; //blue to yellow
 //pixels[offset + 4] is alpha (the fourth component)
 }

 context.putImageData(imagedata, 0, 0);
 };
 </script>
 </body>
</html>

This is a relatively simple transformation, but as you might expect, effects like these can get very
complicated, and very processor intensive—especially when applied to animations. If you're making
something other than a fun demo, be mindful of the burden you may place on the user's machine.

Converting a color image to grayscale is another effect we can calculate easily. The luminance of each
pixel is calculated, where the color components are weighted to reflect the perceived intensity of different
light wavelengths. Just in case you think we're making these numbers up as we go along, the formula is, in
fact, defined by the International Commission on Illumination. Replace the pixel iteration for loop from the
last example with this one (document 14-grayscale.html):

//pixel iteration
for (var offset = 0, len = pixels.length; offset < len; offset += 4) {
 var r = pixels[offset],
 g = pixels[offset + 1],
 b = pixels[offset + 2],
 y = (0.2126 * r) + (0.7152 * g) + (0.0722 * b); //luminance

 pixels[offset] = pixels[offset + 1] = pixels[offset + 2] = y;
}

Now it looks like the striped image is being displayed on an old black-and-white television.

Let's make the next example more dynamic by introducing some user interactivity. We can use the mouse
position to affect the image data, and put the pixel processing in an animation loop to work on each frame.

CHAPTER 4

98

You can see that we're using the distance formula from Chapter 3 to get the distance from the mouse
cursor to the current pixel. The pixel iteration is slightly different in this example; we're using a double for
loop to specify the pixel's coordinate location on the canvas element. The code here can be found in
example 15-pixel-move.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Pixel Move</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas);

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);

 //draw some stripes: red, green, and blue
 for (var i = 0; i < canvas.width; i += 10) {
 for (var j = 0; j < canvas.height; j += 10) {
 context.fillStyle = (i % 20 === 0) ? "#f00" : ((i % 30 === 0) ? "#0f0" : "#00f");
 context.fillRect(i, j, 10, 10);
 }
 }

 var imagedata = context.getImageData(0, 0, canvas.width, canvas.height),
 pixels = imagedata.data;

 //pixel iteration
 for (var y = 0; y < imagedata.height; y += 1) {
 for (var x = 0; x < imagedata.width; x += 1) {

 var dx = x - mouse.x,
 dy = y - mouse.y,
 dist = Math.sqrt(dx * dx + dy * dy),
 offset = (x + y * imagedata.width) * 4,
 r = pixels[offset],
 g = pixels[offset + 1],
 b = pixels[offset + 2];

 pixels[offset] = Math.cos(r * dist * 0.001) * 256;
 pixels[offset + 1] = Math.sin(g * dist * 0.001) * 256;
 pixels[offset + 2] = Math.cos(b * dist * 0.0005) * 256;
 }
 }

RENDERING TECHNIQUES

99

 context.putImageData(imagedata, 0, 0);
 }());
 };
 </script>
 </body>
</html>

When you run this script, you should see an effect that can be described as a “psychedelic flashlight.” The
color values are passed to some trigonometry functions and scaled to fit within the range of color values.
We're just having fun here, so don't worry about what these functions are doing exactly, just understand
that we're trying to get some interesting looking colors. Feel free to change the values around and
experiment with your own color combinations.

For the last example in this chapter, we bring it back home to the first example: the simple drawing
application (01-drawing-app.html). But this time, we create a spray paint effect by drawing directly to
the pixels. Here's the code (example 16-spray-paint.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Spray Paint</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 imagedata = context.getImageData(0, 0, canvas.width, canvas.height),
 pixels = imagedata.data,
 brush_size = 25,
 brush_density = 50,
 brush_color;

 canvas.addEventListener('mousedown', function () {
 brush_color = utils.parseColor(Math.random() * 0xffffff, true); //to number
 canvas.addEventListener('mousemove', onMouseMove, false);
 }, false);

 canvas.addEventListener('mouseup', function () {
 canvas.removeEventListener('mousemove', onMouseMove, false);
 }, false);

 function onMouseMove () {
 //loop over each brush point
 for (var i = 0; i < brush_density; i++) {
 var angle = Math.random() * Math.PI * 2,
 radius = Math.random() * brush_size,
 xpos = (mouse.x + Math.cos(angle) * radius) | 0, //remove decimal

CHAPTER 4

100

 ypos = (mouse.y + Math.sin(angle) * radius) | 0,
 offset = (xpos + ypos * imagedata.width) * 4;

 //pixel component colors: r,g,b,a (0-255)
 pixels[offset] = brush_color >> 16 & 0xff; //red
 pixels[offset + 1] = brush_color >> 8 & 0xff; //green
 pixels[offset + 2] = brush_color & 0xff; //blue
 pixels[offset + 3] = 255; //alpha
 }

 context.putImageData(imagedata, 0, 0);
 }
 };
 </script>
 </body>
</html>

This script uses the event handlers we set up in the first example, and works the same way. When you
press the mouse button, a random “paint” color is assigned and the pixel drawing code is started. Within
an area around the mouse cursor, random pixels are filled in to simulate each splatter of paint. Play
around with the brush size and density, and, if you're feeling adventurous, change the way individual color
components are assigned to the pixels.

Pixel manipulation can be a powerful tool used for some advanced animations and effects. Although not
the focus of this book, it's fun to experiment with, and another way to render images to the canvas
element.

Important formulas in this chapter
You added a few more valuable tools to your collection in this chapter, mostly relating to handling color.

Convert hex to decimal

console.log(hexValue);

Convert decimal to hex

console.log(decimalValue.toString(16));

Combine component colors

color = red << 16 | green << 8 | blue;

Extract component colors

red = color24 >> 16 & 0xFF;
green = color24 >> 8 & 0xFF;
blue = color24 & 0xFF;

RENDERING TECHNIQUES

101

Draw a curve through a point

// xt, yt is the point you want to draw through
// x0, y0 and x2, y2 are the end points of the curve
x1 = xt * 2 - (x0 + x2) / 2;
y1 = yt * 2 - (y0 + y2) / 2;
context.moveTo(x0, y0);
context.quadraticCurveTo(x1, y1, x2, y2);

Summary
This chapter didn’t cover much about animation, but it did show you a number of ways to create visual
content, which you learn how to animate in future chapters. Specifically, the chapter covered color, the
canvas drawing API, loading images, and pixel manipulation.

These provide the foundational drawing tools you need to build dynamic, expressive content for your
animations. You use many of the techniques introduced in this chapter throughout the book, so it is useful
for you to know and understand them well now. In fact, you get your first hands-on experience using
several of these techniques in the next chapter, which covers velocity and acceleration.

Part II

Basic Motion

105

Chapter 5

Velocity and Acceleration

What we’ll cover in this chapter:

 Velocity

 Acceleration

Well, congratulations! You made it to the point in the book where the action finally starts. This means that
(a) you persevered through all the chapters so far, (b) you skimmed over the previous chapters and felt
like you knew enough of it to get by, or (c) you got bored and jumped ahead. However it happened, here
you are. Just remember, if you start having trouble, you can probably find help in an earlier chapter.

This chapter starts with basic motion: velocity, vectors, and acceleration. These concepts are used for
almost every bit of animation code you will write from here on out.

Velocity
The most basic property of something that moves is velocity. Many people equate the term velocity with
speed. That’s part of it, but only part. The concept of velocity contains an important second factor:
direction. That is pretty much our layman’s definition for velocity: speed in a particular direction. Let’s look
at exactly how this definition differs from simple speed.

If you got in a car at point X and drove 30 miles per hour for one hour, it would be difficult to find you. On
the other hand, if you drove due north for one hour at the same speed, we would know precisely where
you are. This is important in animation, because you need to know where to put your object. It’s fine to say
an object is moving at a certain speed, but you’re going to need some specific x, y coordinates to assign to
it on each frame to give it the illusion of motion. This is where velocity comes in. If you know where

CHAPTER 5

106

something is at the start of a particular frame, how fast it is moving, and in what direction, you know where
to put it at the start of the next frame.

The speed part of it is usually defined in terms of pixels per frame. In other words, if an object is at a
certain point as it enters a frame, it’s going to be so many pixels away from that point at the end of the
frame.

In most cases, using pixels per frame works fine, and it is definitely the simplest to program. However, due
to the unstable nature of frame rates in the web browser, using pixels per frame might make your
animation slow down at certain points when too much is happening, there is too much to compute, or the
computer is busy doing something else. If you are programming some kind of game or simulation in which
it is crucial that the animation proceeds at a uniform rate, you might want to use an interval-based
animation instead. We included an example of that approach in Chapter 19.

Before we start coding velocity, let’s talk a little bit about vectors, because that’s how velocity is generally
depicted.

Vectors and velocity
A vector is something that has magnitude and direction. In the case of velocity, the magnitude is the
speed. Vectors are drawn as arrows. The length of the arrow is its magnitude, and the direction the arrow
is pointing in is, naturally, the direction of the vector. Figure 5-1 shows some vectors.

Figure 5-1. A few vectors

It's important to understand that magnitude is always positive. Even a vector with a perceived negative
magnitude is just a vector going in the opposite direction, as illustrated in Figure 5-2.

VELOCITY AND ACCELERATION

107

Magnitude : 100
Direction : 180 degrees

You might say this is
Magnitude : –100
Direction : 180 degrees

But really it is
Magnitude : 100
Direction : 0 degrees

Figure 5-2. Negative velocity is really velocity in the opposite direction.

Note that vectors don’t have any set position. Even in the case of velocity, the vector doesn’t state where
something starts or where it ends; it just indicates how fast and in which direction the object is moving.
Thus, two vectors can be equal if they have the same direction and magnitude, even if they describe two
different objects in two different locations, as shown in Figure 5-3.

Figure 5-3. If vectors have the same magnitude and direction, they are the same. Position doesn’t matter.

Velocity on one axis
First let’s simplify things, by limiting velocity to a single axis: the x axis, or horizontal motion. That is, the
direction is zero degrees, due east, or from the left side of the screen to the right side of the screen—
however you want to look at it. The speed is just how many pixels it moves in that direction each frame.
Thus, if the velocity on the x axis is 1, the object will move 1 pixel each frame from left to right. This also
means that if the velocity is -1 on the x axis, it will move from right to left, 1 pixel each frame.

Already we are talking about a negative magnitude after you were just told there’s no such thing.
Technically speaking, the velocity is actually 1 and the direction is 180 degrees. Similarly, a positive y
velocity is that speed at 90 degrees (straight down), and a negative y velocity is 270, or -90 degrees
(straight up). In practice, though, when you calculate component x, y velocities, they always come through
as positive and negative numbers, and you often see writing in this book like, “The x velocity is -1.” So, if it
helps you, think of the minus sign as indicating “to the left” for x velocity or “up” for y velocity, rather than
meaning negative.

Throughout the book, we use vx to stand for velocity on the x axis, and vy to mean velocity on the y axis.
Positive vx means to the right, and negative vx means to the left. Positive vy means down, and negative
vy means up.

CHAPTER 5

108

For velocity on one axis, you simply add the velocity to the object’s position on that axis. Whatever your vx
is, you add it to the object’s x property on each frame.

Let’s see it in action. Many of the examples in this chapter (and in later chapters) need some kind of object
to move around. Rather than using valuable space drawing such an object in every script and example, we
make a Ball class that we can reuse. This class was first introduced in Chapter 3, but in case you didn't
keep it handy, here it is again. Include this code in the file ball.js, which we import into our main
document:

function Ball (radius, color) {
 if (radius === undefined) { radius = 40; }
 if (color === undefined) { color = "#ff0000"; }
 this.x = 0;
 this.y = 0;
 this.radius = radius;
 this.rotation = 0;
 this.scaleX = 1;
 this.scaleY = 1;
 this.color = utils.parseColor(color);
 this.lineWidth = 1;
}

Ball.prototype.draw = function (context) {
 context.save();
 context.translate(this.x, this.y);
 context.rotate(this.rotation);
 context.scale(this.scaleX, this.scaleY);
 context.lineWidth = this.lineWidth;
 context.fillStyle = this.color;
 context.beginPath();
 //x, y, radius, start_angle, end_angle, anti-clockwise
 context.arc(0, 0, this.radius, 0, (Math.PI * 2), true);
 context.closePath();
 context.fill();
 if (this.lineWidth > 0) {
 context.stroke();
 }
 context.restore();
};

Now, any time we refer to this class, you should include this script in your main document, and you can
create a new ball by calling new Ball(size, color).

Now that you have something to move, here’s the first velocity example, document 01-velocity-1.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Velocity 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>

VELOCITY AND ACCELERATION

109

 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 vx = 1;

 ball.x = 50;
 ball.y = 100;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball.x += vx;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

In this example, first you set an x velocity (vx) of 1. Remember that is 1 pixel per frame, so on each frame,
the vx is added to the ball’s x property. The window.onload function is called when the browser is ready
for us to work with the HTML document and goes through the business of getting the ball onto the canvas
and setting up the animation loop using drawFrame and window.requestAnimationFrame. On each
frame, the ball is placed 1 pixel to the right of where it was on the previous frame. Try it out. Pretty good
illusion of motion, eh?

Play around with it. Give it higher values for vx, or try some negative values and watch the object move in
the other direction. See whether you can make the object move on the y axis instead.

Velocity on two axes
Moving along two axes is simple. You define a vx and a vy, and then add the vx to the x property and the
vy to the y property on each frame. So, for each frame, the object is going to move so many pixels on the
x axis and so many pixels on the y axis.

The following example (02-velocity-2.html) demonstrates this:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Velocity 2</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>

CHAPTER 5

110

 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 vx = 1,
 vy = 1;

 ball.x = 50;
 ball.y = 100;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball.x += vx;
 ball.y += vy;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

Again, play around with the velocity variables until you get a good feel for them. Don’t forget to try out
some negative values.

Angular velocity
So far, so good. You have some real animation going on, using velocity on two axes. But in many cases—
maybe most cases—x and y velocity won’t be the initial data you have.

We are kind of cheating with the definition of velocity here. We said it’s speed in a direction, but now you
have two different speeds in two different directions. On the canvas, you position objects by placing them
on x, y coordinates. So you need to end up with a velocity and position on both axes, but that’s not
necessarily how you start.

What if you have a value for speed and an angle for direction, per the definition. Say you want something
to move at an angle of 45 degrees and a speed of 1 pixel per frame. There isn’t any vx or vy, or anything
even similar in that description.

Fortunately, you’ve already been introduced to the tools you need to derive vx and vy from that
description. Think back to the discussion of trigonometry in Chapter 3. Now, look at Figure 5-4, which
shows what you want the ball to do on each frame: Move 1 pixel at an angle of 45 degrees.

VELOCITY AND ACCELERATION

111

45 degrees

1 pixel

Figure 5-4. A magnitude and a direction

Does this diagram look familiar? How about if I add another line, as shown in Figure 5-5? What do you
know? You have a right-angle triangle, with one angle and the hypotenuse defined!

45 degrees

1 pixel

Figure 5-5. Magnitude and direction mapping becomes a right-angle triangle.

Notice that the two legs of that triangle lie on the x and y axes. In fact, the leg that lies on the x axis is
equal to the distance the ball is going to move on the x axis. The same goes for the leg on the y axis.
Remember that in a right-angle triangle, if you have one side and one angle, you can find all the rest. So,
given the 45 degrees and the hypotenuse of 1 pixel, you should be able to use Math.cos and Math.sin to
find the lengths of vx and vy.

The side adjacent to the angle is vx. The cosine of an angle is the adjacent/hypotenuse. Or, stated
another way, the adjacent side is the cosine of the angle times the hypotenuse. Similarly, the opposite side
is vy. Sine is opposite/hypotenuse, or the opposite is the sine times hypotenuse.

Here’s the formula you would use:

vx = Math.cos(angle) * speed;
vy = Math.sin(angle) * speed;

Now don’t you dare forget to convert the 45 degrees to radians before passing it into the Math functions!
This is what the code looks like after we plug in example values:

CHAPTER 5

112

vx = Math.cos(45 * Math.PI / 180) * 1;
vy = Math.sin(45 * Math.PI / 180) * 1;

These functions each return a value of approximately 0.707. After you have the vx and the vy, you can
easily add these to the x, y position of the object you are animating.

The next example (03-velocity-angle.html) has the following code:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Velocity Angle</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 angle = 45,
 speed = 1;

 ball.x = 50;
 ball.y = 100;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var radians = angle * Math.PI / 180,
 vx = Math.cos(radians) * speed,
 vy = Math.sin(radians) * speed;

 ball.x += vx;
 ball.y += vy;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

The main difference here is that you start off with angle and speed rather than vx and vy. The velocities
are calculated as local variables, used, and discarded. Of course, in a simple case like this, where the
angle and speed are never changing, it makes more sense to calculate the velocities once and save them
as variables at the top of the script. But in most advanced motions, both the direction and speed of motion
will constantly change, so the vx and vy will not remain the same.

VELOCITY AND ACCELERATION

113

To experiment with this example, change the angle around. See for yourself that you can make the ball
travel at any speed and any angle by simply changing the two numbers.

Now, let’s take another look at this example in terms of vectors.

Vector addition
Vector addition is when you have two vectors working in a system and you want to find the resultant
overall vector. Here, you have a vector on the x axis, another vector on the y axis, and an overall velocity
vector. You add vectors by simply placing them together head to tail. The resultant vector is the line you
can draw from the starting point of the first vector on the chain to the ending point of the last one. In Figure
5-6, you can see three vectors added together and their resultant vector.

Vector 1

Vector 2

Vector 3

Resultant
Vector

Figure 5-6. Vector addition

It doesn’t matter in what order you place the vectors; the result is always the same. And time has no part in
it. You can say an object moved this way, it moved that way, and then it moved the other way, in any
order. Or you can say that it moved in all three ways at once. The result is that it wound up moving at a
certain speed in a certain direction when all was said and done.

Let’s go back to our example. If you lay down the x-axis velocity vector, and then put the y-axis velocity
vector on the end of that, the resulting line is the overall velocity. Figure 5-7 illustrates the velocities as
vectors.

CHAPTER 5

114

vx

vy
Total

velocity

Figure 5-7. This represents velocities as vectors, and it looks like the same right-angle triangle pictured in Figure 5-5!
Take that as a sign that you are doing something right.

A mouse follower
Let’s use the velocity concepts to expand on an earlier concept. In Chapter 3, you built an example with an
arrow that always pointed to the mouse. That example used Math.atan2 to compute the angle between
the mouse and the arrow, and then rotated the arrow so it lined up with that angle.

With what you just learned, you can now throw some speed into the mix and get a velocity based on the
current angle. We then move the arrow based on the mouse position so it follows our cursor. This example
uses the same Arrow class, rather than the ball. So find that file, or rewrite the class and put it in the same
directory as the next document, 04-follow-mouse.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Follow Mouse</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="arrow.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 arrow = new Arrow(),
 speed = 3;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

VELOCITY AND ACCELERATION

115

 var dx = mouse.x - arrow.x,
 dy = mouse.y - arrow.y,
 angle = Math.atan2(dy, dx), //radians
 vx = Math.cos(angle) * speed,
 vy = Math.sin(angle) * speed;

 arrow.rotation = angle;
 arrow.x += vx;
 arrow.y += vy;
 arrow.draw(context);
 }());
 };
 </script>
 </body>
</html>

Although this is a complex effect, there shouldn’t be anything in here that you don’t fully understand by
now. You get the x distance and y distance to the mouse, and from that using Math.atan2 to get the angle
that forms. You then use that angle to rotate the arrow, and using Math.cos and Math.sin along with the
speed to find the x and y velocities. Finally, you add the velocities to the position.

Velocity extended
We are entering into dangerous territory here, but this book takes the definition of velocity into places it
was never meant to go. Although in a strict sense velocity refers to change of position and physical motion
through space, there’s no need to limit the concepts you just learned to only the x and y properties of
objects.

An object you display on the canvas can potentially have a lot of properties to tinker with, and almost all of
them can accept a wide range of values that you can change over time to produce animation. What we
discuss here is the rate of change, or speed, so perhaps velocity isn’t the best word for it. But the concept
is similar, so we often continue to use the word velocity in the variable names when describing something
that changes a property over time.

As an example, we can spin an object around. In this case, you change the object’s rotation property on
each frame by adding a value to it. You can make the object spin quickly by adding a high value to the
rotation property on each frame, or have it spin more slowly by adding a smaller value. Correct or not,
we usually refer to the variable that holds the spinning speed as vr, for rotational velocity.

Using the familiar Arrow class (if you look in its draw method, you'll see the rotation property is
referenced in the call to context.rotate), you can come up with something like this (05-rotational-
velocity.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Rotational Velocity</title>
 <link rel="stylesheet" href="style.css">
 </head>

CHAPTER 5

116

 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="arrow.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 arrow = new Arrow(),
 vr = 2; //degrees

 arrow.x = canvas.width / 2;
 arrow.y = canvas.height / 2;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 arrow.rotation += vr * Math.PI / 180; //to radians
 arrow.draw(context);
 }());
 };
 </script>
 </body>
</html>

In terms of velocity here, the speed is 2 and the direction is clockwise. We might even get away with that
definition, because there’s still some motion going on. When we start using terms like “alpha velocity” (how
fast something is fading in or out), it starts confusing people. Still, it is useful to think of such properties in
these same terms. We want to change the alpha at a certain rate by adding or subtracting to its value on
each frame. As we often find ourselves changing several properties over time, each at certain rates, it’s
nice to relate them all by calling them velocities. Thus, we might wind up with something like this:

arrow.x += vx;
arrow.y += vy;
arrow.alpha += vAlpha;
arrow.rotation += vr;
arrow.scaleX = arrow.scaleY += vScale;
// etc.

You see a lot of examples like this later in the book, so please forgive the occasional v.

That about does it for velocity and its “cousins.” Now, let’s move on to acceleration.

Acceleration
It’s common to think of acceleration as speeding up and deceleration as slowing down. And although this
is not incorrect, for this book, we use a slightly more technical definition for acceleration.

VELOCITY AND ACCELERATION

117

Many similarities exist between velocity and acceleration in terms of how they are described. They are
both vectors. Like velocity, acceleration is described as a value and a direction. However, whereas velocity
changes the position of an object, acceleration changes its velocity.

Think of it this way. You get in your car, start it up, and put it in gear. What is your velocity? It’s zero. By
stepping on the gas pedal (also known as the accelerator), your velocity begins to change (at least the
speed portion of it; the direction is changed with the steering wheel). After a second or two, you’re going 4
or 5 miles per hour (mph). Then your speed increases to 10 mph, 20 mph, 30 mph, and so on. The engine
is applying force to the car to change its velocity.

Thus, you have the layman’s definition for acceleration: a force that changes the velocity of an object.

In purely coding terms, you can say that acceleration is a value that you add to a velocity property.

Here’s another example. Say you have a spaceship that needs to go from planet A to planet B. Its
direction is whatever direction planet B happens to be in relation to planet A. It points in that direction and
fires its rockets. As long as those rockets are firing, force is being applied to the ship, and its velocity is
going to change. In other words, the spaceship continues to go faster and faster.

At some point, the captain decides the ship is going fast enough, and he might as well conserve fuel, so he
shuts down the rockets. Assuming there is no friction in space, the ship continues along at the same
velocity. As the rockets are no longer firing, no more force is being applied to the ship. Because there is no
more acceleration, the velocity does not change.

Then the ship approaches its goal. It needs to slow down or it’s going to fly past planet B (or if the
navigator was accurate enough, the ship is going to become a part of planet B). So what does the captain
do? You don’t have brakes in space—there’s nothing for the ship to grab a hold of. Instead, the captain
turns the ship around so it faces the opposite direction, and fires up the rockets again. This applies
negative acceleration, or acceleration in the opposite direction. Really, this is the same thing we covered
while discussing vectors. The force is again changing the velocity, but this time it is reducing the velocity.
The velocity will get less and less, and eventually arrive at zero. Ideally, that will coincide with the point
when the ship is a couple of inches above the surface of the planet. At that point, the captain can kill the
rockets and let gravity finish the job. (We talk about gravity in the “Gravity as Acceleration” section, later in
the chapter.)

Acceleration on one axis
Let’s put what you just learned into practice in JavaScript. Like the first velocity example, this first
acceleration example stays on one axis. We jump back to using the Ball class for the next few examples.

Here’s the code for the first acceleration exercise (06-acceleration-1.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Acceleration 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>

CHAPTER 5

118

 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 vx = 0,
 ax = 0.1;

 ball.x = 50;
 ball.y = 100;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 vx += ax;
 ball.x += vx;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

Here, you start with velocity (vx) being zero. The acceleration (ax) is 0.1. This is added to the velocity on
each frame, and then the velocity is added to the ball’s position.

Test this example. You see that the ball starts moving very slowly. By the time it leaves the canvas, it’s
zipping right along.

Now, let’s get closer to the spaceship example and allow the ball to turn the acceleration off and on, and
even reverse it. You can use the cursor keys for this. You know how to listen for keyboard events from
Chapter 2, and you can find the key that caused that event by checking the keyCode property of the event
object that gets passed to the event handler. This is a numeric value that corresponds to the particular key
being pressed. For now, we are concerned about the left cursor key (keyCode value 37) and the right
cursor key (keyCode value 39), and use these to change the acceleration. Here’s the code (07-
acceleration-2.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Acceleration 2</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>

VELOCITY AND ACCELERATION

119

 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 vx = 0,
 ax = 0;

 ball.x = canvas.width / 2;
 ball.y = canvas.height / 2;

 window.addEventListener('keydown', function (event) {
 if (event.keyCode === 37) { //left
 ax = -0.1;
 } else if (event.keyCode === 39) { //right
 ax = 0.1;
 }
 }, false);

 window.addEventListener('keyup', function () {
 ax = 0;
 }, false);

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 vx += ax;
 ball.x += vx;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

In this example, you simply check whether either the left or right cursor key is down. If the left cursor key is
down, you set ax to a negative value. If the right cursor key is down, make it positive. If neither is down,
set it to zero. In the drawFrame function, the velocity is added to the position just like before.

Test the example. You see that you don’t have complete control over the speed of the object. You can’t
stop it on a dime, so to speak. You can only slow it down to the point it stops. And if you slow it down too
much, it starts going in the opposite direction. See whether you can stop it before it hits the edge of the
canvas element.

I’m sure some game ideas are already popping into your head. Hold on to them because you’re about to
expand your mastery of this technique many times over.

Acceleration on two axes
As with velocity, you can have acceleration on the x axis and y axis at the same time. You set up an
acceleration value for each axis (we usually use the variable names ax and ay), add those to vx and vy,
and finally add vx and vy to the x and y properties.

CHAPTER 5

120

It’s easy to adapt the previous example to work with the y axis as well. You need to add the following:

 The ay and vy variables

 Checks for the up and down cursor keys

 The right acceleration to the right velocity

 Velocity to the corresponding axis position

Here’s the code (08-acceleration-3.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Acceleration 3</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 vx = 0,
 vy = 0,
 ax = 0,
 ay = 0;

 ball.x = canvas.width / 2;
 ball.y = canvas.height / 2;

 window.addEventListener('keydown', function (event) {
 switch (event.keyCode) {
 case 37: //left
 ax = -0.1;
 break;
 case 39: //right
 ax = 0.1;
 break;
 case 38: //up
 ay = -0.1;
 break;
 case 40: //down
 ay = 0.1;
 break;
 }
 }, false);

 window.addEventListener('keyup', function () {

VELOCITY AND ACCELERATION

121

 ax = 0;
 ay = 0;
 }, false);

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 vx += ax;
 vy += ay;
 ball.x += vx;
 ball.y += vy;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

Notice that we moved the left/right/up/down checks into a switch statement, because all of the if
statements were too much.

Play around with this one for a while. You see that you can now navigate all over the canvas. Try to get the
object moving, say, left to right, and then press the up key. Note that the x velocity is not affected at all.
The object keeps moving on the x axis at the same rate. You added some y velocity into the picture. This
is equivalent to the spaceship turning 90 degrees and firing the rockets.

Gravity as acceleration
So far, we’ve been talking about acceleration in terms of a force applied to an object by the object itself,
such as a car engine or a rocket. That’s certainly valid, but there’s another aspect to acceleration. It
happens that any force that acts to change the velocity of an object uses the principle of acceleration. This
includes such things as gravity, magnetism, springs, rubber bands, and so on.

You can look at gravity in a couple of ways. From the wide-angle perspective of the solar system, gravity is
an attraction between two bodies. The distance and angle between those two bodies must be taken into
account to figure the actual acceleration on each body.

The other way to look at gravity is from a close-up viewpoint, here on earth, or very near it. In our everyday
existence, gravity does not noticeably change depending on our distance from the earth. Although
technically speaking, the force of gravity is slightly less when you fly in a plane or up on a mountain, it’s
nothing you notice. So, when simulating gravity on this level, you can define it as a set value, as you saw
in the earlier examples with the acceleration variables.

Also, because the earth is so large and we are so small, it’s easy to ignore any actual direction of
acceleration and just say that the direction is “down.” In other words, no matter where your object is, you
can safely define gravity as acceleration on the y axis alone.

To put it into code, all you need to do is define a value for the force of gravity and add it to the vy on each
frame. Generally speaking, a fraction works well, something like 0.1 or below. Much more than that, and
things “feel” too heavy. With smaller values, things seem to float like feathers. Of course, you can always

CHAPTER 5

122

use these effects to your advantage—for example, to create simulations of different planets with varying
gravities.

This next example adds gravity. The full code for this is in 09-gravity.html, but we won’t list it all out. It
has only a few differences from 08-acceleration-3.html. In addition to the document name being
changed, we added one variable to the list of variables described at the beginning of the script:

var gravity = 0.02;

And added one line to the drawFrame function:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 vx += ax;
 vy += ay;
 vy += gravity;
 ball.x += vx;
 ball.y += vy;
 ball.draw(context);
}());

We made the gravity value low so the ball doesn’t go off the screen too quickly, and you can still control it
with the keys. What you created are all the physics of the old Lunar Lander game. Add in some better
graphics and a little collision detection, and you have yourself a hit! (We help you with the latter point;
graphics are up to you.)

Notice that first you add the acceleration from the key presses to the vx and vy, and then you add the
gravity to the vy. Dealing with complex systems of multiple forces winds up not being that complex. You
calculate the acceleration of each force and tack it onto the velocity. No complex averaging or factoring
happens. Each force just gets added on. When you’ve handled all the forces, you add the velocity to the
position. Here, you use only a couple of forces. Later in the book, you calculate many different forces
acting on a single object.

This goes back to vector addition. If you start off with the original velocity as a vector, each acceleration,
gravity, or force is an additional vector tacked on to that velocity. When you’ve added all of them on, draw
a line from the beginning to the end and you have your resulting velocity. You find it’s the same as if you
added on the x and y components of each force.

Now imagine that your object is a hot air balloon. You probably want to add a force called lift. This is
another acceleration on the y axis. This time, however, it’s negative, or in the “up” direction. Now, you have
three forces acting on the object: the key force, gravity, and lift. If you think about it, or try it out, you see
that the lift force needs to be slightly stronger than the gravity force in order for the balloon to rise. This is
logical—if they were exactly equal, they would cancel each other out, and you’d be back to square one,
with only the key force having any effect.

Another one to try is creating some wind. Obviously, this is a force on the x axis. Depending on which
direction the wind is blowing, it can be a positive or negative force, or as you now know, a 0- or 180-
degree direction.

VELOCITY AND ACCELERATION

123

Angular acceleration
As mentioned, acceleration has a value—the force—and a direction, just like velocity. And like velocity, if
you start with those two factors, you need to break them down into the component x and y forces. Now, if
you are paying attention, you know that the way to do that is by using Math.cos and Math.sin. Here’s
how that looks:

var force = 10,
 angle = 45, //degrees. Need to convert!
 ax = Math.cos(angle * Math.PI / 180) * force,
 ay = Math.sin(angle * Math.PI / 180) * force;

Now that you have acceleration for each axis, you can update the velocity on each axis, and from that,
update the object’s position.

Let’s resurrect the mouse follower example from earlier in the chapter and make it work with acceleration
instead of just plain velocity. Because that example used the Arrow class, find the arrow.js file to include
in this exercise. Remember that in the earlier incarnation, you took the angle from the arrow to the mouse
and used that to determine vx and vy. This time, you use the same calculations, but employ them to
determine ax and ay instead. Then you add the acceleration values to the velocity values and the velocity
values to the x and y properties. Here’s the code (10-follow-mouse-2.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Follow Mouse 2</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="arrow.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 arrow = new Arrow(),
 vx = 0,
 vy = 0,
 force = 0.05;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = mouse.x - arrow.x,
 dy = mouse.y - arrow.y,
 angle = Math.atan2(dy, dx), //radians
 ax = Math.cos(angle) * force,
 ay = Math.sin(angle) * force;

CHAPTER 5

124

 arrow.rotation = angle;
 vx += ax;
 vy += ay;
 arrow.x += vx;
 arrow.y += vy;
 arrow.draw(context);
 }());
 };
 </script>
 </body>
</html>

Notice that we also change the variable speed into force and make it much smaller. Because
acceleration is additive, you want to start with small amounts because it builds up quickly. Also, now vx
and vy are declared at the top of the script; earlier, they were calculated newly on each frame, but now
you need to keep track of them and add or subtract from their value each time. Of course, you can do
away with the ax and ay variables here altogether and just add the result of the sine and cosine lines
directly to the velocities. Here, they are separated for clarity.

Run the example and you see the accelerating arrow swinging around a moving cursor and pointing
toward the mouse position the entire time. But look back to the first motion example you did at the
beginning of the chapter, and see just how far you’ve come. By learning just a couple of basic principles,
you’ve now created something a million times more fluid and dynamic—something that almost feels alive.
And you’re not even at the end of the chapter yet!

Let’s pull everything together and see how much further you can go with it.

A spaceship
We’ve been talking a lot about spaceships travelling from here to there. Well, with the ground you’ve
covered so far, you should be able to put together a reasonable spaceship simulation.

Here’s the plan. The spaceship will be a class of its own that takes care of drawing itself, much like the
Arrow or Ball classes you’ve been using. You can use the left and right keys to rotate it left and right. The
up key will act to fire the rocket. Of course, the rocket is in the back of the ship and fires straight back.
Thus, the force that the rocket applies will cause acceleration in the direction the ship is facing at that time.
Actually, what you’re going to make is like the ship in the old game Asteroids, but without the actual
asteroids.

First, you need a ship class. Its draw method uses a few lines of canvas drawing API code to render four
short, white lines, as an homage to the original that we are copying. Save the following code in the file
ship.js to import into the next example:

function Ship () {
 this.x = 0;
 this.y = 0;
 this.width = 25;
 this.height = 20;
 this.rotation = 0;
 this.showFlame = false;

VELOCITY AND ACCELERATION

125

}

Ship.prototype.draw = function (context) {
 context.save();
 context.translate(this.x, this.y);
 context.rotate(this.rotation);
 context.lineWidth = 1;
 context.strokeStyle = "#ffffff";
 context.beginPath();
 context.moveTo(10, 0);
 context.lineTo(-10, 10);
 context.lineTo(-5, 0);
 context.lineTo(-10, -10);
 context.lineTo(10, 0);
 context.stroke();
 if (this.showFlame) {
 context.beginPath();
 context.moveTo(-7.5, -5);
 context.lineTo(-15, 0);
 context.lineTo(-7.5, 5);
 context.stroke();
 }
 context.restore();
};

The draw method references the ship's property showFlame, which is a true or false value. This way, you
can draw the ship with or without a flame showing. This is useful to show that the engines are firing. You
can see how it looks with and without the flame in Figures 5-8 and 5-9.

Figure 5-8. The future of space travel.

CHAPTER 5

126

Figure 5-9. All systems go.

Ship controls
With the ship now built, let’s get its controls working. As we mentioned, it has three controls: turn left, turn
right, and fire rocket, mapped to the left, right, and up keys, respectively. The basic structure of this
example is similar to 08-acceleration-3.html, listed earlier in the chapter, with handlers for the
keydown and keyup events and a switch statement to handle the keys that were pressed. Because we're
drawing a white ship in outer space, we need to change the canvas element background color to black—
so we can see it. We can do this by adding a CSS style to the document header. First, here's the code for
the complete file, then we'll step through it (example 11-ship-sim.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Ship Sim</title>
 <link rel="stylesheet" href="style.css">
 <style>
 #canvas {
 background-color: #000000;
 }
 </style>
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ship.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ship = new Ship(),
 vr = 0,
 vx = 0,
 vy = 0,

VELOCITY AND ACCELERATION

127

 thrust = 0;

 ship.x = canvas.width / 2;
 ship.y = canvas.height / 2;

 window.addEventListener('keydown', function (event) {
 switch (event.keyCode) {
 case 37: //left
 vr = -3;
 break;
 case 39: //right
 vr = 3;
 break;
 case 38: //up
 thrust = 0.05;
 ship.showFlame = true;
 break;
 }
 }, false);

 window.addEventListener('keyup', function () {
 vr = 0;
 thrust = 0;
 ship.showFlame = false;
 }, false);

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ship.rotation += vr * Math.PI / 180;
 var angle = ship.rotation, //in radians
 ax = Math.cos(angle) * thrust,
 ay = Math.sin(angle) * thrust;
 vx += ax;
 vy += ay;
 ship.x += vx;
 ship.y += vy;
 ship.draw(context);
 }());
 };
 </script>
 </body>
</html>

First you define vr, rotational velocity, or how fast the ship is going to turn when you tell it to turn. It’s set to
zero to start, which means the ship won’t turn at all:

var vr = 0;

But in the keydown event listener, if the switch statement finds that the left or right cursor keys are
pressed, it sets vr to -3 or 3, respectively:

CHAPTER 5

128

case 37: //left
 vr = -3;
 break;
case 39: //right
 vr = 3;
 break;

Then, in the drawFrame function, you add vr to the ship’s current rotation, turning the ship one way or the
other. When a key is released, reset vr to zero. That takes care of rotation, now let’s look at thrust.

You have your spaceship there, and you aimed it where you want it to go—3, 2, 1, blastoff! So, how do
you get this thing to go somewhere? Well, it’s pretty much just the opposite of what you just did in the
revised mouse follower example. In that example, you calculate an angle and then figure out rotation and
acceleration based on that. Here, you start with the rotation and work backward to find the angle and then
the force on x and y

Declare a thrust variable to keep track of how much force is applied at any given time. Obviously,
acceleration is going to happen only if the rocket is fired, so this starts out as zero:

var thrust = 0;

Then the switch statement comes back into play. If the up cursor key is held down, set thrust to a small
value, say 0.05. This is also where you want to visually indicate that some thrust is applied, by drawing the
flame on the ship:

case 38: //up
 thrust = 0.05;
 ship.showFlame = true;
 break;

Again, when a key is released, set thrust back to zero, and kill the flame.

window.addEventListener('keyup', function () {
 vr = 0;
 thrust = 0;
 ship.showFlame = false;
}, false);

Now, when you get down to the drawFrame function, you know the rotation and you know the force being
applied, if any. Convert rotation to radians and use sine and cosine, along with the thrust variable, to find
the acceleration on each axis:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ship.rotation += vr * Math.PI / 180;
 var angle = ship.rotation, //in radians
 ax = Math.cos(angle) * thrust,
 ay = Math.sin(angle) * thrust;

 vx += ax;

VELOCITY AND ACCELERATION

129

 vy += ay;
 ship.x += vx;
 ship.y += vy;
 ship.draw(context);
}());

Test it and fly your ship around. It’s pretty amazing just how easily you can make some complex motion
like that.

Important formulas in this chapter
Now you have a few more tools for your toolbox, here they are:

Convert angular velocity to x, y velocity

vx = speed * Math.cos(angle);
vy = speed * Math.sin(angle);

Convert angular acceleration (any force acting on an object) to x,
y acceleration

ax = force * Math.cos(angle);
ay = force * Math.sin(angle);

Add acceleration to velocity

vx += ax;
vy += ay;

Add velocity to position

object.x += vx;
object.y += vy;

Summary
This chapter covered basic velocity and acceleration, the two factors that make up the vast majority of your
programmed animations. You learned about vectors and vector addition. You saw how to accomplish
velocity on a single axis, on two axes, and on an angle by converting it to its x and y components. And you
learned about acceleration—how it relates to velocity and how to apply it to a single axis, two axes, or an
angle.

The biggest thing to take from this chapter is a basic understanding of the application of acceleration and
velocity, as described in the following steps:

CHAPTER 5

130

 Convert existing angular velocity to component x, y velocities.

 Convert angular acceleration to component x, y acceleration.

 Add the acceleration on each axis to the velocity on that axis.

 Add the velocity on each axis to the position on that axis.

In the next chapter, you build on these concepts, adding some environmental interaction with bouncing
and friction.

131

Chapter 6

Boundaries and Friction

What we’ll cover in this chapter:

 Environmental boundaries

 Friction

You covered a lot of ground in the preceding chapters. You can create graphics with the canvas drawing
API and use all kinds of forces to move them around the screen. However, you’ve probably run into a
small annoyance with many of the examples: If an object moves off the screen, it’s gone. Sometimes, you
have no way of knowing how to get it back and your only option is to reload the web page.

In most real-world scenarios, some boundaries exist, usually the ground beneath you, and sometimes
walls with a ceiling. Unless you’re making a space simulator, you want some environmental barriers to
keep your objects in view. And if your scene does take place in space, you need a way to keep your main
objects in view.

Another annoyance with the examples so far is the animation environment fails to have any effect on the
object as it moves. The object starts moving, and it keeps on going in the direction it’s headed at the same
speed, until you apply some other force. Actually, this isn’t a bug at all, but the way the universe works.
Inertia is the tendency of an object in motion to stay in motion unless acted on by another force. Or from a
programming perspective, the object's velocity won’t change unless something changes it. One thing in the
physical world that changes an object’s velocity is some sort of friction, even if only the friction of air. So,
although you successfully simulated an object moving in a vacuum, you might want to create a scene
more like your everyday environment.

This chapter covers both of these issues: First, you learn how to add boundaries to contain your objects,
and then how to apply friction to these objects.

CHAPTER 6

132

Environmental boundaries
With any activity you’re involved in—whether it’s playing a sport, working at your job, building a house,
etc.—there’s a space for that activity. This enables you to focus your attention on what happens in this
area and ignore, at least temporarily, events that take place outside this area.

If one of the objects in your zone of interest moves outside that space, you have a choice to make: move
the object back into the zone, or stop paying attention to the it. Another option is to follow the object, or
move the space so that it continues to enclose the object, even though it is moving. When programming
animations, these choices are not much different.

In your canvas animations, you set up a space for your objects. Generally, this is the whole canvas
element, but the area can be some portion of the canvas, or even a space that is larger than the canvas.
Because the objects are moving, there’s a good chance that they will eventually leave that space. When
they leave, you can forget about them, move them back into the area, or follow them. In this chapter, we
cover strategies for the first two of these approaches. First, though, let’s determine where the boundaries
are and how to specify them.

Setting boundaries
In most cases, a simple rectangle works as a boundary. Let’s start with the easiest example, the
boundaries based on the size of the canvas. As in the examples so far, we access the HTML canvas
element using the DOM interface, specifying the element id, and then assign it to a variable:

var canvas = document.getElementById('canvas');

The top and left boundaries of the animation are zero, and the right and bottom boundaries are
canvas.width and canvas.height. You can store these in variables, like so:

var left = 0,
 top = 0,
 right = canvas.width,
 bottom = canvas.height;

If you store the dimensions in variables like this, realize that their values will not change if the size of the
canvas element changes later. Use this if you have a fixed area for your boundaries. If you use the full
dimensions of the element, you can refer directly to the canvas.width and canvas.height properties in
your code.

Just because these examples use the full canvas area doesn’t mean that you have to. For example, you
can make a “room” that an object stays within, setting up boundaries like the following: top = 100,
bottom = 300, left = 50, right = 400.

With the boundaries in place, you can check all the moving objects you’re tracking to see whether they're
still within this space. You can do this with a couple of if-else statements, and here is a simplified
version of what that looks like:

if (ball.x > canvas.width) {
 // do something
} else if (ball.x < 0) {

BOUNDARIES AND FRICTION

133

 // do something
}
if (ball.y > canvas.height) {
 // do something
} else if (ball.y < 0) {
 // do something
}

Stepping through these boundary checks, if the ball’s x position is greater than the right edge, or
canvas.width, then it is too far to the right. There’s no way it can also be past the left edge going the
other way, which is 0—so you don’t need to check that. You need to check the left position only in the case
that the first if fails. Do the same for the top and bottom by checking the ball's y position against the
canvas.height. However, it is possible for the object to be out of bounds on the x and y axis at the same
time, so keep those two checks separate.

But what are you supposed to do when the object goes out of bounds? You learn about these four options:

 Remove it.

 Bring it back into play as if it were a brand-new object (regeneration).

 Wrap it back onto the screen, as if it were the same object reappearing at a different location.

 Have it bounce back into the area.

Let’s start with simple removal.

Removing objects
Removing the object once it goes out of bounds is especially useful if you have objects being continually
generated. The ones you remove are replaced by new ones coming in, so you won’t end up with an empty
canvas. Also, you won’t wind up with too many objects being moved around, which would eventually slow
down the browser.

With many moving objects, you should store their references in an array, and then iterate through the array
to move each one. To remove one of these objects from the array, you use the Array.splice method. To
remove an object, knowing its position and what the boundaries are, you can use something like this for
your if statement:

if (ball.x > canvas.width ||
 ball.x < 0 ||
 ball.y > canvas.height ||
 ball.y < 0) {
 balls.splice(balls.indexOf(ball), 1);
}

The || symbol means “OR,” so you’re essentially saying: “If the object is off to the right, OR the object is
off to the left, OR it is off to the top OR the bottom, remove it from the array.” This technique is usually fine
for most cases of removal, because it doesn’t matter where the object went out of bounds—just that it did.
But in other cases, you might want to respond differently if the object hit a particular boundary, such as the

CHAPTER 6

134

left wall as opposed to the right wall. For that, you need to use separate if statements, and you see an
example of that when screen wrapping, coming up shortly.

But there is a small problem that may cause things to look wrong. Take a look at Figure 6-1.

Figure 6-1. This ball isn’t fully off the canvas, but it will be removed.

In Figure 6-1, you can see that the ball’s position, as determined by its x and y coordinate in the center, is
past the right edge of the screen, so it will be removed. If the ball is moving fast enough, you might not
notice. But if it’s moving slowly—like a pixel per frame—it will ease off the edge of the canvas. When it
gets halfway, it will vanish from the screen and ruin the illusion.

To fix this, the ball should be all the way out of the area before removing it. To do this, you must take the
object’s width into account. And because the position is in the center of a circle, you need to worry about
half of its width, which is stored in the radius property defined in our Ball class. The if statement needs
to become a bit more complex, so it will change to something like this:

if (ball.x – ball.radius > canvas.width ||
 ball.x + ball.radius < 0 ||
 ball.y – ball.radius > canvas.height ||
 ball.y + ball.radius < 0) {
 balls.splice(balls.indexOf(ball), 1);
}

The changes are demonstrated in Figure 6-2.

ball .x
–ball .width / 2

ball .x

Figure 6-2. This ball is completely off the canvas and can be safely removed.

Although this particular example uses a ball, or round object, the same boundary check should work for
any shape, as long as the position coordinate of the object is in the center.

BOUNDARIES AND FRICTION

135

Let’s try it out. In the next example, use the Ball class we used in the Chapter 5, with a small addition.
Add vx and vy properties to it, so that each ball keeps track of its own velocity. Here it is in its entirety:

function Ball (radius, color) {
 if (radius === undefined) { radius = 40; }
 if (color === undefined) { color = "#ff0000"; }
 this.x = 0;
 this.y = 0;
 this.radius = radius;
 this.vx = 0;
 this.vy = 0;
 this.rotation = 0;
 this.scaleX = 1;
 this.scaleY = 1;
 this.color = utils.parseColor(color);
 this.lineWidth = 1;
}

Ball.prototype.draw = function (context) {
 context.save();
 context.translate(this.x, this.y);
 context.rotate(this.rotation);
 context.scale(this.scaleX, this.scaleY);
 context.lineWidth = this.lineWidth;
 context.fillStyle = this.color;
 context.beginPath();
 context.arc(0, 0, this.radius, 0, (Math.PI * 2), true);
 context.closePath();
 context.fill();
 if (this.lineWidth > 0) {
 context.stroke();
 }
 context.restore();
};

The following example, 01-removal.html, sets up a number of these balls and removes them when they
move off the canvas:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Removal</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <textarea id="log"></textarea>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),

CHAPTER 6

136

 context = canvas.getContext('2d'),
 log = document.getElementById('log'),
 balls = [],
 numBalls = 10;

 for (var ball, i = 0; i < numBalls; i++) {
 ball = new Ball(20);
 ball.id = "ball" + i;
 ball.x = Math.random() * canvas.width;
 ball.y = Math.random() * canvas.height;
 ball.vx = Math.random() * 2 - 1;
 ball.vy = Math.random() * 2 - 1;
 balls.push(ball);
 }

 function draw (ball, pos) {
 ball.x += ball.vx;
 ball.y += ball.vy;
 if (ball.x - ball.radius > canvas.width ||
 ball.x + ball.radius < 0 ||
 ball.y - ball.radius > canvas.height ||
 ball.y + ball.radius < 0) {
 balls.splice(pos, 1); //remove ball from array
 if (balls.length > 0) {
 log.value = "Removed " + ball.id;
 } else {
 log.value = "All gone!";
 }
 }
 ball.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var i = balls.length;
 while (i--) {
 draw(balls[i], i);
 }
 }());
 };
 </script>
 </body>
</html>

This should be easy to follow. First, create 10 object instances of Ball, randomly placing them on the
canvas, assigning them random x and y velocities, and pushing them into an array.

The drawFrame function is our typical animation loop that clears our canvas, iterates over each ball in the
array, and passes it to the draw function. This function applies the ball's velocity to move it around, checks
the boundaries, and removes any out-of-bounds balls from the array. The parameters to Array.splice
are the index position to start removing elements at, and the amount of elements to remove. In this

BOUNDARIES AND FRICTION

137

example, we remove only one element: the one at the current index. When you test this, you won’t be
aware of their removal—which is a good thing—but you can be confident the balls are not lingering around
outside the canvas.

Notice that the while loop in this example is a little different from previous examples:

var i = balls.length;
while (i--) {
 draw(balls[i], i);
}

This causes the while loop to iterate backward through the array instead of forward. This is necessary
because, when you splice the array, the indexing will change. When you increment i, you will skip over
one of the elements. Going backward handles this, as long as nothing is added to the beginning of the
array during iteration.

Finally, after splicing an element out of the array, we check to see whether the array length is zero, to
display a message that all the balls have been removed from the animation.

Regenerating objects
The next method for handling an object that leaves the defined boundaries is to regenerate it, or more
precisely, to reposition it. The basic idea is that when an object has moved off the canvas and is no longer
necessary, you can place it at a new position as if it were a brand-new object. This provides you with a
steady stream of objects without the worry about having too many objects slowing down the browser,
because there will be a set number.

This technique is useful for creating fountains and other particle effects, where you have a stream of
objects spraying constantly. The particles go off the canvas and are reintroduced at the source point of the
stream.

The mechanics of regeneration are similar to removal: You wait until the object is out of bounds, but
instead of removing it, you move it.

Let’s dive right in by making a fountain. For the fountain particles, use the same Ball class, but make
them very small by setting their radius of just 2 pixels across, and give each a random color. The source of
the fountain will be a point at the bottom-center of the canvas element. Every particle will originate there,
and when they move off the canvas, they'll be repositioned there. Also, each particle starts with a random
negative y velocity and a (small) random x velocity. The particles shoot upward, moving slightly to the left
or the right, and also react to gravity. When a particle regenerates, its position and velocity will be reset.
Here’s the document 02-fountain.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Fountain</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>

CHAPTER 6

138

 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 balls = [],
 numBalls = 80,
 gravity = 0.5;

 for (var ball, i = 0; i < numBalls; i++) {
 ball = new Ball(2, Math.random() * 0xffffff);
 ball.x = canvas.width / 2;
 ball.y = canvas.height;
 ball.vx = Math.random() * 2 - 1;
 ball.vy = Math.random() * -10 - 10;
 balls.push(ball);
 }

 function draw (ball) {
 ball.vy += gravity;
 ball.x += ball.vx;
 ball.y += ball.vy;
 if (ball.x - ball.radius > canvas.width ||
 ball.x + ball.radius < 0 ||
 ball.y - ball.radius > canvas.height ||
 ball.y + ball.radius < 0) {
 ball.x = canvas.width / 2;
 ball.y = canvas.height;
 ball.vx = Math.random() * 2 - 1;
 ball.vy = Math.random() * -10 - 10;
 }
 ball.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 balls.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

You begin at the top of the script by setting all the particles at the starting point and giving them each an
initial random upward velocity.

The drawFrame function loops through all the elements of the balls array, passing each ball as a
parameter to the draw function. This function adds gravity to the ball's vy value, adds the velocity to the
ball's position, and then checks to see whether the ball has crossed any boundaries. If it has, the ball gets

BOUNDARIES AND FRICTION

139

placed back at the starting position and “regenerated” with a new velocity. It acts the same as a newly
created particle, so your fountain will flow forever.

You should play around with this effect; it's simple but looks great. Have the fountain shoot off in different
directions. Make it shoot out of a wall, or even the ceiling. Change the random factors to make the fountain
wider or narrower, or one that shoots higher or lower. Try adding some wind into the mix (hint: make a
wind variable and add it to vx).

Screen wrapping
The next common way to handle objects going out of bounds is to use screen wrapping. The concept is
simple: If an object moves off the left side of the screen, it then reappears on the right. If it moves off the
right, it comes back on the left. If it moves off the top, it comes back on the bottom. You get the idea.

Screen wrapping is similar to regeneration, in that you put the object back on the screen at a different
location. But in regeneration, you generally return all objects to the same location, making them look like
brand-new objects. In wrapping, you are usually trying to maintain the idea that this is the same object;
that it has just gone out the back door and in the front, so to speak. Thus, you generally don’t change
velocity during a screen wrap.

This, again, is reminiscent of that classic game, Asteroids. Recall from Chapter 5 that this was one of the
problems with the spaceship animation: The ship would fly off the canvas, and it was sometimes
impossible to figure out where it was and how to get it back. With screen wrapping, the ship is never more
than a pixel from the edge of the screen.

Let’s rebuild the spaceship example and add this behavior. Here’s the document you’ll want to use (03-
ship-sim-2.html), with the new code added in bold:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Ship Sim 2</title>
 <link rel="stylesheet" href="style.css">
 <style>
 #canvas {
 background-color: #000000;
 }
 </style>
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ship.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ship = new Ship(),
 vr = 0,
 vx = 0,

CHAPTER 6

140

 vy = 0,
 thrust = 0;

 ship.x = canvas.width / 2;
 ship.y = canvas.height / 2;

 window.addEventListener('keydown', function (event) {
 switch (event.keyCode) {
 case 37: //left
 vr = -3;
 break;
 case 39: //right
 vr = 3;
 break;
 case 38: //up
 thrust = 0.05;
 ship.showFlame = true;
 break;
 }
 });

 window.addEventListener('keyup', function () {
 vr = 0;
 thrust = 0;
 ship.showFlame = false;
 });

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ship.rotation += vr * Math.PI / 180;
 var angle = ship.rotation, //in radians
 ax = Math.cos(angle) * thrust,
 ay = Math.sin(angle) * thrust,
 left = 0,
 right = canvas.width,
 top = 0,
 bottom = canvas.height;

 vx += ax;
 vy += ay;
 ship.x += vx;
 ship.y += vy;

 //screen wrapping
 if (ship.x - ship.width / 2 > right) {
 ship.x = left - ship.width / 2;
 } else if (ship.x + ship.width / 2 < left) {
 ship.x = right + ship.width / 2;
 }
 if (ship.y - ship.height / 2 > bottom) {
 ship.y = top - ship.height / 2;

BOUNDARIES AND FRICTION

141

 } else if (ship.y < top - ship.height / 2) {
 ship.y = bottom + ship.height / 2;
 }
 ship.draw(context);
 }());
 };
 </script>
 </body>
</html>

This uses the Ship class from Chapter 5, so make sure you include that script in your document. As you
can see, this updated script adds the boundary definitions and the checks for them. We're back to using
separate if and else statements, because the actions are different for each circumstance.

Bouncing
And now we arrive at perhaps the most common, and possibly the most complex of bounds handling
methods. But not to worry—it’s not much more complicated than screen wrapping.

The strategy with bouncing is to detect when the object has gone off screen. Only this time, leave it where
it is and only change its velocity. The rules are simple: If the object went off the left or right edge, reverse
its x velocity. If it went off the top or bottom, reverse its y velocity. Reversing an axis velocity is simple:
Multiply the value by -1. If the velocity is 5, it becomes -5; if it’s -13, it becomes 13. The code is even
simpler:

vx *= -1;
vy *= -1;

There are a few more differences from screen wrapping. First, in wrapping, you let the object move
completely off the canvas before you reposition it. You do that by taking its position and adding or
subtracting half its width. For bouncing, you want to do almost exactly the opposite. Don’t wait until the
object is entirely off the canvas before you make it bounce. In fact, you don’t want it to be even partially out
of the picture. If you throw a real ball against a real wall, you wouldn’t expect to see it go partially into the
wall before bouncing back. It would hit the wall, stop right there, and then bounce back. The first thing you
want to know is the instant that any part of the object has gone over the edge. All you need to do is
reverse the way you add the half width/height (see Figure 6-3). So, for example, instead of saying this:

if (ball.x - ball.radius > right) ...

you say this:

if (ball.x + ball.radius > right) ...

CHAPTER 6

142

ball .x ball .x
+ ball .width / 2

Figure 6-3. This ball is just slightly off the canvas, but it needs to bounce.

After you determine that the object has crossed at least a bit of one of the boundaries, you now reverse
the velocity on that axis. But there’s a little more to it than that. You must reposition the object so that it sits
on the edge of the boundary. This has the obvious visual effect of making the object look more like it’s
hitting and bouncing, rather than sinking into the wall. But it is also a necessary step for other reasons.
You find that if you don’t adjust the object’s position, then on the next frame, it might still be past that
boundary, even after it moves. If this happens, the object will again reverse its velocity and head back into
the wall! Then you get a situation where the object seems to be stuck halfway in and out of the wall, just
sitting there and vibrating—it’s not pretty.

The point where you need to place the object to have it sitting on the boundary is actually the same point
you are checking in the if statement. You just need to restate it with a little basic algebra. Here’s the full
if statement for the x axis:

if (ball.x + ball.radius > right) {
 ball.x = right – ball.radius;
 vx *= -1;
} else if (ball.x - ball.radius < left) {
 ball.x = left + ball.radius;
 vx *= -1;
}

Figure 6-4 shows what the ball looks like after being repositioned.

right
-ball .width / 2

right

Figure 6-4. The ball has been repositioned to be exactly against the boundary.

The steps for bouncing are as follows:

 Check whether the object went past any boundary.

BOUNDARIES AND FRICTION

143

 If so, place it on the edge of that boundary.

 Then reverse the velocity.

That’s all there is to it, so let's see it in action. The next example again uses the same Ball class, but
scaled back up to a decent size. Here’s the document (04-bouncing-1.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Bouncing 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 vx = Math.random() * 10 - 5,
 vy = Math.random() * 10 - 5;

 ball.x = canvas.width / 2;
 ball.y = canvas.height / 2;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var left = 0,
 right = canvas.width,
 top = 0,
 bottom = canvas.height;

 ball.x += vx;
 ball.y += vy;

 if (ball.x + ball.radius > right) {
 ball.x = right - ball.radius;
 vx *= -1;
 } else if (ball.x - ball.radius < left) {
 ball.x = left + ball.radius;
 vx *= -1;
 }
 if (ball.y + ball.radius > bottom) {
 ball.y = bottom - ball.radius;
 vy *= -1;
 } else if (ball.y - ball.radius < top) {
 ball.y = top + ball.radius;
 vy *= -1;

CHAPTER 6

144

 }
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

Test this a few times to see the ball moving at different angles. Try making the velocity higher or lower.

This is one of those many areas in the book where the math and calculations are not exactly in
accordance with real-world physics. If you look at Figure 6-5, you see where the ball should actually hit the
wall, and also where this simulation places it.

BOUNDARIES AND FRICTION

145

What we are doing:

Real-world situation:

New path Never
gets here

Position
of impact

Position
before

moving

Path of ball

Boundary

New path

Position
after

correction

Position
before
correction

Position
before

moving
Path of ball

Boundary

Figure 6-5. This technique isn’t perfect, but is quick, easy, and close enough for most situations.

Determining the correct position takes more complex calculations. Although you are free to figure out how
to do this (using the trigonometry covered in Chapter 3), you won’t notice much of a difference in most
situations. For almost any game or visual effect you create for the canvas element, this method will serve
you just fine. However, you can add one more thing to take the realism just a notch higher.

CHAPTER 6

146

If you hold the most rubbery, bounciest ball ever made out at arm’s length and drop it, it would fall to the
floor and bounce back up almost to where it started—never making it all the way back to your hand. This is
because the ball loses a little bit of energy in the bounce. It might lose some energy in the form of sound,
maybe a little heat, the floor will absorb some of the energy, and maybe the surrounding air will, too.
However it works out, the important point is that the ball travels slower after the bounce than before. In
other words, it loses some velocity on the axis of the bounce.

You can easily re-create this in the animation. So far, you’ve used -1 as the bounce factor. That means
that the object bounces back with 100% of the force it hit with. To make it lose some energy, simply use a
fraction of -1. As with other numeric values, it’s best to define this as a variable at the top of your script and
reference that in your code. Just create a variable named bounce and set it to something like -0.7:

var bounce = -0.7;

Then replace each instance of -l in the if statements with the variable bounce. Go ahead and try that,
and you’ll see how much more real the bounces look. Try different factors for the bounce variable until you
get a feel for how it works.

One of the best ways to understand these concepts is to take each principle you learn and see how many
other principles you can combine it with. You can check the example files at www.apress.com for
document 05-bouncing-2.html, which demonstrates bouncing and gravity, but you should have enough
knowledge to start adding things like this on your own. Perhaps you want to try using the keyboard to add
acceleration to the ball, or apply something else you’ve already learned.

Let’s leave behind the discussion of boundaries and look at what happens between the boundaries, when
your object is moving through space.

Friction
So far, you’ve seen two scenarios:

 The object is simply moving with whatever velocity it has until it hits a boundary.

 Either the object itself or some external force is applying acceleration to the object, changing its
velocity.

With either setup, unless the object is pushed or pulled, or it hits something, it keeps moving in the same
direction at the same speed. But in the real world, it doesn’t happen just like that.

Here’s an example, grab a piece of paper, crumple it up, and throw it as hard as you can. There’s a good
chance it didn’t even make it across the room. Sure, gravity pulls it down (y axis), but when it left your
hand, it was moving pretty fast on the x axis. And yet, very quickly, it had almost zero x velocity.

Obviously, no “negative acceleration” was pulling the paper back toward your hand, but its velocity
changed. This is known as friction, drag, resistance, or damping. Although it’s not technically a force, it
does act that way; it changes an object’s velocity. The rule is that friction reduces only the magnitude of
the velocity, not the direction. In other words, friction can reduce velocity to zero, but it will never make an
object turn around and move in the other direction.

http://www.apress.com

BOUNDARIES AND FRICTION

147

So, how do you implement friction in code? There are two ways, and like most things in life, you have the
right way and the easy way. The easy way is preferred in this book, but you'll see examples of both and
you can make up your own mind.

Friction, the right way
Friction is subtractive of velocity, which means you have a certain value for friction, and you subtract that
from your velocity. More precisely, you must subtract it from the magnitude, or speed, of the velocity; you
can’t just subtract the friction from the x axis and y axis separately. If you do that for an object traveling at
an angle, one of the component velocities will reach zero before the other, and the object will continue
moving either vertically or horizontally, which looks strange.

What you need to do is find the angular velocity in terms of speed and direction (if you don’t have it
already). To find the speed, take the square root of vx squared plus vy squared (yes, that’s the
Pythagorean Theorem, which you should recognize from Chapter 3). To find the angle, you calculate
Math.atan2(vy, vx), which looks like this:

var speed = Math.sqrt(vx * vx + vy * vy),
 angle = Math.atan2(vy, vx);

Then you can subtract the friction from the speed, but you want to make sure you don’t send the speed
into negative values, which reverses the velocity. If your friction is greater than your speed, the speed
becomes zero. Here is the code for that calculation:

if (speed > friction) {
 speed -= friction;
} else {
 speed = 0;
}

At that point, you need to convert the angular velocity back into vx and vy, using sine and cosine, like so:

vx = Math.cos(angle) * speed;
vy = Math.sin(angle) * speed;

Here’s how it looks all together in the document 06-friction-1.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Friction 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

CHAPTER 6

148

 ball = new Ball(),
 vx = Math.random() * 10 - 5,
 vy = Math.random() * 10 - 5,
 friction = 0.1;

 ball.x = canvas.width / 2;
 ball.y = canvas.height / 2;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var speed = Math.sqrt(vx * vx + vy * vy),
 angle = Math.atan2(vy, vx);

 if (speed > friction) {
 speed -= friction;
 } else {
 speed = 0;
 }
 vx = Math.cos(angle) * speed;
 vy = Math.sin(angle) * speed;
 ball.x += vx;
 ball.y += vy;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

Here, the friction is set to 0.1, and the ball is given a random velocity on the x and y axes. In the
drawFrame function, speed and angle are calculated as we described. If speed is less than friction,
subtract; otherwise, speed equals zero. Finally, vx and vy are recalculated and added to the position.

Test this example several times to see it at different speeds and angles. That’s how friction looks, and it
took a dozen lines of code and four trigonometry functions to accomplish. Now you're probably thinking
that it’s time to look at the easy way.

Friction, the easy way
As you would expect, the easy way to simulate friction is not as accurate as the technique that was just
described, but nobody will ever notice. It consists of two lines of simple multiplication. Multiply the x and y
velocities by some fraction of 1. A number around 0.9 usually works quite well, but use your eye as the
judge. On each frame, vx and vy become 80% or 90% of what they were on previous frame. In theory, the
velocity approaches zero, but never actually reaches it. In practice, the computer only calculates such
numbers to a defined precision. But long before that, the applied motion is so small that it is indiscernible.

The good news is that the velocity never becomes negative using this method, so you don’t have to check
for that. Also, the x and y velocities approach zero at the same rate, so there’s no need to convert axis
velocities to angular and back.

BOUNDARIES AND FRICTION

149

The only alterations to the code (which can be found in the document 07-friction-2.html) is adjusting
the friction variable to 0.95 and the following changes to the drawFrame function:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 vx *= friction;
 vy *= friction;
 ball.x += vx;
 ball.y += vy;
 ball.draw(context);
}());

Now, that’s certainly easier! Test this version a number of times and get a feel for it. The motion looks
virtually identical to the “correct” method, but at a fraction of the calculation cost. And the average viewer
won't even notice.

Because these methods continue to add the friction value to the ball's position after it has any visual effect,
you can save some calculations by checking whether the number is larger than a designated minimum
distance before applying the friction, like so:

if (Math.abs(vx) > 0.001) {
 vx *= friction;
 ball.x += vx;
}

Math.abs returns the absolute value of vx. The friction variable is a fairly arbitrary number (within a
range) and really depends on how the animation “feels” to you. Experiment with different values to see
how it affects the motion characteristics.

Friction applied
We return to our familiar spaceship simulation and apply some friction to that universe. In example 08-
ship-sim-friction.html, take the flle 03-ship-sim-2.html and add a friction variable:

var friction = 0.97;

Then, change the drawFrame function to the following:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ship.rotation += vr * Math.PI / 180;
 var angle = ship.rotation,
 ax = Math.cos(angle) * thrust,
 ay = Math.sin(angle) * thrust,
 left = 0,
 right = canvas.width,
 top = 0,
 bottom = canvas.height;

CHAPTER 6

150

 vx += ax;
 vy += ay;
 vx *= friction;
 vy *= friction;
 ship.x += vx;
 ship.y += vy;

 //screen wrapping
 if (ship.x - ship.width / 2 > right) {
 ship.x = left - ship.width / 2;
 } else if (ship.x + ship.width / 2 < left) {
 ship.x = right + ship.width / 2;
 }
 if (ship.y - ship.height / 2 > bottom) {
 ship.y = top - ship.height / 2;
 } else if (ship.y < top - ship.height / 2) {
 ship.y = bottom + ship.height / 2;
 }
 ship.draw(context);
}());

That’s a different feel for just three new lines of code.

Don’t forget to think outside the x, y box. Friction can be applied anywhere you have any type of velocity.
Maybe you have something that rotates (with a vr property), applying friction to that eventually causes it to
slow down and stop spinning. You can try that with the spinning arrow example from Chapter 5.

You can see how you can use this approach for all types of objects, such as a roulette wheel, an electric fan, or a propeller.

Important formulas in this chapter
Let’s review the important formulas introduced in this chapter.

Remove an out-of-bounds object

if (object.x - object.width / 2 > right ||
 object.x + object.width / 2 < left ||
 object.y - object.height / 2 > bottom ||
 object.y + object.height / 2 < top) {
 //code to remove object
}

Regenerate an out-of-bounds object

if (object.x - object.width / 2 > right ||
 object.x + object.width / 2 < left ||
 object.y - object.height / 2 > bottom ||
 object.y + object.height / 2 < top) {
 //reset object position and velocity
}

BOUNDARIES AND FRICTION

151

Screen wrapping for an out-of-bounds object

if (object.x - object.width / 2 > right) {
 object.x = left - object.width / 2;
} else if (object.x + object.width / 2 < left) {
 object.x = right + object.width / 2;
} if (object.y - object.height / 2 > bottom) {
 object.y = top - object.height / 2;
} else if (object.y + object.height / 2 < top) {
 object.y = bottom + object.height / 2;
}

Apply friction (the correct way)

speed = Math.sqrt(vx * vx + vy * vy);
angle = Math.atan2(vy, vx);
if (speed > friction) {
 speed -= friction;
} else {
 speed = 0;
}
vx = Math.cos(angle) * speed;
vy = Math.sin(angle) * speed;

Apply friction (the easy way)

vx *= friction;
vy *= friction;

Summary
This chapter covered an object’s interaction with its environment—specifically, an object’s interaction with
the edges of its universe and the universe itself. You learned the possible ways to handle an object that
has gone off the edge of the world, including removing, regenerating, wrapping, and bouncing. And, you
now know all about applying friction to objects. With these simple techniques, you can make the objects in
your animations move with a great deal of realism. In the next chapter, you allow the user to interact with
the objects.

153

Chapter 7

User Interaction: Moving Objects Around

What we’ll cover in this chapter:

 Pressing and releasing an object

 Dragging an object

 Throwing

One of the goals of these interactive animations is to create a smooth user experience, and this interaction
is usually through the mouse or touch screen. Mouse and touch events were introduced in Chapter 2, but,
so far, you haven’t done much with them; now, you’ll get some hands-on practice.

In this chapter, you take the first steps into responding to user interaction. You learn how to handle
dragging, dropping, and throwing, but first, let’s get started with the basics of press and release.

Pressing and releasing an object
The mouse is an effective, but simple device. It does two things, it detects motion and button clicks. The
computer then uses that information to do a lot more: keeping track of the position of a mouse cursor,
determining where the cursor is when the click occurs, determining how fast the mouse is moving, and
figuring out when a double-click occurs. But, when you look at it in terms of events, it all comes down to
clicks and movements.

You can also break clicks down into two parts: the event that occurs when the mouse button goes down
and the next event when it comes up. Sometimes, those events occur almost instantaneously. Other
times, the events are separated by time and motion, which is usually interpreted as a drag—click, move,

CHAPTER 7

154

and then release. In this chapter, you’ll concentrate on those three things: the mouse button going down,
the mouse button going up, and any motion that occurs in between the two.

In our animations, mouse events can be received by the canvas element only from the HTML DOM.
Therefore, it is up to us to determine where the event occurred on the canvas and if it is over a visible
graphic portion of an object drawn to the canvas. In Chapter 2, I showed you to keep track of the mouse
position using the utility function utils.captureMouse. Here, we look for some additional mouse events
on the canvas, and then check whether their position falls within the bounds of our objects. The mouse
events that you need to know are:

• mousedown: This event occurs when you press a mouse button while the mouse cursor is over an
HTML element. In the book examples, this is the canvas element.

• mouseup: This event occurs when you release the mouse button while over an element.

• mousemove: This event occurs when you move the mouse over an element.

Sometimes you might want to know what the mouse is doing regardless of what HTML element it is over.
In these cases, instead of adding an event listener to the canvas object, you add it to the global window
object.

Let's see if we can use mouse events in our animations. In the next example, you use the same Ball
class from the earlier chapters, but an additional method, Ball.getBounds, has been added. This returns
an object that represents a rectangle containing the shape of the ball on the canvas, or its bounds. The
returned object has the properties x, y, width, and height, and it uses the ball's position and radius to
calculate these. This is what the updated ball.js file looks like:

function Ball (radius, color) {
 if (radius === undefined) { radius = 40; }
 if (color === undefined) { color = "#ff0000"; }
 this.x = 0;
 this.y = 0;
 this.radius = radius;
 this.vx = 0;
 this.vy = 0;
 this.rotation = 0;
 this.scaleX = 1;
 this.scaleY = 1;
 this.color = utils.parseColor(color);
 this.lineWidth = 1;
}

Ball.prototype.draw = function (context) {
 context.save();
 context.translate(this.x, this.y);
 context.rotate(this.rotation);
 context.scale(this.scaleX, this.scaleY);
 context.lineWidth = this.lineWidth;
 context.fillStyle = this.color;
 context.beginPath();
 context.arc(0, 0, this.radius, 0, (Math.PI * 2), true);
 context.closePath();

USER INTERACTION: MOVING OBJECTS AROUND

155

 context.fill();
 if (this.lineWidth > 0) {
 context.stroke();
 }
 context.restore();
};

Ball.prototype.getBounds = function () {
 return {
 x: this.x - this.radius,
 y: this.y - this.radius,
 width: this.radius * 2,
 height: this.radius * 2
 };
};

We also add another utility function to the utils.js file we've been importing into our documents.
utils.containsPoint defines three parameters. The first is an object representing a rectangle with x, y,
width, and height properties—just the kind Ball.getBounds() returns—and the second and third
arguments are x and y coordinates. The utils.containsPoint function determines whether the given
position falls within the boundaries of the rectangle and returns true or false accordingly. Here's the
simple, but useful, function we add to the utils.js file:

utils.containsPoint = function (rect, x, y) {
 return !(x < rect.x || x > rect.x + rect.width ||
 y < rect.y || y > rect.y + rect.height);
};

And here's a complete example using the updated Ball class and the utils.containsPoint function,
document 01-mouse-events.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Mouse Events</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <textarea id="log"></textarea>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 log = document.getElementById('log'),
 ball = new Ball();

 ball.x = canvas.width / 2;
 ball.y = canvas.height / 2;

CHAPTER 7

156

 ball.draw(context);

 canvas.addEventListener('mousedown', function () {
 if (utils.containsPoint(ball.getBounds(), mouse.x, mouse.y)) {
 log.value = "in ball: mousedown";
 } else {
 log.value = "canvas: mousedown";
 }
 }, false);

 canvas.addEventListener('mouseup', function () {
 if (utils.containsPoint(ball.getBounds(), mouse.x, mouse.y)) {
 log.value = "in ball: mouseup";
 } else {
 log.value = "canvas: mouseup";
 }
 }, false);

 canvas.addEventListener('mousemove', function () {
 if (utils.containsPoint(ball.getBounds(), mouse.x, mouse.y)) {
 log.value = "in ball: mousemove";
 } else {
 log.value = "canvas: mousemove";
 }
 }, false);
 };
 </script>
 </body>
</html>

This sets up listeners on the canvas element for the three mouse events we’ve talked about: mousedown,
mouseup, and mousemove. After detecting a mouse event, the handler functions test whether the mouse
coordinates fall within the bounds of the ball, using Ball.getBounds and utils.containsPoint, and it
prints a message. Play around with this example to see exactly when and where particular mouse events
occur. Here are some things to notice:

 You get the canvas events no matter where the mouse is, even if it's over the ball.

 You won't get a mouseup event without first getting a mousedown event.

Using touch events
Throughout the book examples, we use a mouse for user input because it's assumed that you are on a
development machine with a keyboard and mouse that is handy. But with the proliferation of touch screen
devices, it's not only possible, but quite probable, you'll need to capture touch events from the user.
Although touch screens and mice are different devices, thankfully for us, capturing touch events is similar
to capturing mouse events from the DOM.

The touch events most compatible with the examples in this book and their mouse event counterparts are
touchstart, touchend, and touchmove. The touchstart event is fired on the contact of first touch,
touchend when a finger leaves the surface, and touchmove when the finger is dragged on the surface.
For more details about touch events, browse the W3C Specification at http://www.w3.org/TR/touch-

USER INTERACTION: MOVING OBJECTS AROUND

157

events/. At the time of writing, this document is still considered a work-in-progress, though it has been
implemented by a number of mobile web browsers. When in doubt, test it out!

One important distinction between using a finger versus a mouse is that while a mouse cursor is always
present on the screen, a finger touch is not. In Chapter 2, we created a utility function,
utils.captureTouch, that tracks the touch position. The object returned by this function, also contains
the property isPressed, which tests whether a touch has been detected on the surface. When we modify
an example to handle touch events, we should first check that there is even a touch; otherwise, accessing
the touch position might return null:

var touch = utils.captureTouch(canvas);

if (touch.isPressed) {
 console.log(touch.x, touch.y);
}

The next example, 02-touch-events.html, builds off the first example in this chapter, but it is modified to
handle touch events (the new parts are in bold in the code below). For the example to work, be sure you
test this in a web browser that can handle these types of events (on a touch screen device or an emulator).

In the document header, we've added a meta tag to set the viewport. This tells the browser how the
content should fit on the device's screen and that the page is optimized for mobile viewing:

<meta name="viewport" content="width=device-width,initial-scale=1.0,user-scalable=no">

Here, the viewport has been set to the width of the device with an initial scale of 1. Users are also
prevented from zooming the document.

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <meta name = "viewport" content="width=device-width,initial-scale=1.0,user-scalable=no">
 <title>Touch Events</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <textarea id="log"></textarea>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 touch = utils.captureTouch(canvas),
 log = document.getElementById('log'),
 ball = new Ball();

 ball.x = canvas.width / 2;
 ball.y = canvas.height / 2;
 ball.draw(context);

CHAPTER 7

158

 canvas.addEventListener('touchstart', function (event) {
 event.preventDefault();
 if (utils.containsPoint(ball.getBounds(), touch.x, touch.y)) {
 log.value = "in ball: touchstart";
 } else {
 log.value = "canvas: touchstart";
 }
 }, false);

 canvas.addEventListener('touchend', function (event) {
 event.preventDefault();
 log.value = "canvas: touchend";
 }, false);

 canvas.addEventListener('touchmove', function (event) {
 event.preventDefault();
 if (utils.containsPoint(ball.getBounds(), touch.x, touch.y)) {
 log.value = "in ball: touchmove";
 } else {
 log.value = "canvas: touchmove";
 }
 }, false);
 };
 </script>
 </body>
</html>

In the touch event listeners, we pass the event object to the handler function and call
event.preventDefault(). This keeps the browser from continuing to process the event after the handler
has been executed. It also prevents the touch event's corresponding mouse event from being delivered,
which is the default behavior (though it is best not to rely on this).

Now that you understand the basics of the important interaction events, we’ll move on to dragging.

Dragging an object
To drag an object around the canvas element, update the object’s position to match the coordinates of the
mouse cursor. The programming is straight-forward: Capture a mousedown event when the cursor is over
the ball and set up a mousemove handler. This handler sets the ball’s x and y coordinates to the current
mouse position. Then, on the mouseup event, remove that handler.

The next example, 03-mouse-move-drag.html, should help make this clear:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Mouse Move Drag</title>
 <link rel="stylesheet" href="style.css">
 </head>

USER INTERACTION: MOVING OBJECTS AROUND

159

 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 ball = new Ball();

 ball.x = canvas.width / 2;
 ball.y = canvas.height / 2;

 canvas.addEventListener('mousedown', function () {
 if (utils.containsPoint(ball.getBounds(), mouse.x, mouse.y)) {
 canvas.addEventListener('mouseup', onMouseUp, false);
 canvas.addEventListener('mousemove', onMouseMove, false);
 }
 }, false);

 function onMouseUp () {
 canvas.removeEventListener('mouseup', onMouseUp, false);
 canvas.removeEventListener('mousemove', onMouseMove, false);
 }

 function onMouseMove (event) {
 ball.x = mouse.x;
 ball.y = mouse.y;
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

When the script is run initially, you listen for mousedown events only and when the mouse is over the ball.
When called, this event handler adds additional listeners to the canvas element for mouseup and
mousemove events. The onMouseMove function updates the ball’s position to match the mouse
coordinates. The onMouseUp function removes the mouseup and mousemove listeners from the canvas,
because you care about these only in the dragging phase.

You might have noticed a problem with this setup. If you click the edge of the ball and drag it, you’ll see
that the ball suddenly jumps and centers itself on the mouse cursor. This is because you’re setting the
ball’s position exactly equal to the mouse position. You can fix this by finding the offset of the mouse to the
ball on mousedown and adding that to the ball’s position as you drag, but that is a project left for you.

CHAPTER 7

160

Combining dragging with motion code
Now you know pretty much everything about simple dragging and dropping on the canvas. But in the
process, we’ve reverted back to a static object that just sits there unless you drag it. To make it interesting,
let’s add some velocity, acceleration, and bouncing.

You already have a nice setup for velocity, gravity, and bouncing in the 05-bouncing-2.html example
from the previous chapter, so that will be our starting point. It seems logical to simply add your drag-and-
drop code to that code, so let’s try it. You should end up with something like this document (04-drag-and-
move-1.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Drag and Move 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 ball = new Ball(),
 vx = Math.random() * 10 – 5,
 vy = -10,
 bounce = -0.7,
 gravity = 0.2,
 isMouseDown = false;

 ball.x = canvas.width / 2;
 ball.y = canvas.height / 2;

 canvas.addEventListener('mousedown', function () {
 if (utils.containsPoint(ball.getBounds(), mouse.x, mouse.y)) {
 isMouseDown = true;
 canvas.addEventListener('mouseup', onMouseUp, false);
 canvas.addEventListener('mousemove', onMouseMove, false);
 }
 }, false);

 function onMouseUp () {
 isMouseDown = false;
 canvas.removeEventListener('mouseup', onMouseUp, false);
 canvas.removeEventListener('mousemove', onMouseMove, false);
 }

 function onMouseMove (event) {

USER INTERACTION: MOVING OBJECTS AROUND

161

 ball.x = mouse.x;
 ball.y = mouse.y;
 }

 function checkBoundaries () {
 var left = 0,
 right = canvas.width,
 top = 0,
 bottom = canvas.height;

 vy += gravity;
 ball.x += vx;
 ball.y += vy;

 //boundary detect and bounce
 if (ball.x + ball.radius > right) {
 ball.x = right – ball.radius;
 vx *= bounce;
 } else if (ball.x - ball.radius < left) {
 ball.x = left + ball.radius;
 vx *= bounce;
 }
 if (ball.y + ball.radius > bottom) {
 ball.y = bottom – ball.radius;
 vy *= bounce;
 } else if (ball.y - ball.radius < top) {
 ball.y = top + ball.radius;
 vy *= bounce;
 }
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 if (!isMouseDown) {
 checkBoundaries();
 }
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

As you can see, we've moved all the boundary checking code into the function checkBoundaries and
added the mouse event handlers. We've also declared the variable isMouseDown that is updated by the
handlers to keep track of the mouse button state—so we check only the boundaries when the mouse is not
pressed.

If you run this example, you can see the problem when you stop dragging the ball. Yes, the dragging
works, but the motion code continues working at the same time. You need some way of switching on or off
the motion code, so that it doesn’t happen while you’re dragging.

CHAPTER 7

162

When you start dragging, all you’re doing is dragging. When you drop the ball, the motion code resumes
where it left off. The main problem now is that the velocity also resumes where it left off, which sometimes
results in the ball flying off in some direction when you release it—very unnatural looking. You can easily
fix that by setting vx and vy to zero, either when you start dragging or when you stop, as long as it is done
before the motion code resumes. Let’s put it in the mousedown event handler:

canvas.addEventListener('mousedown', function () {
 if (utils.containsPoint(ball.getBounds(), mouse.x, mouse.y)) {
 isMouseDown = true;
 vx = vy = 0;
 canvas.addEventListener('mouseup', onMouseUp, false);
 canvas.addEventListener('mousemove', onMouseMove, false);
 }
}, false);

That takes care of the problem and leaves you with a fully functional drag-and-drop feature with integrated
velocity, acceleration, and bouncing. You can see the full code listing in document 05-drag-and-move-
2.html.

Just one issue remains. When you drop the ball, it falls straight down—no more x-axis motion. Although
this is the correct behavior, it’s a bit boring. If you could throw the ball and have it fly off in whatever
direction you threw it, that would be some engaging interactivity.

Throwing
What does throwing mean with regard to animation? It means you click an object to start dragging it and
move it in a particular direction. When you release it, the object keeps moving in the direction you were
dragging it.

For the velocity, you must determine what velocity the object has while it is being dragged, and then set
the object’s velocity to that value when it is dropped. In other words, if you were dragging a ball 10 pixels
per frame to the left, then when you release it, its velocity should be vx = -10.

Setting the velocity should be no problem for you. Just assign new values to vx and vy, as shown in
Figure 7-1. Determining what those values are might seem a little tricky, but actually, calculating the
dragging velocity is almost exactly the opposite of applying velocity in your motion code. In applying
velocity, you add velocity to the object’s old position to come up with the object’s new position. This
formula is old + velocity = new. To determine the velocity of an object while it’s being dragged, you
simply rearrange the equation to get velocity = new - old.

vx

vy

Figure 7-1. A ball dragged to a new position. The velocity is the distance from its last position to this new position.

USER INTERACTION: MOVING OBJECTS AROUND

163

As you drag the object, it will have a new position on each frame. If you take that position and subtract the
position it was in on the previous frame, you’ll know how far it moved in one frame. That’s your pixels-per-
frame velocity!

Here's an example, simplifying it to a single axis. A ball is dragged, and on one frame, you note that its x
position is 150. On the next frame, you see that its x position is 170. Thus, in one frame, it was dragged 20
pixels on the x axis, and its x velocity at that point is +20. If you were to release it just then, you would
expect it to continue moving at an x velocity of 20. So, you would set vx = 20.

This requires a few changes to the existing script. First, in the drawFrame function, check to see whether
the mouse is pressed, and if so, call trackVelocity to update the dragging velocity of the ball. You need
a couple of variables to hold the old x and y positions—call them oldX and oldY—and declare them at the
beginning of the script. This is where you store the ball's position as soon as it starts dragging:

canvas.addEventListener('mousedown', function () {
 if (utils.containsPoint(ball.getBounds(), mouse.x, mouse.y)) {
 isMouseDown = true;
 oldX = ball.x;
 oldY = ball.y;
 canvas.addEventListener('mouseup', onMouseUp, false);
 canvas.addEventListener('mousemove', onMouseMove, false);
 }
}, false);

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 if (isMouseDown) {
 trackVelocity();
 } else {
 checkBoundaries();
 }
 ball.draw(context);
}());

Then, in the trackVelocity function, you subtract oldX from the current x position and oldY from the
current y. This gives you the current velocity, and store these values directly in vx and vy. Next, you reset
oldX and oldY to the current position of the ball again:

function trackVelocity () {
 vx = ball.x – oldX;
 vy = ball.y – oldY;
 oldX = ball.x;
 oldY = ball.y;
}

At this point, you don’t need to do anything at all about the velocity. It has been kept track of all through the
drag, and the latest velocity is already stored in vx and vy. As soon as you re-enable the motion code in

CHAPTER 7

164

checkBoundaries, the ball will move at whatever velocity it was just being dragged with, and this results
in a thrown ball!

In case you got lost along the way, here is the final example (06-throwing.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Throwing</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 ball = new Ball(),
 vx = Math.random() * 10 – 5,
 vy = -10,
 bounce = -0.7,
 gravity = 0.2,
 isMouseDown = false,
 oldX, oldY;

 ball.x = canvas.width / 2;
 ball.y = canvas.height / 2;

 canvas.addEventListener('mousedown', function () {
 if (utils.containsPoint(ball.getBounds(), mouse.x, mouse.y)) {
 isMouseDown = true;
 oldX = ball.x;
 oldY = ball.y;
 canvas.addEventListener('mouseup', onMouseUp, false);
 canvas.addEventListener('mousemove', onMouseMove, false);
 }
 }, false);

 function onMouseUp () {
 isMouseDown = false;
 canvas.removeEventListener('mouseup', onMouseUp, false);
 canvas.removeEventListener('mousemove', onMouseMove, false);
 }

 function onMouseMove (event) {
 ball.x = mouse.x;
 ball.y = mouse.y;
 }

USER INTERACTION: MOVING OBJECTS AROUND

165

 function trackVelocity () {
 vx = ball.x – oldX;
 vy = ball.y – oldY;
 oldX = ball.x;
 oldY = ball.y;
 }

 function checkBoundaries () {
 var left = 0,
 right = canvas.width,
 top = 0,
 bottom = canvas.height;

 vy += gravity;
 ball.x += vx;
 ball.y += vy;

 //boundary detect and bounce
 if (ball.x + ball.radius > right) {
 ball.x = right – ball.radius;
 vx *= bounce;
 } else if (ball.x - ball.radius < left) {
 ball.x = left + ball.radius;
 vx *= bounce;
 }
 if (ball.y + ball.radius > bottom) {
 ball.y = bottom – ball.radius;
 vy *= bounce;
 } else if (ball.y - ball.radius < top) {
 ball.y = top + ball.radius;
 vy *= bounce;
 }
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 if (isMouseDown) {
 trackVelocity();
 } else {
 checkBoundaries();
 }
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

Now that is interactive and a good example of a real-world physics animation created using event handlers
and JavaScript. It feels like you’re throwing something around. Play around with the gravity and bounce
variables, and if you want, add friction to simulate some atmosphere.

CHAPTER 7

166

Summary
Although this is not a long chapter, it covered some extremely valuable ground and made some great
headway toward interactivity. By now, you should be able to drag any object, drop it, and throw it.

Most important, you’ve worked with a lot of the small details that go into doing a professional job with
interactivity. In future chapters, you look at many other ways of allowing the user to interact with objects in
your animations. The complexity is going to build up fast, but if you have these basics down, you’ll do
great.

Part III

Advanced Motion

169

Chapter 8

Easing and Springing

What we’ll cover in this chapter:

 Proportional motion

 Easing

 Springing

It’s hard to believe that it took seven chapters to get through “the basics,” but here you are at Chapter 8,
the beginning of the advanced stuff. Or, the point where things start to get really interesting. Up to now,
each chapter covered more general techniques and concepts. Beginning with this chapter, we’ll be
concentrating on one or two specialized types of motion per chapter.

In this chapter, we’ll look at easing (proportional velocity) and springing (proportional acceleration). But
don’t think that because there are only two items, this is a chapter you can skim through quickly. These
techniques can be used to create some very complex motion, and you'll use them a lot. There are plenty of
examples to look through, so you can get an idea of just how powerful these techniques are.

Proportional Motion
Easing and springing are closely related, both techniques involve moving an object from an existing
position to a target position. In easing, the object kind of slides into the target and stops. In springing, it
bounces around back and forth for a bit, and then finally settles down at the target. The two techniques
have the following in common:

 You set a target.

 You determine the distance to that target.

CHAPTER 8

170

 Your motion is proportional to that distance—the bigger the distance, the more the motion.

The difference between easing and springing is in what aspect of the motion is proportional. In easing, the
speed is proportional to the distance; the further away from the target, the faster the object moves. As it
gets very close to the object, it’s hardly moving at all.

In springing, acceleration is proportional to the distance. If the object is far away from the target, a lot of
acceleration is applied, increasing the velocity quickly. As the object gets closer to its target, less
acceleration is applied, but it’s still accelerating! It flies right past the target, and then acceleration pulls it
back. Eventually, friction causes it to settle down.

Let’s examine each technique separately, starting with easing.

Easing
There is more than one type of easing; you can “ease in” to a position, and “ease out” from a position.
Also, easing can have different motion characteristics, for example, a sine wave, bouncing, elasticity, and
many more. The type of easing we'll primarily discuss here is “ease out”, and a bit later in this chapter, in
the “Advanced easing” section, you'll see where you can go to find out about other kinds of easing.

Simple easing
To understand simple easing, imagine you have an object over here and you want to move it over there.
Since you’re creating the ”illusion of motion,” you want to move it there gradually, over several frames. You
could simply find the angle between the two, set a speed, use some trigonometry to work out the vx and
vy, and set it in motion. Then you could check the distance to the target on each frame (using the
Pythagorean Theorem, as described in Chapter 3), and when it arrives there, stop it. That approach might
work in some situations, but if you’re trying to make something look like it’s moving naturally, it won’t do.

The problem is that your object would move along at a fixed velocity, reach its target, and stop dead. If
you’re talking about some object moving along and hitting a brick wall, yes, it might be sort of like that. But
when you’re moving an object to a target, this generally implies that you know where this target is, and are
deliberately moving the object into place there. In such a case, the motion will start out fairly fast, and then
slow down as it gets closer to the target. In other words, its velocity is going to be proportional to the
distance to the target.

Let’s take an example: You’re driving home. When you are a few miles away, you’re moving at the speed
limit. When you pull off the highway and into your neighborhood, you’re moving a bit slower. Once you’re
on your own street, a block or two away, you’ll move much slower. As you approach your driveway, you’re
down to a few miles per hour. When you reach the last few feet of the driveway, you’re moving a lot slower
than when you pulled into the driveway. And inches before you stop, you’re moving at a fraction of that
speed.

If you take the time to look, you’ll see this behavior manifests itself even in small things like closing a
drawer or door. You start out fast and gradually slow down. The next time you go to close a door, make an
effort to follow through with the same speed you started with; just be prepared to explain to anyone nearby
why you’re slamming doors. When you use easing to move an object into position, it automatically takes

EASING AND SPRINGING

171

on a very natural appearance. One of the coolest things is that simple easing is actually very easy to do. In
fact, it’s probably easier than figuring out the angle, the vx, and the vy, and moving at a fixed speed.

Here is the strategy for easing:

 Decide on a number for your proportional motion. This will be a fraction of 1.

 Determine your target.

 Calculate the distance from the object to the target.

 Multiply the distance by the fraction. This is your velocity.

 Add the velocity value to the current position.

 Repeat steps 3 through 5 until the object is at the target.

Distance

Moves a fraction
of the distance

New distance

Moves a fraction of
the new distance

Target

Figure 8-1. Basic easing

Let’s go through these steps one at a time, and see how to program them. Don’t worry about where to put
the code yet, you're just seeing how the code looks and what it means.

First, decide on a fraction to represent the proportion. As I said, the velocity will be proportional to the
motion. Specifically, this means that the velocity will be a fraction of the distance, something between 0
and 1. The closer it is to 1, the quicker the object will move. The closer it is to 0, the slower it will move, but
be careful, because too low a value and you'll be waiting a very long time for the object to reach its target.
For starters, choose something like 0.05, and we'll call this variable easing. So you can begin with the
following code:

var easing = 0.05;

Next, determine your target; this is a simple x, y position. You can make it the center of the canvas
element for lack of anything better:

CHAPTER 8

172

var targetX = canvas.width / 2,
 targetY = canvas.height / 2;

Then calculate the distance to the target. Assuming you have an object named ball, you just subtract the
ball’s x and y from the target x and y:

var dx = targetX – ball.x,
 dy = targetY - ball.y;

Your velocity is then the distance times the fraction:

var vx = dx * easing,
 vy = dy * easing;

ball.x += vx;
ball.y += vy;

These last few steps need to be repeated, so those will go in your drawFrame function. Let’s take a closer
look at those steps, as they can be largely simplified:

var dx = targetX – ball.x,
 dy = targetY – ball.y,
 vx = dx * easing,
 vy = dy * easing;

ball.x += vx;
ball.y += vy;

You can condense the first two lines into the second two pretty easily:

var vx = (targetX - ball.x) * easing,
 vy = (targetY - ball.y) * easing;

ball.x += vx;
ball.y += vy;

Or, you can consolidate it even further:

ball.x += (targetX - ball.x) * easing;
ball.y += (targetY - ball.y) * easing;

As you explore easing, you might want to use the more verbose descriptions to make it clearer. But once
you understand how it works, the third version communicates perfectly. We’ll stick with the second version
here, just to reinforce the idea that you’re dealing with velocity.

Now, let’s see it in action. You’ll need the Ball class you’ve been using all along, and here’s the example,
01-easing-1.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Easing 1</title>
 <link rel="stylesheet" href="style.css">

EASING AND SPRINGING

173

 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 easing = 0.05,
 targetX = canvas.width / 2,
 targetY = canvas.height / 2;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var vx = (targetX - ball.x) * easing,
 vy = (targetY - ball.y) * easing;

 ball.x += vx;
 ball.y += vy;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

Play around with the easing variable to see how it affects the resulting motion.

The next thing you might want to do is drag the ball around and then have it ease back to its target. This is
similar to the drag-and-drop technique you set up in Chapter 7. Here, you start dragging the ball when it is
pressed with the mouse. The drawFrame function checks if the ball is being dragged, and if so, performs
the easing calculations. Here’s the document, 02-easing-2.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Easing 2</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),

s

CHAPTER 8

174

 ball = new Ball(),
 easing = 0.05,
 targetX = canvas.width / 2,
 targetY = canvas.height / 2,
 isMouseDown = false;

 canvas.addEventListener('mousedown', function () {
 if (utils.containsPoint(ball.getBounds(), mouse.x, mouse.y)) {
 isMouseDown = true;
 canvas.addEventListener('mouseup', onMouseUp, false);
 canvas.addEventListener('mousemove', onMouseMove, false);
 }
 }, false);

 function onMouseUp () {
 isMouseDown = false;
 canvas.removeEventListener('mouseup', onMouseUp, false);
 canvas.removeEventListener('mousemove', onMouseMove, false);
 }

 function onMouseMove () {
 ball.x = mouse.x;
 ball.y = mouse.y;
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 if (!isMouseDown) {
 var vx = (targetX - ball.x) * easing,
 vy = (targetY - ball.y) * easing;

 ball.x += vx;
 ball.y += vy;
 }
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

When to stop easing

If you are calculating simple easing to a single target, eventually you’ll get to the point where the object is
at the target and the purpose of the easing has been achieved. But, in the examples so far, the
easing code continues to execute, even though the object isn’t visibly moving anymore. If you are
just easing to that point and leaving the object there, continuing to run the easing code is a waste
of system resources. If you’ve reached your goal, you might as well stop trying. At first glance, this
would be as simple as checking whether the object is at its target and turning off the animation
loop, like so:

EASING AND SPRINGING

175

if (ball.x === targetX && ball.y === targetY) {
 //code to stop the easing
}

But it winds up being a little more tricky. I touched on this problem in earlier chapters when we applied
friction, but we'll examine it in a little more detail here.

The type of easing we are discussing involves something from Zeno’s Paradoxes. Zeno of Elea was a
Greek philosopher who devised a set of problems to show that, contrary to what our senses tell us, there is
no change, and motion is an illusion. To demonstrate this, Zeno explained motion as follows: In order for
something to move from point A to point B, it first must move to a point halfway between the two. Then it
needs to travel from that point to a point halfway between there and point B. And then halfway again.
Since you always need to move halfway to the target, you can never actually reach the target, since it is an
infinite amount of steps away.

It's a paradox because it sounds logical, but yet, our own experiences tell us that we move from point A to
point B every day. Let’s take a look at it where the infinite breaks down in JavaScript. On the x axis, an
object is at position 0. Say you want to move it to 100 on the x axis. Make the easing variable 0.5, so it
always moves half the distance to the target. It progresses like this:

 Starting at 0, after frame 1, it will be at 50.

 Frame 2 will bring it to 75.

 Now the distance is 25. Half of that is 12.5, so the new position will be 87.5.

 Following the sequence, the position will be 93.75, 96.875, 98.4375, and so on. After 20 frames, it
will be 99.999809265.

As you can see, it gets closer and closer but never actually reaches the target—theoretically. However,
things are a bit different when you examine what the code does. Visually, it comes down to the question:
“How small can you slice a pixel?” And that answer is not specified in the HTML5 Canvas specification,
rather, it's defined by the browser implementation. Vendors could implement a high-resolution canvas with
a precision to many decimal places, but average viewer would have a very difficult time discerning a pixel
difference at 10 steps, meaning within 0.1.

In this example, the closest we can get the position to 100 after 20 steps is 99.99990463256836.

var position = 0,
 target = 100;

for (var i = 0; i < 20; i++) {
 console.log(i + ": " + position);
 position += (target - position) * 0.5;
}

This loops through 20 times, moving the position half the distance to the target; it's just basic easing
code. We're only interested in printing the positions, not actually seeing the motion. But, what you’ll find is
that by the eleventh iteration, the position has reached 99.9, and when viewing this demonstration on
the canvas, that’s as close as our ball will get.

CHAPTER 8

176

Even though the ball on the canvas is not getting any closer visually, mathematically it will still never
actually reach its target. So, if you’re doing a simple comparison, as in the previous example, your easing
code will never get shut off. What you need to decide is: “How close is close enough?” This is determined
by whether the distance to the target is less than a certain amount. For many examples in this book, if an
object is within a pixel of its target, it’s safe to say it has arrived, and the easing code will be turned off.

If you are using two dimensions, you can calculate the distance using the formula introduced in Chapter 3:

var distance = Math.sqrt(dx * dx + dy * dy);

If you have a single value for distance, as when you are moving an object on a single axis, you need to
use the absolute value of that distance, as it may be negative. You can do this by using the Math.abs
method.

Here’s a simple example to demonstrate turning off easing (03-easing-off.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Easing Off</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <textarea id="log"></textarea>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 log = document.getElementById('log'),
 ball = new Ball(),
 easing = 0.05,
 targetX = canvas.width / 2,
 animRequest;

 ball.y = canvas.height / 2;

 (function drawFrame () {
 animRequest = window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = targetX – ball.x;

 if (Math.abs(dx) < 1) {
 ball.x = targetX;
 window.cancelRequestAnimationFrame(animRequest);
 log.value = "Animation done!";
 } else {
 var vx = dx * easing;
 ball.x += vx;

EASING AND SPRINGING

177

 }
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

This exercise expands the easing formula a bit to first calculate the distance, since you’ll need this to see
whether easing should be stopped. Perhaps now you can see why you need to use the absolute value of
dx. If the ball were to the right of the target, dx would be a negative number, the statement if(dx < 1)
would evaluate as true, and that would be the end of things. By using Math.abs, you make sure that the
actual distance is less than 1. You then place the ball where it is trying to go and disable the motion code.

Each animation frame request is stored in the variable animRequest. When we want to turn off the
animation loop, we pass this variable as a parameter to window.cancelRequestAnimationFrame. If this
function is not available in your browser natively, then add this cross-browser implementation to the file
utils.js:

if (!window.cancelRequestAnimationFrame) {
 window.cancelRequestAnimationFrame = (window.cancelAnimationFrame ||
 window.webkitCancelRequestAnimationFrame ||
 window.mozCancelRequestAnimationFrame ||
 window.oCancelRequestAnimationFrame ||
 window.msCancelRequestAnimationFrame ||
 window.clearTimeout);
}

Remember that if you are doing something like a drag-and-drop with easing, you’ll want to re-enable the
motion code when the ball is dropped.

A moving target

In the examples so far, the target point has been a single, fixed location, but that’s not a requirement. The
distance is calculated on each frame, and the velocity is then calculated based on that. The code doesn’t
care whether or not it reaches the target, or if the target keeps moving. It just goes merrily along,
wondering what the target, distance and velocity are for every frame.

You can easily make the mouse an easing target. Just plug in the mouse coordinates (mouse.x and
mouse.y) where you had targetX and targetY before. Here’s a version that does just that (04-ease-to-
mouse.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Ease to Mouse</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>

CHAPTER 8

178

 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 ball = new Ball(),
 easing = 0.05;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var vx = (mouse.x - ball.x) * easing,
 vy = (mouse.y - ball.y) * easing;

 ball.x += vx;
 ball.y += vy;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

Move the mouse around and see how the ball follows, and how it goes faster when you get further away.

Think of what other moving targets you could have. Maybe an object could ease to another object—you
can set up some very complex looking effects by chaining together this simple technique.

Easing isn’t just for motion

It's important to understand, that the examples in this book are just that: examples. In each one, we're
manipulating numbers that are used for various properties of an object. For the most part, we're using the
x and y properties to control positions of objects, but they can have many other properties that you can
manipulate because most of them are represented by numbers. When you read a particular example, try it
out, but don’t leave it at that. Try the example, and manipulate other properties as well. Here's a few ideas
to get you started.

Rotation

Set a current and target rotation. Of course, you need something that can be visibly rotated and drawn to
the canvas, like the Arrow class from earlier chapters:

var rotation = 90,
 targetRotation = 270;

Then ease it:

rotation += (targetRotation - rotation) * easing;
arrow.rotation = rotation * Math.PI / 180; //degrees to radians

EASING AND SPRINGING

179

Colors

Try easing on 24-bit colors. You’ll need to start with red, green, and blue initial values and target values,
perform the easing on each separate component color, and then combine them into a color value. For
instance, you could ease from red to blue. Start with the initial and target colors:

var red = 255,
 green = 0,
 blue = 0,
 redTarget = 0,
 greenTarget = 0,
 blueTarget = 255;

Then in your drawFrame function, perform easing on each one:

red += (redTarget - red) * easing;
green += (greenTarget - green) * easing;
blue += (blueTarget - blue) * easing;

Then combine the three components into a single value (as described in Chapter 4), and apply:

var color = red << 16 | green << 8 | blue;

Transparency

Apply easing to the alpha component of a CSS-style color string. Start out by setting it to 0, and making
the target 1 (remember that alpha is a value from 0.0 to 1.0):

var alpha = 0,
 targetAlpha = 1;

Then in the drawFrame function, fade it in with easing, and concatenate a RGBA string:

alpha += (targetAlpha - alpha) * easing;
ball.color = "rgba(255, 0, 0," + alpha + ")";

Or reverse the 0 and 1 to make it fade out.

Advanced easing
Now that you’ve seen how simple easing works, you might consider using more complex easing formulas
for additional effects. For instance, you might want something to start slowly, build up speed, and then
slow down as it approaches its target. Or you might want to ease something into position over a certain
time period or number of frames.

Robert Penner has collected numerous easing formulas, cataloged them, and implemented them in Flash.
You can find his easing formulas at http://robertpenner.com, and I've ported that code to JavaScript
for you to look at, and perhaps include in your own animations. You can browse this code, along with the
other book examples, at http://github.com/lamberta/html5-animation

http://robertpenner.com
http://github.com/lamberta/html5-animation

CHAPTER 8

180

Springing
Springing is one of the most powerful and useful physics concepts in programmed animation. It seems like
you can do almost anything with a spring, but of course, it’s just another technique. Since you can do so
much with a spring, let's take a look at what it is and how you can program it.

As mentioned at the beginning of the chapter, the acceleration of a spring is proportional to its distance
from a target. Think about a real, physical spring, or better yet, a ball on the end of a rubber band. You
attach the other end to something solid. As the ball is hanging there with no force applied, that’s its target
point. That’s where it wants to be. Now pull it away a tiny bit and let it go. At that point, the ball’s velocity is
zero, but the rubber band applies force to it, pulling it back to the target. Now pull it away as far as you can
and let it go. The rubber band applies a lot more force. The ball zooms right past its target and starts going
the other way. Its velocity is very high. But when it gets a little bit past the target, the rubber band starts
pulling it back a bit—changes its velocity. The ball keeps going, but the farther it goes, the more the band
pulls back on it. Eventually, the velocity reaches zero, the direction reverses, and the whole thing starts
over again. Finally, after bouncing back and forth a few times, it slows down and comes to a stop at—you
guessed where—its target.

Now, let’s start translating this into code so you can use it. To keep things simple, let’s start off with one
dimension.

Springing in one dimension
Once again, we'll use the red ball to demonstrate this idea. You’ll leave it over at its default x position of
zero and have it spring to the middle of the canvas. As with easing, you’ll need a variable to hold the
proportionate value of the spring. You can think of this as the proportion of the distance that will be added
to the velocity. A high spring value will make a very stiff spring. Something lower will look more like a loose
rubber band. You’ll start off with 0.1, and here’s the initial code:

var spring = 0.1,
 targetX = canvas.width / 2,
 vx = 0;

Again, don’t worry about where to put this just yet. Just make sure you know what these variables and
statements are doing.

Then we begin the motion code and find the distance to the target:

var dx = targetX - ball.x;

Now, compute some acceleration. The acceleration will be proportional to that distance, in fact, it will be
the distance multiplied by the spring value:

var ax = dx * spring;

Once you have a value for acceleration, you should be back on familiar ground. Add the acceleration to
the velocity and add the velocity to the position:

vx += ax;
ball.x += vx;

EASING AND SPRINGING

181

Before you write any code, we'll simulate it with some sample numbers. Let’s say the x position is 0, vx is
0, the target x is 100, and the spring variable is 0.1. Here is how it might progress:

1. Multiply distance (100) by spring, and you get 10. Add that to vx, which then becomes 10. Add
velocity to position, making the x position 10.

2. Next round, distance (100 - 10) is 90. Acceleration is 90 times 0.1, or 9 this time. This gets added
to vx, which becomes 19. The x position becomes 29.

3. Next round, distance is 71, acceleration is 7.1, which added to vx makes it 26.1. The x position
becomes 55.1

4. Next round, distance is 44.9, acceleration is 4.49, and vx becomes 30.59. The x position is then
85.69.

The acceleration on each frame becomes less and less as the object approaches its target, but the
velocity continues to build. It’s not building as rapidly as it was on previous frames, but it’s still moving
faster and faster.

After a couple more rounds, the object goes right past the target to an x position of around 117. The
distance is now 100 - 117, which is -17. A fraction of this gets added to the velocity, slowing the object
down a bit.

Now that you understand how springing works, let’s make a real example. As usual, make sure the Ball
class is available to your document, and use the following file (05-spring-1.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Spring 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 spring = 0.03,
 targetX = canvas.width / 2,
 vx = 0;

 ball.y = canvas.height / 2;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = targetX – ball.x,

CHAPTER 8

182

 ax = dx * spring;

 vx += ax;
 ball.x += vx;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

Test this in your browser, and you’ll see something spring-like going on. The problem is that it kind of goes
on forever. Earlier, when the spring was described, we said that it slows down and comes to a stop. But in
this example, the ball builds up the same velocity on each leg of its swing, so it keeps bouncing back and
forth at the same speed. You need something to reduce its velocity and slow it down—which means you
need to apply some friction. Easy enough, just create a friction variable, with a value like 0.95 for
starters. This goes up at the top of the script with the rest of the variables:

var friction = 0.95;

Then multiply vx by friction somewhere in the drawFrame function. Here’s the corrected section of the
script (06-spring-2.html):

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = targetX – ball.x,
 ax = dx * spring;

 vx += ax;
 vx *= friction;
 ball.x += vx;
 ball.draw(context);
}());

At this point, you have a full-fledged, albeit one-dimensional, spring. Play with this one a lot, and see what
different values for spring and friction do and how they interact. Check out how a different starting
position or target position affects the action of the system, the speed of the ball, and the rate at which it
slows down and comes to a stop.

Just like with easing, the animation loop will continue to apply the minute motion values long after the code
has any visual effects. Again, you can save some calculations by checking if the number is larger than a
minimum distance before applying the friction, like so:

if (Math.abs(vx) > 0.001) {
 vx += ax;
 vx *= friction;
 ball.x += vx;
}

Understanding this spring example will take you a long way. Now you’re ready to move on to a two-dimensional spring.

EASING AND SPRINGING

183

Springing in two dimensions
The previous spring moved our ball along the x axis, or left-right. If we want the ball to spring along the x
axis and y axis—left-right and top-bottom—we need a two-dimensional spring. Creating this is as easy as
adding a second target, velocity, and acceleration; as we see in the next example, 07-spring-3.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Spring 3</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 spring = 0.03,
 friction = 0.95,
 targetX = canvas.width / 2,
 targetY = canvas.height / 2,
 vx = 0,
 vy = 0;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = targetX – ball.x,
 dy = targetY – ball.y,
 ax = dx * spring,
 ay = dy * spring;

 vx += ax;
 vy += ay;
 vx *= friction;
 vy *= friction;
 ball.x += vx;
 ball.y += vy;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

Here, the only difference from the previous example is all the references to the y-axis. The problem is that
it still seems rather one-dimensional. Yes, the ball is now moving on the x and y axes, but it’s just going in

CHAPTER 8

184

a straight line. That’s because its velocity starts out as zero, and the only force acting on it is the pull
toward the target, so it goes in a straight line toward its target.

To make things a little more interesting, initialize vx to something other than 0—try something like 50.
Now, you have motion that looks a little more loose and fluid. But you’re only getting started, it gets a lot
cooler.

Springing to a moving target
It probably won’t surprise you that springing doesn’t require the target to be the same on each frame.
When we covered easing, you saw a quick and easy example of the ball following the mouse. It’s pretty
easy to adapt that example to make the ball spring to the mouse. Instead of the targetX and targetY you’ve
been using, use the mouse coordinates. In springing, as with easing, the distance to the target is always
calculated newly on each frame. Acceleration is based on that, and that acceleration is added to the velocity.

The effect is very cool, and the code isn’t all that different. In the preceding example, simply change these
lines:

var dx = targetX – ball.x,
 dy = targetY - ball.y;

So they look like this:

var dx = mouse.x – ball.x,
 dy = mouse.y - ball.y;

Remember to include var mouse = utils.captureMouse(canvas) at the top of your script. You can
also remove the lines that declare the targetX and targetY variables, since you won't be needing them.
The updated document is available as 08-spring-4.html.

This is another good place to stop and play. Get a good feel for how all these variables work, and try out
many variations. Break it, and find out what breaks it. Have fun with it!

So where’s the spring?
At this point, you have a very realistic-looking ball on the end of a rubber band. But it seems to be an
invisible rubber band. Well, you can fix that with a few lines of code from the canvas drawing API.

Since you have a fairly simple file without much else going on, you can safely add your drawing code
directly to the drawFrame function. In a more complex application, you might want to create another object
to hold your drawing commands and use that as a kind of drawing layer.

In each frame, after the ball is in position, you begin a new path and move the drawing cursor to the ball's
position, then, simply draw a line to current mouse position. Remember to add a stroke so that line is
visible on the canvas element:

context.beginPath();
context.moveTo(ball.x, ball.y);
context.lineTo(mouse.x, mouse.y);
context.stroke();

EASING AND SPRINGING

185

Now, how about adding some gravity so the ball looks like it’s actually hanging off the end of the mouse? Just add a gravity
variable and add that to the vy for each frame. The following code (09-spring-5.html) uses the line drawing and gravity additions:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Spring 5</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 ball = new Ball(),
 spring = 0.03,
 friction = 0.9,
 gravity = 2,
 vx = 0,
 vy = 0;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = mouse.x – ball.x,
 dy = mouse.y – ball.y,
 ax = dx * spring,
 ay = dy * spring;

 vx += ax;
 vy += ay;
 vy += gravity;
 vx *= friction;
 vy *= friction;
 ball.x += vx;
 ball.y += vy;

 context.beginPath();
 context.moveTo(ball.x, ball.y);
 context.lineTo(mouse.x, mouse.y);
 context.stroke();
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

CHAPTER 8

186

When you test this version, you should see something like Figure 8-2.

Notice how we've increased the gravity value to 2 so the ball actually hangs down. Much less than that,
and the force of the spring overcomes the force of gravity and you don’t see the effect.

Here’s another point where we’ve deviated from real-world physics. Of course, you can’t go around
“increasing gravity” on objects! Gravity is a constant, based on the size and mass of the planet you happen
to be on. What you can do is increase the mass of the object, so that gravity has more of an effect on it.
So, technically we should keep gravity at something like 0.5, and then create a mass property and make
it something like 10. Then we could multiply mass by gravity and come up with 5 again. But as long as
you understand that I'm referring to the force that gravity is exerting on the object based on its mass, we’ll
just call it gravity.

Figure 8-2. Springing from the mouse, with a visible spring

Again, experiment with this example. Try decreasing the gravity and spring values, try changing the
friction value. You’ll see you can have a nearly endless number of combinations, allowing you to create
all kinds of systems.

Chaining springs
Now we'll chain a few springs together. In the easing section, we discussed chaining briefly, where one
object eases to the mouse, another object eases to that object, and so on. Here we'll take a look at some
examples that use that same idea, only with springs.

Here’s the plan, start off by creating three balls, named ball0, ball1, and ball2. The first one, ball0,
will behave pretty much like the single ball did in the previous example. Then ball1 will spring to ball0,
and ball2 will spring to ball1. All will have gravity, so they should kind of hang down in a chain. You've
seen all this code before, it's just a little more complex. Here it is, in example 10-chain.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Chain</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),

EASING AND SPRINGING

187

 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 ball0 = new Ball(),
 ball1 = new Ball(),
 ball2 = new Ball(),
 spring = 0.03,
 friction = 0.9,
 gravity = 2;

 function move (ball, targetX, targetY) {
 ball.vx += (targetX - ball.x) * spring;
 ball.vy += (targetY - ball.y) * spring;
 ball.vy += gravity;
 ball.vx *= friction;
 ball.vy *= friction;
 ball.x += ball.vx;
 ball.y += ball.vy;
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 move(ball0, mouse.x, mouse.y);
 move(ball1, ball0.x, ball0.y);
 move(ball2, ball1.x, ball1.y);

 //draw spring
 context.beginPath();
 context.moveTo(mouse.x, mouse.y);
 context.lineTo(ball0.x, ball0.y);
 context.lineTo(ball1.x, ball1.y);
 context.lineTo(ball2.x, ball2.y);
 context.stroke();
 //draw balls
 ball0.draw(context);
 ball1.draw(context);
 ball2.draw(context);
 }());
 };
 </script>
 </body>
</html>

If you take another look at the Ball class, you’ll see that each object instance gets its own vx and vy
properties, and these are initialized to 0. So, at the top of the script, you just need to create each ball.

Then in the drawFrame function, you perform all the springing and drawing. Rather than duplicating the
same code three times for each ball, we include a move function, which handles all of the motion code.
This takes a reference to a ball and an x and y target. You call the function for each ball, passing in the x
and y mouse position for the first ball, and the location of the first and second balls as targets for the
second and third.

CHAPTER 8

188

Finally, when all of the balls are in place, you begin a new path, move the drawing cursor to the mouse
position, and then draw a line to each successive ball, creating the rubber band holding them all together.
The friction in this example was pushed to 0.9 to force things to settle down a bit quicker.

You could make this example a bit more flexible, by creating an array to hold references to each object in
the chain, and iterating through that array to move each one, and then draw the lines. This would just take
a few changes. First, you’d need a couple of new variables for the array and the number of objects to
create:

var balls = [],
 numBalls = 5;

At the top of the script in a while loop, we initialize each ball and add it to the array:

while (numBalls--) {
 balls.push(new Ball(20));
}

Finally, in drawFrame we pass each ball to the new draw function. This function takes two arguments, an
instance of our Ball class, and it's index position in an array (which is provided by Array.forEach). We
move the first ball to the mouse position, and each remaining ball to the ball prior to it, drawing a line
between them. It loops through all the balls in the array, moving and drawing a line to each one in turn.
You can add as many objects as you want simply by changing the value of the one variable, numBalls.

function draw (ballB, i) {
 //if first ball, move to mouse
 if (i === 0) {
 move(ballB, mouse.x, mouse.y);
 context.moveTo(mouse.x, mouse.y);
 } else {
 var ballA = balls[i-1];
 move(ballB, ballA.x, ballA.y);
 context.moveTo(ballA.x, ballA.y);
 }
 context.lineTo(ballB.x, ballB.y);
 context.stroke();
 ballB.draw(context);
}

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 context.beginPath();
 balls.forEach(draw);
}());

You can see the result in Figure 8-3 and can find this in document 11-chain-array.html.

EASING AND SPRINGING

189

Figure 8-3. Chained springs

Springing to multiple targets
Back when the subjects of velocity and acceleration were introduced in Chapter 5, we saw how you could
have multiple forces acting on an object. Each type of force is represented as a value, which we add to a
cumulative velocity value, that is then applied to the motion of the object. Since a spring is nothing more
than something exerting acceleration on an object, it’s pretty simple to create multiple springs acting on a
single object.

To demonstrate springing to multiple targets, we'll create three “handles”—which will be instances of the
Ball class—and give them simple drag-and-drop functionality. These will also act as targets for the ball to
spring to. The ball will try to spring to all three of them at once and find its equilibrium somewhere between
them. Or, to put it another way, each target will exert a certain amount of acceleration on the ball, and its
motion will be the sum total of all of those forces.

This example gets pretty complex, with several methods in place to handle the various behaviors. First,
here's the complete example (document 12-multi-spring.html), then we'll discuss it section by section.
Figure 8-4 shows an example of the results of this code.

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Multi Spring</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 ball = new Ball(20),

CHAPTER 8

190

 handles = [],
 numHandles = 3,
 spring = 0.03,
 friction = 0.9,
 movingHandle = null;

 for (var handle, i = 0; i < numHandles; i++) {
 handle = new Ball(10, "#0000ff");
 handle.x = Math.random() * canvas.width;
 handle.y = Math.random() * canvas.height;
 handles.push(handle);
 }

 canvas.addEventListener('mousedown', function () {
 handles.forEach(function (handle) {
 if (utils.containsPoint(handle.getBounds(), mouse.x, mouse.y)) {
 movingHandle = handle;
 }
 });
 }, false);

 canvas.addEventListener('mouseup', function () {
 if (movingHandle) {
 movingHandle = null;
 }
 }, false);

 canvas.addEventListener('mousemove', function () {
 if (movingHandle) {
 movingHandle.x = mouse.x;
 movingHandle.y = mouse.y;
 }
 }, false);

 function applyHandle (handle) {
 var dx = handle.x – ball.x,
 dy = handle.y – ball.y;

 ball.vx += dx * spring;
 ball.vy += dy * spring;
 }

 function drawHandle (handle) {
 context.moveTo(ball.x, ball.y);
 context.lineTo(handle.x, handle.y);
 context.stroke();
 handle.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 handles.forEach(applyHandle);

EASING AND SPRINGING

191

 ball.vx *= friction;
 ball.vy *= friction;
 ball.x += ball.vx;
 ball.y += ball.vy;

 context.beginPath();
 handles.forEach(drawHandle);
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

At the top of the script, we create a ball and three handles, randomly positioning the handles and setting
up their drag-and-drop behavior.

The drawFrame function loops through each handle, springing the ball toward it by calling the
applyHandle function. It then applies the ball’s new velocity to its position, and loops through the handles
again, drawing a line from the ball to each handle. Then, finally, we draw the ball.

The mousedown event listener iterates over each handle, and if it finds one that contains the current
position of our mouse cursor, it sets that handle to movingHandle. In the mouseup event hander, if a
handle has been dragged, then it is stopped.

You can easily change the number of handles to use by changing the numHandles variable.

Figure 8-4. Multiple springs

Offsetting the target
If you took a real spring—an actual coil of bouncy metal—and attached one end of it to something solid
and the other end to a ball or some other object, what would be the target? Would the target be the point
where the spring is attached? No, not really. The ball would never be able to reach that point, because the
spring itself would be in the way. Furthermore, once the spring had contracted to its normal length, it
wouldn’t be applying any more force on the ball. So, the target would actually be the position of the loose
end of the spring when it's not stretched. But that point could vary as the spring pivots around the fixed
point.

CHAPTER 8

192

To find the actual target, you need to first find the angle between the object and the fixed point, and then
move out from the fixed point at that angle—the length of the spring. In other words, if the length of the
spring were 50, and the angle between the ball and fixed point were 45, you would move out 50 pixels
from the fixed point, at an angle of 45 degrees, and that would be the ball’s target to spring to. Figure 8-5
illustrates how this works.

Fixed point
x distance

Angle

Spring
length

Spring target
y distance

Figure 8-5. Offsetting a spring

The code to find the target in this case would be:

var dx = ball.x – fixedX,
 dy = ball.y – fixedY,
 angle = Math.atan2(dy, dx),
 targetX = fixedX + Math.cos(angle) * springLength,
 targetY = fixedY + Math.sin(angle) * springLength;

The result is that the object will spring toward the fixed point, but will come to rest some distance away
from it. Although we're calling it a “fixed point,” this just means the point to which the spring is fixed, it
doesn’t mean that point cannot move. Perhaps it’s better just to see it in action. You’ll go back to using the
mouse position, but this time, it will be the spring’s fixed point. The spring’s length will be 100 pixels.
Here’s the example (document 13-offset-spring.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Offset Spring</title>
 <link rel="stylesheet" href="style.css">
 </head>

EASING AND SPRINGING

193

 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 ball = new Ball(),
 spring = 0.03,
 friction = 0.9,
 springLength = 100,
 vx = 0,
 vy = 0;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = ball.x – mouse.x,
 dy = ball.y – mouse.y,
 angle = Math.atan2(dy, dx),
 targetX = mouse.x + Math.cos(angle) * springLength,
 targetY = mouse.y + Math.sin(angle) * springLength;

 vx += (targetX - ball.x) * spring;
 vy += (targetY - ball.y) * spring;
 vx *= friction;
 vy *= friction;
 ball.x += vx;
 ball.y += vy;

 context.beginPath();
 context.moveTo(ball.x, ball.y);
 context.lineTo(mouse.x, mouse.y);
 context.stroke();
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

Even though you can see what is happening here, it might not be obvious where you would find this
technique useful. Well, the next section will give you a specific example.

Attaching multiple objects with springs
Since we know how to spring an object to a point, and that the point does not have to be fixed. You could
have one object spring to another object, and have the other object spring back to the first one, so that
these two objects are linked together by a spring. Move either one, and the other object springs to it.

CHAPTER 8

194

That's the general strategy, but to use the terms discussed in this chapter: object A has object B as its
target. It springs toward it. Object B in turn has object A as its target, and this is where the offset is
important. If each object had the other as a direct target, they would collapse in on each other and occupy
the same point. By applying an offset, you keep them apart a bit, as shown in Figure 8-6.

Figure 8-6. Two objects connected

For this next example, you’ll create two instances of the Ball connected by a spring, and we’ll call them
ball0 and ball1. ball0 springs to ball1 with an offset, and ball1 springs to ball0 with an offset.
Rather than writing out all the offset, spring, and motion code twice, it's all put into a function named
springTo. You can spring ball0 to ball1 by calling springTo(ball0, ball1), and then spring ball1
to ball0 by calling springTo(ball1, ball0). There are also a couple of variables that have been
added: ball0_dragging and ball1_dragging, to disable the springing for each ball when it is being
dragged. Here’s the document (14-double-spring.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Double Spring</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 ball0 = new Ball(20),
 ball1 = new Ball(20),
 ball0_dragging = false,
 ball1_dragging = false,
 spring = 0.03,
 friction = 0.9,
 springLength = 100,
 vx = 0,
 vy = 0;

 ball0.x = Math.random() * canvas.width;
 ball0.y = Math.random() * canvas.height;
 ball1.x = Math.random() * canvas.width;
 ball1.y = Math.random() * canvas.height;

EASING AND SPRINGING

195

 canvas.addEventListener('mousedown', function () {
 if (utils.containsPoint(ball0.getBounds(), mouse.x, mouse.y)) {
 ball0_dragging = true;
 }
 if (utils.containsPoint(ball1.getBounds(), mouse.x, mouse.y)) {
 ball1_dragging = true;
 }
 }, false);

 canvas.addEventListener('mouseup', function () {
 if (ball0_dragging || ball1_dragging) {
 ball0_dragging = false;
 ball1_dragging = false;
 }
 }, false);

 canvas.addEventListener('mousemove', function () {
 if (ball0_dragging) {
 ball0.x = mouse.x;
 ball0.y = mouse.y;
 }
 if (ball1_dragging) {
 ball1.x = mouse.x;
 ball1.y = mouse.y;
 }
 }, false);

 function springTo (ballA, ballB) {
 var dx = ballB.x – ballA.x,
 dy = ballB.y – ballA.y,
 angle = Math.atan2(dy, dx),
 targetX = ballB.x - Math.cos(angle) * springLength,
 targetY = ballB.y - Math.sin(angle) * springLength;

 ballA.vx += (targetX - ballA.x) * spring;
 ballA.vy += (targetY - ballA.y) * spring;
 ballA.vx *= friction;
 ballA.vy *= friction;
 ballA.x += ballA.vx;
 ballA.y += ballA.vy;
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 if (!ball0_dragging) {
 springTo(ball0, ball1);
 }
 if (!ball1_dragging) {
 springTo(ball1, ball0);
 }

CHAPTER 8

196

 context.beginPath();
 context.moveTo(ball0.x, ball0.y);
 context.lineTo(ball1.x, ball1.y);
 context.stroke();
 ball0.draw(context);
 ball1.draw(context);
 }());
 };
 </script>
 </body>
</html>

For this example, the balls are placed on the canvas element and are set up for drag-and-drop.
drawFrame calls the springTo function for each ball, if they are not being dragged:

if (!ball0_dragging) {
 springTo(ball0, ball1);
}
if (!ball1_dragging) {
 springTo(ball1, ball0);
}

The springTo function is where all the action happens, and everything here should be familiar to you.
First, it finds the distance and angle to the other ball, and calculates a target point based on that. It then
performs basic spring mechanics on that target point. When the function is called again, with the
parameters reversed, the balls swap roles, and the original target ball springs toward the other one.

You’ll see that neither ball is attached to any fixed point or the mouse; they are both free-floating. Their
only constraint is that they maintain a certain distance from each other. The great thing about this setup is
that it is now very easy to add additional objects. For example, let's create a third ball in example 15-
triple-spring.html. Add two new variables: ball2 and ball2_dragging; and some additional code
for the mouse event handlers, and animation loop (shown in bold below). You can follow this pattern to
keep adding as many balls as you'd like.

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Triple Spring</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 ball0 = new Ball(20),
 ball1 = new Ball(20),

EASING AND SPRINGING

197

 ball2 = new Ball(20),
 ball0_dragging = false,
 ball1_dragging = false,
 ball2_dragging = false,
 spring = 0.03,
 friction = 0.9,
 springLength = 100,
 vx = 0,
 vy = 0;

 ball0.x = Math.random() * canvas.width;
 ball0.y = Math.random() * canvas.height;
 ball1.x = Math.random() * canvas.width;
 ball1.y = Math.random() * canvas.height;
 ball2.x = Math.random() * canvas.width;
 ball2.y = Math.random() * canvas.height;

 canvas.addEventListener('mousedown', function () {
 if (utils.containsPoint(ball0.getBounds(), mouse.x, mouse.y)) {
 ball0_dragging = true;
 }
 if (utils.containsPoint(ball1.getBounds(), mouse.x, mouse.y)) {
 ball1_dragging = true;
 }
 if (utils.containsPoint(ball2.getBounds(), mouse.x, mouse.y)) {
 ball2_dragging = true;
 }
 }, false);

 canvas.addEventListener('mouseup', function () {
 if (ball0_dragging || ball1_dragging || ball2_dragging) {
 ball0_dragging = false;
 ball1_dragging = false;
 ball2_dragging = false;
 }
 }, false);

 canvas.addEventListener('mousemove', function () {
 if (ball0_dragging) {
 ball0.x = mouse.x;
 ball0.y = mouse.y;
 }
 if (ball1_dragging) {
 ball1.x = mouse.x;
 ball1.y = mouse.y;
 }
 if (ball2_dragging) {
 ball2.x = mouse.x;
 ball2.y = mouse.y;
 }
 }, false);

 function springTo (ballA, ballB) {

CHAPTER 8

198

 var dx = ballB.x - ballA.x,
 dy = ballB.y - ballA.y,
 angle = Math.atan2(dy, dx),
 targetX = ballB.x - Math.cos(angle) * springLength,
 targetY = ballB.y - Math.sin(angle) * springLength;

 ballA.vx += (targetX - ballA.x) * spring;
 ballA.vy += (targetY - ballA.y) * spring;
 ballA.vx *= friction;
 ballA.vy *= friction;
 ballA.x += ballA.vx;
 ballA.y += ballA.vy;
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 if (!ball0_dragging) {
 springTo(ball0, ball1);
 springTo(ball0, ball2);
 }
 if (!ball1_dragging) {
 springTo(ball1, ball0);
 springTo(ball1, ball2);
 }
 if (!ball2_dragging) {
 springTo(ball2, ball0);
 springTo(ball2, ball1);
 }

 context.beginPath();
 context.moveTo(ball0.x, ball0.y);
 context.lineTo(ball1.x, ball1.y);
 context.lineTo(ball2.x, ball2.y);
 context.lineTo(ball0.x, ball0.y);
 context.stroke();
 ball0.draw(context);
 ball1.draw(context);
 ball2.draw(context);
 }());
 };
 </script>
 </body>
</html>

This will create a triangle formation, as shown in Figure 8-7. Once you get the hang of this, you can move
on to creating a square, and from there, all kinds of complex springy structures.

EASING AND SPRINGING

199

Figure 8-7. Three objects connected by a spring

Important formulas in this chapter
Once again, it’s time to review the important formulas presented in this chapter.

Simple easing, long form

var dx = targetX – object.x,
 dy = targetY – object.y;
vx = dx * easing;
vy = dy * easing;
object.x += vx;
object.y += vy;

Simple easing, abbreviated form

vx = (targetX - object.x) * easing;
vy = (targetY - object.y) * easing;
object.x += vx;
object.y += vy;

Simple easing, short form

object.x += (targetX - object.x) * easing;
object.y += (targetY – object.y) * easing;

Simple spring, long form

var ax = (targetX - object.x) * spring,
 ay = (targetY - object.y) * spring;
vx += ax;
vy += ay;
vx *= friction;
vy *= friction;
object.x += vx;
object.y += vy;

CHAPTER 8

200

Simple spring, abbreviated form

vx += (targetX - object.x) * spring;
vy += (targetY - object.y) * spring;
vx *= friction;
vy *= friction;
object.x += vx;
object.y += vy;

Simple spring, short form

vx += (targetX - object.x) * spring;
vy += (targetY - object.y) * spring;
object.x += (vx *= friction);
object.y += (vy *= friction);

Offset spring

var dx = object.x – fixedX,
 dy = object.y – fixedY,
 angle = Math.atan2(dy, dx),
 targetX = fixedX + Math.cos(angle) * springLength,
 targetY = fixedX + Math.sin(angle) * springLength;
//spring to targetX, targetY as above

Summary
This chapter covered the two basic techniques of proportional motion: easing and springing. You’ve
learned that easing is proportional motion and springing is proportional velocity. You should have a very
good understanding of how to apply both of these techniques, and have begun to play with them and
create some really fun and interesting effects yourself.

Now that you’ve learned all sorts of ways of moving things around, let’s move on to the next chapter,
where you’ll find out what to do when they start hitting eachother!

201

Chapter 9

Collision Detection

What we’ll cover in this chapter:

 Collision detection methods

 Geometric hit testing methods

 Distance-based collision detection

 Multiple-object collision detection strategies

As you’ve progressed through the book, you’ve seen how to make objects move and make them interact
with the space they occupy. Now, you’re going to make these objects interact with each other. For the
most part, this will involve determining when two objects have touched each other. This is a subject known
as collision detection or hit testing.

This chapter will attempt to cover just about everything you need to know about detecting collisions. This
includes hit testing between two objects, hit testing between an object and a point, distance-based collision
detection, and multiple-object collision testing strategies. First, let’s see what options are available for
collision detection.

Collision detection methods
Collision detection, or hit testing, is a simple concept: You want to know whether two objects are
occupying any part of the same space at the same time. Of course, you may have more than two objects,
and you may want to know whether any of them are hitting any others. But when you break it down, you
need to test each object, one at a time, against each other object.

There are a couple of ways of performing collision detection:

CHAPTER 9

202

 You can test the geometry of each object; that is, does the shape of this object overlap the shape
of that object? We'll use the object's rectangular bounds to determine this.

 You can test the distance between objects; that is, are these objects close enough for them to be
colliding? You must calculate the distance and decide when the objects are close enough.

Each method has its uses, and we’ll look at both in detail in this chapter.

However, there won't be many details about what to do when you detect a collision, or, how should two
objects react when they bump into each other? That subject is covered in Chapter 11, where we discuss
the conservation of momentum.

Geometric hit testing methods
In Chapter 7, we added a getBounds method to our Ball class, something that is used a number of times
in this chapter. Just to refresh your memory, this method returns an object representing a rectangle with
properties x, y, width, and height. This rectangle designates a bounding box that contains the shape of
ball in relation to the canvas element.

Using this rectangle, we can determine if another rectangle intersects with it, or if a coordinate falls within
its area. We will use these methods to test if one object is hitting another, or if an object is hitting a specific
point.

Hit testing two objects
Now given that two objects each have a getBounds method defined, we can determine if the objects are
touching by testing if the two bounding rectangles intersect. First, we need to add the utility function
utils.intersects to our utils.js file:

utils.intersects = function (rectA, rectB) {
 return !(rectA.x + rectA.width < rectB.x ||
 rectB.x + rectB.width < rectA.x ||
 rectA.y + rectA.height < rectB.y ||
 rectB.y + rectB.height < rectA.y);
};

Nothing fancy here, just simple geometry. You call the function by passing it two rectangle arguments, it
returns true if they overlap, and false if they don't. It is invoked like this:

utils.intersects(rectA, rectB)

When testing if two bounding boxes are touching, this will usually go within an if statement, like so:

if (utils.intersects(objectA.getBounds(), objectB.getBounds()) {
 //react to collision
}

In this snippet, utils.intersects will return true if there is a collision between objectA and objectB,
and the statements within the if block will execute. This is probably the simplest method of collision
detection, and also the easiest to program.

COLLISION DETECTION

203

However, as with all things, there is a trade-off. As collision detection methods get easier, they get less
accurate. As they get more accurate, they become more complex and computationally-intensive. So, while
this is the easiest method, it is also the least accurate.

What do we mean by hit testing accuracy—either something is hitting or it’s not, right? Well, it goes back to
this question: Based on the positions of two objects, how do you determine if they are hitting?

In the bounding rectangle method that was just described, you take the first object and draw a rectangle
around it. The top edge of the rectangle goes on the topmost visible pixel of the object’s shape, the bottom
edge goes on the lowest visible pixel, and the left and right edges are on their furthest visible pixels. Then
you do the same for the object you’re testing against. Finally, you check whether these two rectangles are
intersecting in any way, and if so, you have a collision.

Figure 9-1. A bounding box

This rectangle around the object is known as a bounding box, and it's calculated for our ball based on its
position and size. It's normally invisible, so it is explicitly drawn as rectangle around the shape in Figure 9-
1 so you can see it.

Why would this be inaccurate? You might think that if the bounding boxes intersected, the objects must be
touching. Well, take a look at the pictures in Figure 9-2. Which pairs would you say are touching each
other?

Figure 9-2. Which ones are touching?

Obviously, only the squares are actually hitting, right? Well, let’s draw in the bounding boxes and see what
the calculation sees. Figure 9-3 shows the results.

CHAPTER 9

204

Figure 9-3. Not what you expected?

Each pair of shapes are colliding as far as our code is concerned. If you don’t believe me, test the
following document, 01-object-hit-test.html. It uses the Ball class we created earlier, so make sure
that script has been imported along with the updated utils.js file.

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Object Hit Test</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <textarea id="log"></textarea>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 log = document.getElementById('log'),
 mouse = utils.captureMouse(canvas),
 ballA = new Ball(),
 ballB = new Ball();

 ballA.x = canvas.width / 2;
 ballA.y = canvas.height / 2;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ballB.x = mouse.x;
 ballB.y = mouse.y;

 if (utils.intersects(ballA.getBounds(), ballB.getBounds())) {
 log.value = "Hit!";
 } else {

COLLISION DETECTION

205

 log.value = '';
 }

 ballA.draw(context);
 ballB.draw(context);
 }());
 };
 </script>
 </body>
</html>

This example creates two instances of the Ball class and sets one of them to be dragged with the mouse.
The utils.intersects function is called on each frame to check whether the two balls are hitting. If you
approach the stationary ball from the top, bottom, or sides, it is accurate, but you always get a false
positive if you come in diagonally. If you were to try drawing some other shapes instead of a ball, you
would see that rectangular shapes work perfectly, but the more irregular the shape you use, the more
inaccuracies you’ll find. Be careful about using this method for anything other than rectangular shapes.

To visualize each ball's bounding box, simply draw these rectangles to the canvas. Try adding the
following code to the end of the drawFrame animation loop:

var boundsA = ballA.getBounds(),
 boundsB = ballB.getBounds();

context.strokeRect(boundsA.x, boundsA.y, boundsA.width, boundsA.height);
context.strokeRect(boundsB.x, boundsB.y, boundsB.width, boundsB.height);

Now we'll look at an exercise that demonstrates using utils.intersects with rectangles. The example
uses a new Box class that is very similar to Ball, and which I’m sure you’ll have no trouble understanding.
Here it is:

function Box (width, height, color) {
 if (width === undefined) { width = 50; }
 if (height === undefined) { height = 50; }
 if (color === undefined) { color = "#ff0000"; }
 this.x = 0;
 this.y = 0;
 this.width = width;
 this.height = height;
 this.vx = 0;
 this.vy = 0;
 this.rotation = 0;
 this.scaleX = 1;
 this.scaleY = 1;
 this.color = utils.parseColor(color);
 this.lineWidth = 1;
}

Box.prototype.draw = function (context) {
 context.save();
 context.translate(this.x, this.y);
 context.rotate(this.rotation);
 context.scale(this.scaleX, this.scaleY);

CHAPTER 9

206

 context.lineWidth = this.lineWidth;
 context.fillStyle = this.color;
 context.beginPath();
 context.rect(0, 0, this.width, this.height);
 context.closePath();
 context.fill();
 if (this.lineWidth > 0) {
 context.stroke();
 }
 context.restore();
};

You'll notice that we left off the getBounds method in the Box class. Since the rectangle objects already
contain the required properties, we can pass them directly to the utils.intersects function to test for a
collision.

In this next example, a box is created at the top of the canvas element and falls to the bottom. When the
box is placed, it falls down until it hits the bottom of the canvas or collides with another box. If it hits
another box, it positions itself so it is sitting right on top of it. Here’s the code for document 02-
boxes.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Boxes</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="box.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 boxes = [],
 activeBox = createBox(),
 gravity = 0.2;

 function createBox () {
 var box = new Box(Math.random() * 40 + 10, Math.random() * 40 + 10);
 box.x = Math.random() * canvas.width;
 boxes.push(box);
 return box;
 }

 function drawBox (box) {
 if (activeBox !== box && utils.intersects(activeBox, box)) {
 activeBox.y = box.y – activeBox.height;
 activeBox = createBox();
 }
 box.draw(context);

COLLISION DETECTION

207

 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 activeBox.vy += gravity;
 activeBox.y += activeBox.vy;

 if (activeBox.y + activeBox.height > canvas.height) {
 activeBox.y = canvas.height - activeBox.height;
 activeBox = createBox();
 }
 boxes.forEach(drawBox);
 }());
 };
 </script>
 </body>
</html>

In the drawFrame function, the code checks whether the box has gone below the bottom of the canvas
element. And if so, it stops it and creates a new box. Then it iterates over the boxes array passing each
box to the drawBox function, which checks the active box against all the other boxes. First, it makes sure it
is not doing a hit test against itself, and then, at the heart of the program, utils.intersects determines
whether the box has hit another one. If it has, the code repositions the moving box to the top of the one it
just hit, and then creates a new box. Run this code for a minute or so, and you'll see something that looks
like in Figure 9.4.

CHAPTER 9

208

Figure 9-4. Collision detection with a rectangle's bounding box.

If you really want to see the inaccuracy of this method in action, instead of a rectangle, try drawing a circle,
or some other irregular shape. Some objects will appear to hover in mid-air as they “hit” other objects, as
shown in Figure 9.5.

COLLISION DETECTION

209

Figure 9-5. Collision detection with a circle's bounding box.

Hit testing an object and a point
In Chapter 7, the utility function utils.containsPoint was introduced, but here we will see how it relates
to hit testing; although, it's not very useful for testing for the collision between two objects. As mentioned
previously, the function takes three arguments: the first is a rectangle object with x, y, width, and height
properties, and the remaining two arguments define x and y coordinates. It returns true or false,
depending if that point is hitting the rectangle in question. Here's the function again so you don't have to
look it up, but it should already be in your utils.js file:

utils.containsPoint = function (rect, x, y) {
 return !(x < rect.x || x > rect.x + rect.width ||
 y < rect.y || y > rect.y + rect.height);
};

It might be used like this when testing if point (100, 100) falls within a rectangle:

if (utils.containsPoint(rect, 100, 100)) {
 //react to collision
}

But once again, we come back to the question: What constitutes a hit? And, once again, we see the
bounding box coming into play—the code only checks if the point is within an object’s bounding box.

Let’s do a quick test to see that in action with example 03-point-hit-test.html:

CHAPTER 9

210

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Point Hit Test</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <textarea id="log"></textarea>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 log = document.getElementById('log'),
 ball = new Ball();

 ball.x = canvas.width / 2;
 ball.y = canvas.height / 2;
 ball.draw(context);

 canvas.addEventListener('mousemove', function () {
 if (utils.containsPoint(ball.getBounds(), mouse.x, mouse.y)) {
 log.value = "Hit!";
 } else {
 log.value = '';
 }
 }, false);
 };
 </script>
 </body>
</html>

This uses the mouse cursor as the point which the ball hit tests against. As you move the mouse close to
the ball, you will see that it probably starts registering a hit before you actually touch the shape, especially
if you come at it from a corner, as shown in Figure 9.6. Try it again with a square and it should be perfectly
accurate. So again, this method seems to be useful only for rectangle-shaped objects.

COLLISION DETECTION

211

Figure 9-6. Collision detection using a circle's bounding box causes a false positive.

To use this method for more accurate collision detection, you can test several points along the shape's
outline. This gives you a more precise definition of the object boundaries, but also means the program has
to run more tests. And depending on the shape complexity, all these tests could slow down the web
browser. For example, if you had a star-shaped object, you could calculate the position its five points, and
do a hit test from another object to each of those five points. But then if you had two stars, you would need
to test each one against the other’s five points. For a star, this would probably work pretty well; but a more
complex shape would obviously need more points. You can see this gets very complex and
computationally-intensive very quickly. Just two stars, and you’re up to ten times the number of hit tests
you would use for the more simple method. Accuracy costs you.

If you must perform collision detection against an irregular shape, a good strategy is to break complex
shapes into smaller rectangles, and test against those. This will give you greater accuracy, but also
increase the amount of calculations, so find a balance between the two. For greater efficiency, first test
against the entire shape's bounding box, and then only if it's a hit, break the object up into smaller
rectangles to test against.

Summary of geometric hit testing
Collision detection between two irregularly shaped objects, so that if any part of one touches the other, is
not readily supported using our simple geometric methods. But there are a few options:

 For roughly rectangular objects, use utils.intersects(rectA, rectB).

 For irregularly shaped objects, you either live with the inaccuracy or custom program a solution,
probably using utils.containsPoint(rect, x, y).

Of course, the chapter is far from done yet, and there are solutions beyond what we've covered here. If
you have circular or roughly circular objects, distance-based collision detection will probably be your best
bet. You’d be surprised at how many shapes can be characterized as “roughly rectangular” or “roughly
circular”.

CHAPTER 9

212

Distance-based collision detection
In this section, you’ll abandon the geometric hit testing functions and take collision detection into your own
hands. This involves using the distance between two objects to determine whether they have collided.

As an example of this idea in the real world, let's say the center of your car is 100 feet from the center of
my car. Given this space, you know that the two cars are far enough apart that they couldn’t possibly be
touching. However, if both of our cars are 6 feet wide and 12 feet long, and the center of my car is 5 feet
from the center of your car, you can be pretty certain that we're in trouble. In other words, there is no way
for the centers to be that close together without some parts of the cars touching. That’s the whole concept
behind distance-based testing. You determine the minimum distance required to separate the two objects,
calculate the current distance, and compare the two. If the current distance is less than the minimum, you
know they are hitting.

And of course, there is a trade-off. Where the simplest rectangle intersection worked perfectly with
rectangles, but was less accurate using other shapes, this method works perfectly with circles. It's problem
is that non-circle shapes that appear to be touching don’t register a collision because their centers are still
not close enough.

Simple distance-based collision detection
Let’s start out with the ideal situation: a couple of perfectly round circles. When doing this type of collision
detection, we should measure from the exact center of the circle; we can use our Ball class for this.
Building off the first example in this chapter, create two balls and set up one of them to be dragged with
the mouse. You’ll also perform your collision detection in the drawFrame function, but instead of using
utils.intersects to check for a collision, you’ll be using the distance between the two balls. You should
already know how to compute the distance between two objects using the Pythagorean Theorem from
back in Chapter 3. So, you start off with something like this:

var dx = ballB.x - ballA.x,
 dy = ballB.y - ballA.y,
 dist = Math.sqrt(dx * dx + dy * dy);

Now you have the distance, but how do you know whether that distance is small enough to consider that a
collision has occurred? Well, take a look at the picture in Figure 9-7.

COLLISION DETECTION

213

Distance = 60

Radius = 30 Radius = 30

Diameter = 60 Diameter = 60

Figure 9-7. The distance of a collision

You can see the two circular objects in a position where they are just touching. Consider that each ball is
60 pixels across, which gives it a radius of 30. Thus, at the exact moment they touch, they are exactly 60
pixels apart—there’s the answer. For two circular objects of the same size, if the distance is less than their
diameter, they are colliding. Here's the code for this example (04-distance-1.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Distance 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <textarea id="log"></textarea>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 log = document.getElementById('log'),
 ballA = new Ball(30),
 ballB = new Ball(30);

 ballA.x = canvas.width / 2;
 ballA.y = canvas.height / 2;

CHAPTER 9

214

 canvas.addEventListener('mousemove', drawFrame, false);
 drawFrame();

 function drawFrame () {
 context.clearRect(0, 0, canvas.width, canvas.height);

 ballB.x = mouse.x;
 ballB.y = mouse.y;

 var dx = ballB.x - ballA.x,
 dy = ballB.y - ballA.y,
 dist = Math.sqrt(dx * dx + dy * dy);

 if (dist < 60) {
 log.value = "Hit!";
 } else {
 log.value = '';
 }

 ballA.draw(context);
 ballB.draw(context);
 }
 };
 </script>
 </body>
</html>

When you run this, you’ll notice that it doesn’t matter from which angle you approach the target ball. It
doesn’t register a hit until that exact point when the shapes overlap.

It's already been mentioned that hard-coding numbers into code is generally bad style. You would need to
change the code every time you had different-sized objects. Furthermore, what about the case where the
two objects are not the same size? We need to abstract this concept into some kind of formula that will fit
any situation.

Figure 9-8 shows two balls of different sizes, again, just touching. The one on the left is 60 pixels across,
and the one on the right is 40 pixels. Thus, the radius of one is 30, and the radius of the other is 20. So,
the distance between them at the moment they touch is exactly 50. Of course, in the case of the Ball
class, we’ve already programmed in this radius property, so we can check it directly.

COLLISION DETECTION

215

Distance = 50

Radius = 30 Radius = 20

Diameter = 60 Diameter = 40

Figure 9-8. The distance of a collision between two different-sized objects

A pattern begins to emerge. The distance is the radius of one ball, plus the radius of the other. You can
now remove all hard-coded numbers from the code and modify the drawFrame function to this (which can
be found in document 05-distance-2.html):

function drawFrame () {
 context.clearRect(0, 0, canvas.width, canvas.height);

 ballB.x = mouse.x;
 ballB.y = mouse.y;

 var dx = ballB.x - ballA.x,
 dy = ballB.y - ballA.y,
 dist = Math.sqrt(dx * dx + dy * dy);

 if (dist < ballA.radius + ballB.radius) {
 log.value = "Hit!";
 } else {
 log.value = '';
 }

 ballA.draw(context);
 ballB.draw(context);
}

Go ahead and change the size of one or both of the balls (remember, you can pass in a radius as the first
parameter when instantiating the object) and see that this code works, even if one circle is huge and one
circle is tiny. In fact, in the full example mentioned earlier, the balls are declared like this:

CHAPTER 9

216

var ballA = new Ball(Math.random() * 100),
 ballB = new Ball(Math.random() * 100);

This way, they will be different sized each time the code is run, and yet the collision detection always
works perfectly.

Collision-based springing
The problem with giving you a good working example of distance-based hit testing is that a complete
program would involve a lot of issues related to things that haven’t been covered yet, such as the reaction
of two objects when they hit, and how to efficiently handle interactions between many objects. But we'll
create an example that demonstrates hit testing without too much code that you haven’t already seen.

The basic idea is to place one large ball, called centerBall, in the center of the canvas. Then add in a
bunch of smaller balls, giving them random sizes and velocities. These will move with basic motion code
and bounce off the walls. On each frame, perform a distance-based collision check between each moving
ball and the center ball. If you detect a collision, calculate an offset spring target based on the angle
between the two balls and the minimum distance to avoid collision. All it really means is that if a moving
ball collides with the center ball, you make it spring back out again. You do this by setting a target just
outside the center ball, and the moving ball springs to that target. Then, once it reaches the target, it is no
longer colliding, so the spring action ends, and it just moves with its regular motion code.

The result is kind of like bubbles bouncing off a large bubble, as shown in Figure 9-9. The little bubbles
enter into the big one a bit, depending on how fast they are going, but then spring back out.

Figure 9-9. Collision-based springing

Here is the code for the example (document 06-bubbles-1.html):

COLLISION DETECTION

217

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Bubbles 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 centerBall = new Ball(100, "#cccccc"),
 balls = [],
 numBalls = 10,
 spring = 0.03,
 bounce = -1;

 centerBall.x = canvas.width / 2;
 centerBall.y = canvas.height / 2;

 for (var ball, i = 0; i < numBalls; i++) {
 ball = new Ball(Math.random() * 40 + 5, Math.random() * 0xffffff);
 ball.x = Math.random() * canvas.width / 2;
 ball.y = Math.random() * canvas.height / 2;
 ball.vx = Math.random() * 6 – 3;
 ball.vy = Math.random() * 6 – 3;
 balls.push(ball);
 }

 function move (ball) {
 ball.x += ball.vx;
 ball.y += ball.vy;

 if (ball.x + ball.radius > canvas.width) {
 ball.x = canvas.width – ball.radius;
 ball.vx *= bounce;
 } else if (ball.x - ball.radius < 0) {
 ball.x = ball.radius;
 ball.vx *= bounce;
 }
 if (ball.y + ball.radius > canvas.height) {
 ball.y = canvas.height – ball.radius;
 ball.vy *= bounce;
 } else if (ball.y - ball.radius < 0) {
 ball.y = ball.radius;
 ball.vy *= bounce;
 }
 }

 function draw (ball) {

CHAPTER 9

218

 var dx = ball.x – centerBall.x,
 dy = ball.y – centerBall.y,
 dist = Math.sqrt(dx * dx + dy * dy),
 min_dist = ball.radius + centerBall.radius;

 if (dist < min_dist) {
 var angle = Math.atan2(dy, dx),
 tx = centerBall.x + Math.cos(angle) * min_dist,
 ty = centerBall.y + Math.sin(angle) * min_dist;
 ball.vx += (tx - ball.x) * spring;
 ball.vy += (ty - ball.y) * spring;
 }
 ball.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 balls.forEach(move);
 balls.forEach(draw);
 centerBall.draw(context);
 }());
 };
 </script>
 </body>
</html>

This is a lot of code, but you’ve already seen most of these techniques in earlier chapters. Let’s walk
through it quickly.

Starting at the top of the script, you create the centerBall and then loop through and create the smaller,
moving, balls. They are given a random size, position, color, and velocity.

Within the drawFrame animation loop, we iterate over the balls twice. To separate functionality, the motion
code has been placed in a function called move. This takes a reference to one of the balls and applies all
the basic motion code to it—it’s basic velocity code with bouncing. Then, in the draw function, you find the
distance from a given ball to the centerBall, and compute the minimum distance to determine a collision.
If there is a collision, you find the angle between the two, and use that plus the minimum distance to
calculate a target x and y. This target will be right on the outer edge of the centerBall.

From there, you just apply basic spring code to spring to that point (as described in Chapter 8). Of course,
once it reaches that point, it’s no longer colliding and will fly off in whatever direction it’s heading. We then
draw the balls to the canvas.

See how you can build up and layer simple techniques to wind up with some very complex motion?

Multiple-object collision detection strategies
When you have just a couple of objects moving around the screen, it’s pretty simple to test them against
each other. But when you get several objects, or even dozens, you need some kind of strategy for how to

COLLISION DETECTION

219

test them so that you don’t miss any possible collisions. Furthermore, as you have more and more objects
being tested, it becomes very important to perform your tests with some kind of efficiency in mind.

Basic multiple-object collision detection
With just two objects, only one collision is possible—A versus B. With three objects, you have three
possibilities: A-B, B-C, and C-A. Four objects give you six collisions, and five objects give you ten
collisions. When you get up to 20 objects, you need to take into account 190 separate collisions! That
means that in your drawFrame function, you need to run a collision detection calculation 190 times.

That’s enough as it is, so you certainly don’t need to be adding any more unnecessary hit testing. But
many beginners wind up doing not just a few extra hit tests, but exactly twice as many as necessary! For
20 objects, they do 380 hit test (20 objects each testing 19 others, or 20 × 19 = 380). You can see why you
should have a solid understanding of this subject.

To understand the problem, let’s take a look at what needs to be done, and how it is often approached.
Say you have six objects, named object0, object1, object2, object3, object4, and object5. You
have them moving around nicely, bouncing or whatever, and you want to know when any one of the
objects hits any other one. The obvious solution is to make two nested loops. The outer one iterates
through each of the six objects, gets a reference to each one in turn, and then loops through again,
comparing it to each of the others. Here it is in pseudo-code:

objects.forEach(function (objectA, i) {
 for (var j = 0; j < objects.length; j++) {
 var objectB = objects[j];
 if (hitTestObject(objectA, objectB)) {
 //do something
 }
 }
});

That’s 36 hit tests for six objects. Seems reasonable, but this code has two huge problems.

First, take a look what happens the first time through it. The variables i and j will both equal 0. So
objectA will hold a reference to object0, as will objectB. That means you’re testing an object against
itself, which is a waste of a calculation. You could make sure that objectA != objectB before
performing the hit test, or you could even go simpler and just make sure i != j. Then you get
something like this:

objects.forEach(function (objectA, i) {
 for (var j = 0; j < objects.length; j++) {
 var objectB = objects[j];
 if (i !== j && hitTestObject(objectA, objectB)) {
 //do something
 }
 }
});

That eliminated six hit tests, so you’re down to 30, but this is still too many. Let’s write out the exact tests
you’re doing. You are comparing the following:

CHAPTER 9

220

object0 with object1, object2, object3, object4, object5
object1 with object0, object2, object3, object4, object5
object2 with object0, object1, object3, object4, object5
object3 with object0, object1, object2, object4, object5
object4 with object0, object1, object2, object3, object5
object5 with object0, object1, object2, object3, object4

Look at the first test on the first row: object0 with object1. Now look at the first test on the second row:
object1 with object0—that’s the same thing! If object0 is not hitting object1, object1 is also not
hitting object0. Or if one is hitting the other, you can be sure the other is hitting the first. There are many
of these double checks in there. If you remove all the duplicate tests, you get this:

object0 with object1, object2, object3, object4, object5
object1 with object2, object3, object4, object5
object2 with object3, object4, object5
object3 with object4, object5
object4 with object5
object5 with nothing!

You see that in the first round of tests, you’re testing object0 with every other object. Because no other
object needs to test against that one again, you drop object0 off the list. Then object1 tests against the
remaining objects, and you drop it off the list. By the time you get to the last one, object5, every other
object has already tested itself for a collision with it. There’s no need to test it against anything. The result
is that you’re down to 15 tests, so you see why our initial solution ends up being double what is needed.

To code this, you still have two nested loops—a for loop within the forEach iteration—but now it looks
like this:

objects.forEach(function (objectA, i) {
 for (var j = i + 1; j < objects.length; j++) {
 var objectB = objects[j];
 if (hitTestObject(objectA, objectB) {
 //do whatever
 }
 }
});

In the inner for loop, you always start with one higher than the index of the outer iteration. This is because
you’ve already tested everything lower, and you don’t want to test the same index, which, as you saw,
would be testing an object against itself. This lets you get rid of that check. The result is just a few
characters different from the original code, but gives you a 100% performance increase!

Also, even beyond its performance impact, in many cases, doing double hit testing might have unwanted
results. If you’re changing the velocity or some other value when you detect a collision, you may wind up
changing it twice, resulting in an undetermined, and hard to debug, effect.

If this topic interests you, and you'd like to dig a lot deeper, this is all a part of Combinatorics, a field of
math concerned with problems of selection and arrangement, or: How to count without counting.

COLLISION DETECTION

221

Multiple-object springing
Let’s make another quick example to see this in action. Again, we’ll go with the bubble-type reaction, but
this time, all bubbles can bounce off of each other. Figure 9-10 illustrates the effect.

Figure 9-10. Multiple-object collision

Here’s the code in document 07-bubbles-2.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Bubbles 2</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 balls = [],
 numBalls = 10,
 bounce = -0.5,
 spring = 0.03,
 gravity = 0.1;

 for (var ball, i = 0; i < numBalls; i++) {
 ball = new Ball(Math.random() * 30 + 20, Math.random() * 0xffffff);
 ball.x = Math.random() * canvas.width / 2;
 ball.y = Math.random() * canvas.height / 2;
 ball.vx = Math.random() * 6 – 3;
 ball.vy = Math.random() * 6 – 3;
 balls.push(ball);
 }

 function checkCollision (ballA, i) {

CHAPTER 9

222

 for (var ballB, dx, dy, dist, min_dist, j = i + 1; j < numBalls; j++) {
 ballB = balls[j];
 dx = ballB.x – ballA.x;
 dy = ballB.y – ballA.y;
 dist = Math.sqrt(dx * dx + dy * dy);
 min_dist = ballA.radius + ballB.radius;

 if (dist < min_dist) {
 var angle = Math.atan2(dy, dx),
 tx = ballA.x + Math.cos(angle) * min_dist,
 ty = ballA.y + Math.sin(angle) * min_dist,
 ax = (tx - ballB.x) * spring * 0.5,
 ay = (ty - ballB.y) * spring * 0.5;

 ballA.vx -= ax;
 ballA.vy -= ay;
 ballB.vx += ax;
 ballB.vy += ay;
 }
 }
 }

 function move (ball) {
 ball.vy += gravity;
 ball.x += ball.vx;
 ball.y += ball.vy;

 if (ball.x + ball.radius > canvas.width) {
 ball.x = canvas.width – ball.radius;
 ball.vx *= bounce;
 } else if (ball.x - ball.radius < 0) {
 ball.x = ball.radius;
 ball.vx *= bounce;
 }
 if (ball.y + ball.radius > canvas.height) {
 ball.y = canvas.height – ball.radius;
 ball.vy *= bounce;
 } else if (ball.y - ball.radius < 0) {
 ball.y = ball.radius;
 ball.vy *= bounce;
 }
 }

 function draw (ball) {
 ball.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 balls.forEach(checkCollision);
 balls.forEach(move);
 balls.forEach(draw);

COLLISION DETECTION

223

 }());
 };
 </script>
 </body>
</html>

Here, you are simply using the double-nested iteration to perform collision detection. In this case, the
reaction might need some additional explanation. Here’s the collision reaction code located in the
checkCollision function:

if (dist < min_dist) {
 var angle = Math.atan2(dy, dx),
 tx = ballA.x + Math.cos(angle) * min_dist,
 ty = ballA.y + Math.sin(angle) * min_dist,
 ax = (tx - ballB.x) * spring * 0.5,
 ay = (ty - ballB.y) * spring * 0.5;

 ballA.vx -= ax;
 ballA.vy -= ay;
 ballB.vx += ax;
 ballB.vy += ay;
}

Remember that this occurs once a collision is found between ballA and ballB. Essentially, it starts out
the same as the earlier example with the unmoving center ball. For now, let ballA take the place of that
center ball. You find the angle between the two, and get a target x and y. This is the point that you would
need to place ballB so that the two balls would not be touching. Based on that, you get the x and y
acceleration that would cause ballB to spring to that point, then we cut it in half (which I explain next).
These are ax and ay.

But then you do something a little tricky. In this case, not only does ballB need to spring away from
ballA, but ballA must spring away from ballB. The acceleration would be the same force and exactly
the opposite direction. So rather than calculate it twice, you just add ax and ay to ballB’s velocity, and
subtract them from ballA’s velocity! You get the same result, and you just saved a bunch of calculation.
You might be thinking that this doubles the final acceleration, as it’s being applied twice; and that’s true. To
compensate, we cut the the spring product in half, multiplying it by 0.5, when we calculated ax and ay.
You can remove these two multiplication operations by halving the spring variable when you declare it,
to 0.015.

While we’re discussing optimization tricks, here's another one here. The preceding code calculates the
angle using Math.atan2, and then uses Math.cos and Math.sin to find the target point:

var angle = Math.atan2(dy, dx),
 tx = ballA.x + Math.cos(angle) * min_dist,
 ty = ballA.y + Math.sin(angle) * min_dist;

But remember that sine is opposite over hypotenuse, and cosine is adjacent over hypotenuse. And since
the opposite side of the angle is dy, the adjacent side is dx, and the hypotenuse is dist. Thus, you could
actually shorten these three lines to just two:

CHAPTER 9

224

var tx = ballA.x + dx / dist * min_dist,
 ty = ballA.y + dy / dist * min_dist;

Which just wiped out three calls to trigonometry functions and replaced them with two simple divisions.

You can view this example that includes all the optimization updates in document 08-bubbles-3.html,
which can be downloaded from www.apress.com. Before you move on, take some time to play with the
springing bubbles example. You can adjust many variables, so try changing the spring, gravity, number,
and size of the balls. You might want to try adding some friction or some mouse interaction.

Important formulas in this chapter
It’s time to review the two important formulas presented in this chapter.

Distance-based collision detection

//starting with objectA and objectB
//if using an object without a radius property,
//you can use width or height divided by 2
var dx = objectB.x – objectA.x,
 dy = objectB.y – objectA.y,
 dist = Math.sqrt(dx * dx + dy * dy);

if (dist < objectA.radius + objectB.radius) {
 //handle collision
}

Multiple-object collision detection

objects.forEach(function (objectA, i) {
 for (var j = i + 1; j < objects.length; j++) {
 //evaluate reference using j. For example:
 var objectB = objects[j];
 //perform collision detection between objectA and objectB
 }
});

Summary
This chapter covered just about everything you need to know about collision detection, including using
geometric ht testing methods, distance-based collision checking, and how to efficiently track collisions
among many objects. You should know the pros and cons of each method, and situations where each
works well or does not perform satisfactorily. You’ll be using all of this material as you move forward in the
book, and no doubt, you’ll be using it extensively in your own projects.

In the next chapter, you’ll look at collisions between objects and angled surfaces, using a technique known
as coordinate rotation. This technique will also be used in Chapter 11, where you’ll find out what to do to
create a realistic reaction to the collisions you learned how to detect here.

http://www.apress.com

225

Chapter 10

Coordinate Rotation and Bouncing Off Angles

What we’ll cover in this chapter:

 Simple coordinate rotation

 Advanced coordinate rotation

 Bouncing off an angle

This chapter covers a technique known as coordinate rotation, which as its name implies, involves rotating
a coordinate around a point. While useful all by itself, coordinate rotation is indispensable for several very
interesting effects, including how to bounce something off an angled surface. We’ll cover how to do that in
this chapter.

Coordinate rotation is also useful for calculating the reactions of two objects that bounce off each other.
You'll see how to do that in the next chapter, where we discuss the conservation of momentum. Since the
next chapter builds off the knowledge presented in this chapter, make sure you have a fairly good
understanding of coordinate rotation before moving on.

Simple coordinate rotation
The technique for simple coordinate rotation was covered in Chapter 3 when discussing trigonometry. You
have a center point, an object, a radius (orbit), and an angle (in radians). You increase or decrease the
angle, and use basic trigonometry to place the object around the center point. You can set a variable such
as vr (velocity/speed of rotation) to control how much the angle is increased or decreased. Using pseudo-
code, the program setup would look like this:

CHAPTER 10

226

vr = 0.1
angle = 0
radius = 100
centerX = 0
centerY = 0

With these calculations inside the animation loop:

object.x = centerX + cos(angle) * radius
object.y = centerY + sin(angle) * radius
angle += vr

You’re using trigonometry to set the x and y position of the object based on the angle and the radius, and
changing the angle on each frame. Figure 10-1 illustrates a frame from an animation where the object is
positioned around a center point.

x

y

Figure 10-1. Positioning the object along an orbital path around a center point.

Here's an example to demonstrate this formula, document 01-rotate-1.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Rotate 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 vr = 0.05,
 angle = 0,
 radius = 150,
 centerX = canvas.width / 2,

COORDINATE ROTATION AND BOUNCING OFF ANGLES

227

 centerY = canvas.height / 2;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball.x = centerX + Math.cos(angle) * radius;
 ball.y = centerY + Math.sin(angle) * radius;
 angle += vr;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

This approach works great when you know the angle and radius from a center point.

But what if you only have the position of the object and the center point? Well, it isn’t too hard to calculate
the current angle and radius based on the x and y positions. Once you have them, you can carry on as
before. Figure 10-2 shows the general layout of our calculation, and here's the code:

var dx = ball.x – centerX,
 dy = ball.y – centerY,
 angle = Math.atan2(dy, dx),
 radius = Math.sqrt(dx * dx + dy * dy);

centerX,
centerY

angle

dx
(ball.x – centerX)

dy
(ball.y – centerY)

ball.x,
ball.y

Figure 10-2. Getting ready to calculate the angle and radius.

This method of coordinate rotation is fine for a single object, especially in a situation where you only need
to determine the angle and radius once. But in a more dynamic example, you could have many objects to
rotate, and their relative positions to the center rotation point could be changing. So, for each object, you
would need to compute its distance, angle, and radius, then add the vr to the angle, and finally calculate
the new x, y position, on each frame. This is neither elegant, nor efficient, but fortunately, there is a better
way.

CHAPTER 10

228

Advanced coordinate rotation
The next formula is great if you are rotating objects around a point, and you only know their positions. The
equation just needs the x, y position of the object in relation to the center point and the angle to rotate by.
It returns the new x, y position of the object, rotated around the center point. Here’s the formula:

x1 = x * cos(rotation) – y * sin(rotation)
y1 = y * cos(rotation) + x * sin(rotation)

The result of this formula is illustrated in Figure 10-3. You are rotating the coordinates x and y, but more
specifically, they're the coordinates of that object in relation to the center point it is rotating around. Thus,
you could also write the formula like this:

x1 = (x - centerX) * cos(rotation) – (y - centerY) * sin(rotation)
y1 = (y - centerY) * cos(rotation) + (x - centerX) * sin(rotation)

Center of
rotation

x

y
Rotated
position

Original
position

Angle of
rotation

Figure 10-3. Coordinates rotated around a center point by specifying the angle of rotation.

The rotation angle is how much the object has rotated in this step. It’s not the current angle, or the
resulting angle, but the difference between the two. In other words, if the object is at a 45-degree angle
from the center point, and the rotation here is 5 degrees, you will rotate the object another 5 degrees to put
it at 50. And of course, this angle will be in radians, not degrees. Using this technique, you probably don’t
know, and don’t really care about, the initial and final angles. You’re just interested in how much rotation is
occurring.

This equation may seem a little like magic, but we can understand how it works by breaking it down. Now
this isn't necessary to use the formula, but it's here in case the math is useful for you. Start with the
equation for simple coordinate rotation from the previous section (centerX and centerY have been
removed since we're rotating around point 0, 0):

x = radius * cos(angle)
y = radius * sin(angle)
x1 = radius * cos(angle + rotation)
y1 = radius * sin(angle + rotation)

The cosine of the sum of two angles is given by the formula:

COORDINATE ROTATION AND BOUNCING OFF ANGLES

229

cos(a + b) = cos(a) * cos(b) – sin(a) * sin(b)

And the corresponding formula for the sine is:

sin(a + b) = sin(a) * cos(b) + cos(a) * sin(b)

So, after expanding the equations for x1 and x2, we get:

x1 = radius * cos(angle) * cos(rotation) – radius * sin(angle) * sin(rotation)
y1 = radius * sin(angle) * cos(rotation) + radius * cos(angle) * sin(rotation)

Therefore, after we substitute in the x and y variables from above, we have our equation:

x1 = x * cos(rotation) – y * sin(rotation)
y1 = y * cos(rotation) + x * sin(rotation)

We're just using this equation, so it's not necessary for you to understand how we got it, as much as what
it does. So let's see what we can do with it.

Rotating a single object
This example places a single ball at a random location and then uses the advanced coordinate rotation
technique from the previous section to rotate it. It builds on the first example in this chapter, with the added
code in bold (document 02-rotate-2.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Rotate 2</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 vr = 0.05,
 cos = Math.cos(vr),
 sin = Math.sin(vr),
 centerX = canvas.width / 2,
 centerY = canvas.height / 2;

 ball.x = Math.random() * canvas.width;
 ball.y = Math.random() * canvas.height;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

CHAPTER 10

230

 var x1 = ball.x - centerX,
 y1 = ball.y - centerY,
 x2 = x1 * cos – y1 * sin,
 y2 = y1 * cos + x1 * sin;

 ball.x = centerX + x2;
 ball.y = centerY + y2;
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

Here, you are setting vr to the same value of 0.05 you used before. Then you’re calculating the sine and
cosine of that angle. Since those values won't change during this simple example, you can calculate it
once at the top of the script, rather than recalculating it every frame. The x1 and y1 positions are
calculated in relation to the point they will rotate around—the center of the canvas. Then you apply the
coordinate rotation formula as just described. This gives you x2 and y2, the new position of the ball. Again,
this is in relation to the center point, so you need to add x2 and y2 to the center point to get the final
position of the ball.

Try it out, and you’ll see it should work exactly the same as the earlier version. Now, why bother going
through this new, more complex, formula when the results look the same? Well, in a simple situation like
this, you might not. But let’s look at some examples where this setup actually simplifies things. First,
consider rotating multiple objects.

Rotating multiple objects
Suppose there are many objects to rotate, say a bunch of objects in an array called balls. Moving each
ball would look something like this:

balls.forEach(function (ball) {
 var dx = ball.x – centerX,
 dy = ball.y – centerY,
 angle = Math.atan2(dy, dx),
 dist = Math.sqrt(dx * dx + dy * dy);

 angle += vr;
 ball.x = centerX + Math.cos(angle) * dist;
 ball.y = centerY + Math.sin(angle) * dist;
});

Whereas the advanced coordinate rotation method would look like this:

var cos = Math.cos(vr),
 sin = Math.sin(vr);

balls.forEach(function (ball) {
 var x1 = ball.x – centerX,
 y1 = ball.y – centerY,

COORDINATE ROTATION AND BOUNCING OFF ANGLES

231

 x2 = x1 * cos – y1 * sin,
 y2 = y1 * cos + x1 * sin;

 ball.x = centerX + x2;
 ball.y = centerY + y2;
});

The first version includes four calls to Math functions within the iteration, meaning that all four are
executed once for each object being rotated. The second version has just two calls to Math functions, both
outside the loop, so they are executed only once, regardless of how many objects there are. For example,
if you have 30 objects, you’re looking at 120 function calls on each frame with the first version, as
compared to 2 with the second version—that's quite a difference!

In the previous example, you were able to place the sin and cos calculations outside the drawFrame
function because you were using a fixed angle. However in many cases, these angles of rotation may
change, and you’ll need to recalculate the sine and cosine each time it changes.

To demonstrate these latest concepts, let’s build an example where the mouse position is controlling the
speed of rotation of multiple objects. If the mouse is in the center of the canvas, no rotation happens. As it
moves to the left, the objects move faster and faster in a counterclockwise direction. As it moves to the
right, they rotate in a clockwise direction. This example will start out quite similarly to the previous one,
except you’ll create multiple instances of Ball, storing them in an array named balls. Here’s the
document (03-rotate-3.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Rotate 3</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 balls = [],
 numBalls = 10,
 vr = 0.05,
 centerX = canvas.width / 2,
 centerY = canvas.height / 2,
 cos, sin; //referenced by move and drawFrame

 for (var ball, i = 0; i < numBalls; i++) {
 ball = new Ball();
 ball.x = Math.random() * canvas.width;
 ball.y = Math.random() * canvas.height;
 balls.push(ball);

CHAPTER 10

232

 }

 function move (ball) {
 var x1 = ball.x - centerX,
 y1 = ball.y - centerY,
 x2 = x1 * cos – y1 * sin,
 y2 = y1 * cos + x1 * sin;
 ball.x = centerX + x2;
 ball.y = centerY + y2;
 }

 function draw (ball) {
 ball.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var angle = (mouse.x - centerX) * 0.0005;
 cos = Math.cos(angle);
 sin = Math.sin(angle);

 balls.forEach(move);
 balls.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

You’ll revisit this formula when you get to the discussion of 3D in Chapter 15. In fact, you’ll be using it twice
within the same function, to rotate things around two axes and three dimensions. But don’t get scared off
yet, there is still a lot to do before you get there.

Bouncing off an angle
We've already bounced off walls, but in real situations, surfaces are not always horizontal or vertical—
sometimes they're angled. This is not the most straightforward equation, but if we break it down to a few
steps you can see how simple the concept is. All we need to do is rotate the whole system so the surface
is flat, do the bounce, then rotate it all back. This means rotating the surface, rotating the coordinates of
the object in question, and rotating the object’s velocity vector.

Rotating velocity may sound complex, but you’ve been storing velocity in vx and vy variables. The vx and
vy define a vector, which is an angle and a magnitude, or length. If you know the angle, you can rotate it
directly. But if you just know the vx and vy, you can apply the advanced coordinate rotation formula to it
and get the same result, just as you did for the position of the ball.

In Figure 10-4, you see the angled surface, the ball, which has hit the surface, and the vector arrow
representing the ball’s direction.

COORDINATE ROTATION AND BOUNCING OFF ANGLES

233

Velocity

Ball

Surface

Figure 10-4. A ball hitting an angled surface

In Figure 10-5, you see that the entire scene has been rotated and the surface is now horizontal, just like
the bottom barrier on the original bouncing example. Here, the velocity vector has been rotated right along
with everything else.

Velocity

Ball

Surface

Figure 10-5. The same scene, rotated

The way the diagram now looks, it’s pretty simple to perform a bounce, right? Adjust the position, and
change the y velocity, as in Figure 10-6.

.

Ball Velocity
after bounce

Surface

Figure 10-6. After the bounce

CHAPTER 10

234

You now have a new position and velocity for the ball. Next, rotate everything back to the original angle, as
shown in Figure 10-7.

Ball

Velocity
after bounce

Surface

Figure 10-7. After rotating back

You’ve just detected the collision, adjusted the position, and changed the velocity, all on an angled
surface. That's the theory behind it anyway, let’s move on to some real code.

Performing the rotation
Before we get started, we're going to need something to act as an angled surface. This is more for your
eyes than for any mathematical necessity. For bouncing off of flat surfaces, you can use the boundaries of
the canvas. But for an angled surface, it will help to draw a line at an angle, so you can see the ball
bouncing on it.

For this, we're going to create a new Line class that we can position and draw a horizontal line using the
canvas drawing API. It also contains a fairly comprehensive getBounds method that will allow us to
perform collision detection with it—even when rotated—so we can create an angled surface. Place this
class in the file line.js which we'll import into our examples:

function Line (x1, y1, x2, y2) {
 this.x = 0;
 this.y = 0;
 this.x1 = (x1 === undefined) ? 0 : x1;
 this.y1 = (y1 === undefined) ? 0 : y1;
 this.x2 = (x2 === undefined) ? 0 : x2;
 this.y2 = (y2 === undefined) ? 0 : y2;
 this.rotation = 0;
 this.scaleX = 1;
 this.scaleY = 1;
 this.lineWidth = 1;
}

Line.prototype.draw = function (context) {
 context.save();

COORDINATE ROTATION AND BOUNCING OFF ANGLES

235

 context.translate(this.x, this.y);
 context.rotate(this.rotation);
 context.scale(this.scaleX, this.scaleY);
 context.lineWidth = this.lineWidth;
 context.beginPath();
 context.moveTo(this.x1, this.y1);
 context.lineTo(this.x2, this.y2);
 context.closePath();
 context.stroke();
 context.restore();
};

Line.prototype.getBounds = function () {
 if (this.rotation === 0) {
 var minX = Math.min(this.x1, this.x2),
 minY = Math.min(this.y1, this.y2),
 maxX = Math.max(this.x1, this.x2),
 maxY = Math.max(this.y1, this.y2);
 return {
 x: this.x + minX,
 y: this.y + minY,
 width: maxX – minX,
 height: maxY – minY
 }
 } else {
 var sin = Math.sin(this.rotation),
 cos = Math.cos(this.rotation),
 x1r = cos * this.x1 + sin * this.y1,
 x2r = cos * this.x2 + sin * this.y2,
 y1r = cos * this.y1 + sin * this.x1,
 y2r = cos * this.y2 + sin * this.x2;
 return {
 x: this.x + Math.min(x1r, x2r),
 y: this.y + Math.min(y1r, y2r),
 width: Math.max(x1r, x2r) - Math.min(x1r, x2r),
 height: Math.max(y1r, y2r) - Math.min(y1r, y2r)
 };
 }
};

We’ll continue to use the Ball class, which you should know to keep handy by now. When you position
everything, make sure the ball is above the line, so it can fall onto it. Here is the document for the next
example (04-angle-bounce.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Angle Bounce</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>

CHAPTER 10

236

 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script src="line.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 line = new Line(0, 0, 300, 0),
 gravity = 0.2,
 bounce = -0.6;

 ball.x = 100;
 ball.y = 100;

 line.x = 50;
 line.y = 200;
 line.rotation = 10 * Math.PI / 180; //10 degrees to radians

 //get sine and cosine of angle
 var cos = Math.cos(line.rotation),
 sin = Math.sin(line.rotation);

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 //normal motion code
 ball.vy += gravity;
 ball.x += ball.vx;
 ball.y += ball.vy;

 //get position of ball, relative to line
 var x1 = ball.x – line.x,
 y1 = ball.y – line.y,

 //rotate coordinates
 x2 = x1 * cos + y1 * sin,
 y2 = y1 * cos – x1 * sin,

 //rotate velocity
 vx1 = ball.vx * cos + ball.vy * sin,
 vy1 = ball.vy * cos - ball.vx * sin;

 //perform bounce with rotated values
 if (y2 > -ball.radius) {
 y2 = -ball.radius;
 vy1 *= bounce;
 }

 //rotate everything back
 x1 = x2 * cos - y2 * sin;
 y1 = y2 * cos + x2 * sin;

COORDINATE ROTATION AND BOUNCING OFF ANGLES

237

 ball.vx = vx1 * cos - vy1 * sin;
 ball.vy = vy1 * cos + vx1 * sin;
 ball.x = line.x + x1;
 ball.y = line.y + y1;

 ball.draw(context);
 line.draw(context);
 }());
 };
 </script>
 </body>
</html>

You start out by declaring variables for the ball, the line, gravity, and bounce. Then position the ball and
line, and calculate the cos and sin of the line's rotation. The normal motion code is placed near the top of
the drawFrame function.

Then you get the initial x, y position of the ball in relation to the line, by subtracting the line position from
the ball position.

And now you’re ready to rotate something! But, when you look at the next couple of lines of code, you may
notice something that seems wrong:

//rotate coordinates
x2 = x1 * cos + y1 * sin,
y2 = y1 * cos - x1 * sin,

The plus and minus are reversed from the original formula you were given for coordinate rotation, which is:

x1 = x * cos(rotation) – y * sin(rotation);
y1 = y * cos(rotation) + x * sin(rotation);

That’s not a mistake, remember, we want to rotate the line so it's a flat surface. If the line is rotated 10
degrees, then using the original formula, you would wind up rotating it 10 degrees more, making it 20
degrees—that's going the wrong way! You actually want to rotate it -10 degrees to put it at 0. You could
have calculated the sine and cosine to be Math.sin(-angle) and Math.cos(-angle), but eventually,
you’ll need the sine and cosine of the original angle, in order to rotate everything back.

Rather than making two cosine and sine variables (at double the cost of calculation), you can use an
alternative form of coordinate rotation to rotate everything in the opposite direction. It’s as simple as
reversing the plus and minus, as you just saw. If the line is at 10 degrees rotation, this will rotate
everything -10 degrees, putting it at 0 degrees, or flat. Then do the same to the velocity.

You don’t need to actually rotate the line instance, because it’s just there for your eyes—to let you see
where the ball is supposed to bounce. It’s also a handy place to store the angle and position of the
surface, since you can move and rotate with code.

Then you can perform the bounce. You do this using the x2, y2 position values and the vx1, vy1 velocity
values. Because y2 is in relation to the line instance, the “bottom” boundary is the line itself, which will be
0. Taking into account the size of the ball, you check to see whether y2 is greater than 0 – ball.radius,
which looks like this:

CHAPTER 10

238

if (y2 > -ball.radius) {
 //do bounce
}

The rest of the bounce should be obvious.

Then you rotate everything back, using the original formula. This gives you updated values for x1, y1,
ball.vx, and ball.vy. All you need to do is reset the actual position of the ball instance by adding x1
and y1 to line.x and line.y.

Take some time to test this example. Try different rotations of the line, and different positions of both the
line and ball. Make sure it all works fine.

Optimizing the code
You’ve already seen some examples of changing code a bit to make it more optimized. This usually
involves doing things once instead of multiple times, or not doing them at all, unless you’re sure they need
to be done.

The code in the previous example was written for clarity; there's a lot happening on every frame that
doesn’t need to be. Much of that code needs to execute only when the ball has actually hit the line. Most of
the time, you just need the basic motion code, and the bare minimum of calculation to check whether the
ball has hit the line. In other words, you just need to be able to calculate the if statement:

if (y2 > -ball.radius) {
 //do bounce
}

Here, you do need the y2 variable. And in order to get that, you need x1 and y1, and sin and cos. But if
the ball hasn’t hit the line, you don’t need x2, or vx1 and vy1—those can go inside the if statement.

Also, if there’s no hit, there’s no need to rotate anything back or reset the ball position. So, all the stuff after
the if statement can go inside the if statement as well. You wind up with this optimized version of the
drawFrame function (which you’ll find in 05-angle-bounce-opt.html):

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 //normal motion code
 ball.vy += gravity;
 ball.x += ball.vx;
 ball.y += ball.vy;

 //get position of ball, relative to line
 var x1 = ball.x – line.x,
 y1 = ball.y – line.y,

 //rotate coordinates
 y2 = y1 * cos - x1 * sin;

 //perform bounce with rotated values

COORDINATE ROTATION AND BOUNCING OFF ANGLES

239

 if (y2 > -ball.radius) {
 //rotate coordinates
 var x2 = x1 * cos + y1 * sin,

 //rotate velocity
 vx1 = ball.vx * cos + ball.vy * sin,
 vy1 = ball.vy * cos - ball.vx * sin;

 y2 = -ball.radius;
 vy1 *= bounce;

 //rotate everything back
 x1 = x2 * cos - y2 * sin;
 y1 = y2 * cos + x2 * sin;
 ball.vx = vx1 * cos - vy1 * sin;
 ball.vy = vy1 * cos + vx1 * sin;
 ball.x = line.x + x1;
 ball.y = line.y + y1;
 }

 ball.draw(context);
 line.draw(context);
}());

All the code in bold has been moved from outside the if statement to inside the statement, so it will
execute only if a hit actually occurs, rather than every single frame. This has saved quite a number of
calculations. As your animations get more complex, it becomes important to think about things like this.

Making it dynamic
You can now start to make the action a little more dynamic. Using the previous example, let’s adjust the
angle of the line in real time using the mouse. Like prior examples, add our mouse tracking utility function
to the top of the script:

var mouse = utils.captureMouse(canvas);

We'll use the mouse location to affect the line's rotation angle. Inside the drawFrame function, after the
normal motion code, move the assignment for line.rotation and the calculations for cos and sin, since
we'll need these for each frame:

line.rotation = ((canvas.width / 2 - mouse.x) * 0.1) * Math.PI / 180;

var cos = Math.cos(line.rotation),
 sin = Math.sin(line.rotation);

Now you can move your mouse back and forth, and the line will tilt one way or the other. The ball should
constantly adjust itself accordingly. Remember that we are converting our degrees to radians here before
drawing the line to the canvas. You can find this exercise implemented in document 06-angle-bounce-
rotate.html.

CHAPTER 10

240

Fixing the “not falling off the edge” problem
You’ve probably noticed that the ball will continue to roll along the angle of the line, even if it has gone past
the edge of it. This may look strange, but remember that the ball is not actually interacting with the line
object at all—it’s all done mathematically. But the results are so exact, it’s easy to forget that nothing is
actually “hitting” anything. Since the ball doesn’t “know” anything about the line object, it doesn’t know
where it starts or ends. But you can tell it where the line is—using either a simple hit test or a more precise
bounds check.

Hit testing

The easiest way to find the line’s location is to wrap everything but the basic motion code inside a hit test.
We'll use the utils.intersects function from Chapter 9—and added to our utils.js file—to determine
if the ball's bounding box and the line's bounding box overlap (example 07-angle-bounce-hit-
test.html):

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 //rotate line with mouse
 line.rotation = ((canvas.width / 2 - mouse.x) * 0.1) * Math.PI / 180;

 //normal motion code
 ball.vy += gravity;
 ball.x += ball.vx;
 ball.y += ball.vy;

 if (utils.intersects(ball.getBounds(), line.getBounds())) {
 //all the rest of the code that was in this function
 }

 ball.draw(context);
 line.draw(context);
}());

You can see that for the ball to fall off the edge, its entire bounding box must clear the line. While that
might suffice for some implementations, there’s another way to do it that’s a little more exact. But naturally,
that means it’s a little more complex.

Bounds checking

The getBounds method we defined on the Line and Ball classes returns an object representing a
rectangle, with the properties x, y, width, and height. The reference position of the bounding box is the
global space, meaning the absolute position as drawn to canvas element, with the top-left point being 0, 0.
This is opposed to the relative position of one object to another, though we can calculate this by
subtracting one object's global position from the other.

Let’s try it out. Create an instance of the Ball class and then run the following code:

COORDINATE ROTATION AND BOUNCING OFF ANGLES

241

var bounds = ball.getBounds();
console.log(bounds.x);
console.log(bounds.y);
console.log(bounds.width);
console.log(bounds.height);

This prints the ball’s bounding box from the viewpoint of the canvas element. Remember that the ball is
drawn from its origin point in the center. The left and top bounds are the ball's radius subtracted from its
position, while the right and bottom bounds are the radius added to its position.

But back to our problem of the ball not falling off the edge of the line. You can call getBounds on the line,
and determine its left and right boundaries from the returned rectangle. If the ball’s bounding box is less
than bounds.x (left edge), or if it is greater than bounds.x + bounds.width (right edge), it has gone past
the end of the line segment. We'll put this test in the if statement after the normal motion code:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var bounds = line.getBounds();

 //rotate line with mouse
 line.rotation = ((canvas.width / 2 - mouse.x) * 0.1) * Math.PI / 180;

 //normal motion code
 ball.vy += gravity;
 ball.x += ball.vx;
 ball.y += ball.vy;

 if (ball.x + ball.radius > bounds.x && ball.x – ball.radius < bounds.x + bounds.width) {
 //all the rest of the code that was in this function
 }

 ball.draw(context);
 line.draw(context);
}());

You can see these changes implemented in the file 08-angle-bounce-bounds.html.

Fixing the “under the line” problem
When detecting these collisions, you’re first finding out if the ball is in the vicinity of the line, and then
performing coordinate rotation to get the adjusted positions and velocities. At that point, you check if the y2
rotated y position of the ball is past the line, and if so, perform a bounce.

But what if the ball passes under the line? Say the line is in the middle of the canvas, and the ball is
bouncing around on the “floor.” If either the hit test or the bounds check comes back true, our program
will react as the ball has just bounced on the line, and will transport the ball from below the line to above it.

A solution to this is to compare vy1 with y2, and bounce only if vy1 is greater. Take a look at the diagram
in Figure 10-8.

CHAPTER 10

242

Surface

y velocity y velocity

Ball 1 Ball 2

Figure 10-8. Did it go through or just pass under?

With the ball on the left, the y velocity is greater than the y position in relation to the line. This means that
just before it moved, it had to be above the line. With the ball on the right, the velocity is less than the
relative y position. In other words, it’s below the line on this frame, and it was below the line on the last
frame; so it’s just moving underneath the line. The only time you want to do a bounce is when the ball goes
from above the line to below it, so we'll alter the code to do that. Here’s a section out of the drawFrame
function:

//rotate coordinates
var y2 = y1 * cos – x1 * sin;

//perform bounce with rotated values
if (y2 > -ball.radius) {
 //rotate coordinates
 var x2 = x1 * cos + y1 * sin,

 //rotate velocity
 vx1 = ball.vx * cos + ball.vy * sin,
 vy1 = ball.vy * cos - ball.vx * sin;

You need to add y2 < vy1 into your if statement:

if (y2 > -ball.radius && y2 < vy1) { ...

But in order to do that, you need to calculate vy1 beforehand. So that part comes out of the if statement,
and the snippet is modified to this:

//rotate coordinates
var y2 = y1 * cos - x1 * sin,

 //rotate velocity
 vy1 = ball.vy * cos - ball.vx * sin;

//perform bounce with rotated values

COORDINATE ROTATION AND BOUNCING OFF ANGLES

243

if (y2 > -ball.radius && y2 < vy1) {
 //rotate coordinates
 var x2 = x1 * cos + y1 * sin,

 //rotate velocity
 vx1 = ball.vx * cos + ball.vy * sin;

Using this code, you need to do a few extra calculations on each frame, with the payoff of greater accuracy
and realism—that familiar trade-off which you'll need to balance. The test may not even be necessary if
you have a setup where it’s not possible for the ball to go under a line. If you don’t need to worry about
this, and you can move the vy1 calculation back inside the if statement and remove the extra check.

The document 09-angle-bounce-final.html adds bouncing off the floors and walls, so that you can
eventually see the ball go under the line.

Bouncing off multiple angles
So far, you’ve just been bouncing off a single line, or angled surface. Bouncing off multiple surfaces is not
much more complicated—you just make a bunch of surfaces and loop through them. You can abstract the
angle-bouncing code into its own function and just call that from within the loop.

The next exercise is a complete program, using all the techniques you’ve seen in prior chapters. The setup
is similar to the last few examples, with the same ball and basic line object, except now the lines are a
bit smaller so there is room for more of them. The ball is added along with five lines positioned around the
canvas, which are in an array named lines. You can see the result in Figure 10-9.

Figure 10-9. Multiple lines

Here’s the code for the exercise (which you’ll find in 10-multi-angle-bounce.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Multi Angle Bounce</title>
 <link rel="stylesheet" href="style.css">
 </head>

CHAPTER 10

244

 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script src="line.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(20),
 lines = [],
 gravity = 0.2,
 bounce = -0.6;

 ball.x = 100;
 ball.y = 50;

 //create 5 lines, position and rotate
 lines[0] = new Line(-50, 0, 50, 0);
 lines[0].x = 100;
 lines[0].y = 100;
 lines[0].rotation = 30 * Math.PI / 180;

 lines[1] = new Line(-50, 0, 50, 0);
 lines[1].x = 100;
 lines[1].y = 200;
 lines[1].rotation = 45 * Math.PI / 180;

 lines[2] = new Line(-50, 0, 50, 0);
 lines[2].x = 220;
 lines[2].y = 150;
 lines[2].rotation = -20 * Math.PI / 180;

 lines[3] = new Line(-50, 0, 50, 0);
 lines[3].x = 150;
 lines[3].y = 330;
 lines[3].rotation = 10 * Math.PI / 180;

 lines[4] = new Line(-50, 0, 50, 0);
 lines[4].x = 230;
 lines[4].y = 250;
 lines[4].rotation = -30 * Math.PI / 180;

 function checkLine (line) {
 var bounds = line.getBounds();

 if (ball.x + ball.radius > bounds.x && ball.x – ball.radius < bounds.x + bounds.width) {
 //get sine and cosine of angle
 var cos = Math.cos(line.rotation),
 sin = Math.sin(line.rotation),

 //get position of ball, relative to line
 x1 = ball.x – line.x,

COORDINATE ROTATION AND BOUNCING OFF ANGLES

245

 y1 = ball.y – line.y,

 //rotate coordinates
 y2 = y1 * cos - x1 * sin,

 //rotate velocity
 vy1 = ball.vy * cos - ball.vx * sin;

 //perform bounce with rotated values
 if (y2 > -ball.radius && y2 < vy1) {
 //rotate coordinates
 var x2 = x1 * cos + y1 * sin,

 //rotate velocity
 vx1 = ball.vx * cos + ball.vy * sin;

 y2 = -ball.radius;
 vy1 *= bounce;

 //rotate everything back
 x1 = x2 * cos - y2 * sin;
 y1 = y2 * cos + x2 * sin;
 ball.vx = vx1 * cos - vy1 * sin;
 ball.vy = vy1 * cos + vx1 * sin;
 ball.x = line.x + x1;
 ball.y = line.y + y1;
 }
 }
 }

 function drawLine (line) {
 checkLine(line);
 line.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 //normal motion code
 ball.vy += gravity;
 ball.x += ball.vx;
 ball.y += ball.vy;

 //bounce off ceiling, floor, and walls
 if (ball.x + ball.radius > canvas.width) {
 ball.x = canvas.width – ball.radius;
 ball.vx *= bounce;
 } else if (ball.x - ball.radius < 0) {
 ball.x = ball.radius;
 ball.vx *= bounce;
 }
 if (ball.y + ball.radius > canvas.height) {
 ball.y = canvas.height – ball.radius;

CHAPTER 10

246

 ball.vy *= bounce;
 } else if (ball.y - ball.radius < 0) {
 ball.y = ball.radius;
 ball.vy *= bounce;
 }

 lines.forEach(drawLine);
 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

This example contains a lot of code, but it’s all stuff you should recognize by now. Complex programs are
not necessarily composed of complex pieces—they are frequently built from smaller pieces, and put
together in just right way. In this case, the body of the checkLine function is identical to what was in
drawFrame in the previous example, it’s just being called five times each frame.

Important formulas in this chapter
Here’s a reminder of the two main formulas introduced in this chapter.

Coordinate rotation

x1 = x * Math.cos(rotation) – y * Math.sin(rotation);
y1 = y * Math.cos(rotation) + x * Math.sin(rotation);

Reverse coordinate rotation

x1 = x * Math.cos(rotation) + y * Math.sin(rotation);
y1 = y * Math.cos(rotation) – x * Math.sin(rotation);

Summary
As you’ve seen in this chapter, coordinate rotation can give you some very complex behavior, but it all
boils down to a couple of equations that never change. Once you’re comfortable with the formulas, you
can use them anywhere. I hope you’re starting to see how you can create very complicated and richly
realistic motion just by adding in more simple techniques.

You’ll be using the coordinate rotation formula quite a bit in the next chapter, where you’ll learn how to
handle the results of collisions of objects with different velocities and masses.

247

Chapter 11

Billiard Ball Physics

What we’ll cover in this chapter:

 Mass

 Momentum

 Conservation of momentum

As you might expect in a technical book like this, things start off simple and gradually become more
complex. With this chapter, you reach a pinnacle of complexity. Not that the rest of the chapters after this
are all downhill, but this one requires that you don’t skimp on the material that came earlier. That said, we'll
walk through the concepts step by step, and if you’ve followed along reasonably well up to now, you
should be fine.

Specifically, this chapter focuses on momentum: what happens to the momentum of two objects that
collide, the conservation of momentum, and how to apply this conservation of momentum to the objects we
draw.

As the objects used in these examples are all round, for simplicity’s sake, this subject is often referred to
as “billiard ball physics.” And you’ll soon see that these examples do look like a bunch of different-sized
billiard balls hitting each other.

As in previous chapters, the code examples will start in one dimension to keep things simpler and easier to
understand. Then we move into two dimensions, at which point you’ll need to jump into some coordinate
rotation (the subject of the previous chapter). Essentially, you’ll rotate the two-dimensional scene so it lies
flat, which you can then ignore one axis and treat it as a one-dimensional scene. But all that is just to whet
your appetite for what’s coming up. Let’s start with the concepts of mass and momentum.

CHAPTER 11

248

Mass
The earlier chapters of the book covered several aspects of motion: velocity, acceleration, vectors, friction,
bouncing, easing, springing, and gravity. Until now, we have ignored the concept of an object's mass when
being moved. Now, scientifically speaking, mass should have been in the equation, but we’ve generally
concentrated on doing things mostly correctly, and kept the emphasis on making sure it looks right. Most
important, the final result must be efficient enough so that the web browser can run smoothly in the
process. However, mass is so tied up in the subject of momentum that we can no longer ignore it.

So just what is mass? Here on Earth, we usually think of mass as how much something weighs. And that’s
pretty close, as weight is proportional to mass. The more mass something has, the more it weighs. In fact,
we use the same terms to measure mass and weight: kilograms, pounds, and so on. But technically
speaking, mass is the measurement of how much an object resists change in velocity. Thus, the more
mass an object has, the harder it is to move that object or to change how that object moves (slow it down,
speed it up, or change its direction).

This also relates to acceleration and force. The more mass something has, the more force you need to
apply to it to produce a given acceleration. This is expressed in the equation:

F = m × a

For example, the engine in a compact car is designed to produce enough force to provide reasonable
acceleration on the mass of a compact car; but it’s not going to produce enough force to accelerate a large
truck. The engine needs a lot more force, because the truck has a lot more mass.

Momentum
Now we move on to momentum, which is the product of an object’s mass and velocity. In other words,
mass times velocity. Momentum is indicated by the letter p, and mass by m, and is expressed as:

p = m × v

This means that an object with a small mass and high velocity can have similar momentum to an object
with a large mass and low velocity. If the aforementioned truck moving at a mere 20 miles an hour, or a
bullet with a tiny mass but a much higher velocity, collided with you, they'd both ruin your day. Here, you
can see how two objects with a different mass and velocity can have an equal momentum (where m/s is
meters per second):

4 kg × 15 m/s = 20 kg × 3 m/s = 60 kg m/s

Using the formula, a 4 kg ball rolling down a hill at 15 m/s has a momentum of 60 kg m/s. Because velocity
is a vector (direction and magnitude), momentum must also be a vector. The direction of the momentum
vector is the same as the direction of the velocity vector. Thus, to fully describe momentum, you express it
like this:

4 kg × 15 m/s at 23 degrees

With this background knowledge, you see next how you can apply this to collisions.

BILLIARD BALL PHYSICS

249

Conservation of Momentum
By now you should be familiar with collisions. You’ve read an entire chapter on collision detection and
even faked some collision reactions between two objects. Conservation of momentum is the exact
principle you need to respond realistically to a collision.

Using the conservation of momentum, you can determine how objects react after a collision, so you can
say: “This object moved at velocity A and that object moved at velocity B before the collision. Now, after
the collision, this object moves at velocity C and that object moves at velocity D.” To break it down further,
because velocity is just speed and direction, if you know the speed and direction of two objects just before
they collide, you can figure out the speed and direction they will move in after the collision. This is a useful.

But there’s a catch: You need to know each object’s mass. So, what this means is that if you know the
mass, speed, and direction of each object before the collision, you can figure out where and how fast the
objects will go after they collide.

That’s what conservation of momentum can do for you—but what is it? The Law of Conservation of
Momentum is a fundamental concept of physics that says the total momentum for a system before a
collision is equal to the total momentum after a collision. But what is this system the law refers to? This is
just a collection of objects with momentum. Most discussions also specify that this is a closed system,
which is a system with no other forces or influences acting on it. In other words, you can just ignore
anything but the actual collision itself. For our purposes, we always consider just the reaction between two
objects, so our system is always something like object A and object B.

The total momentum of the system is the combined momentum of all the objects in the system, so for us,
this means the combined momentum of object A and object B. If you combine the momentums before the
collision and combine the momentums afterward, the result should be the same.

Before we jump into the math, here’s a suggestion. Don’t worry too much about trying to figure out how to
convert this to real code—we get to that soon enough. Just try to look at the next few formulas from a
conceptual viewpoint, “This plus that equals that plus this.” It translates neatly into code by the end of this
chapter.

If combined momentum before and after the collision is the same, and momentum is velocity times mass,
then for two objects—object 0 and object 1—you can come up with something like this:

momentum0 + momentum1 = momentum0Final + momentum1Final

or

(m0 × v0) + (m1 × v1) = (m0 × v0Final) + (m1 × v1Final)

To find the final velocities for object 0 and object 1, they are v0Final and v1Final. The way to solve an
equation with two unknowns is to find another equation that has the same two unknowns in it—and it just
so happens there is such an equation floating around the halls of the world's physics departments. It has
to do with kinetic energy. You don’t have to know, or even care, what kinetic energy is about, you just
borrow the formula to help you solve your own problem and be done with it. Here’s the equation for kinetic
energy:

KE = 0.5 × m × v2

CHAPTER 11

250

Technically, kinetic energy is not a vector, so although you use the v for velocity, it deals with only the
magnitude of the velocity. It doesn’t care about the direction, but that won’t hurt your calculations.

Now, it happens that the kinetic energy before and after a collision remains the same. So, you can do
something like this:

KE0 + KE1 = KE0Final + KE1Final

or

(0.5 × m0 × v02) + (0.5 × m1 × v12) = (0.5 × m0 × v0Final2) + (0.5 × m1 × v1Final2)

You can then factor out the 0.5 values to get this:

(m0 × v02) + (m1 × v12) = (m0 × v0Final2) + (m1 × v1Final2)

Notice that you have a different equation with the same two unknown variables: v0Final and v1Final.
You can now factor these out and come up with a single equation for each unknown. These are the
formulas that you end up with when all is done:

 (m0 – m1) × v0 + 2 × m1 × v1
v0Final = ----------------------------
 m0 + m1

 (m1 – m0) × v1 + 2 × m0 × v0
v1Final = ----------------------------
 m0 + m1

Now you can see why you have reached a pinnacle of complexity in this book. Actually, you haven’t quite
reached it yet. You’re about to apply this to one axis, and after that, you’re going to dive in and add
coordinate rotation to it when you move to two axes. Hold on!

Conservation of Momentum on One Axis
Now that you’ve got the formulas, you can start animating with them. For this first example, you’ll again
use the Ball class, but we’ve added a mass property to it. Here is the new code (ball.js):

function Ball (radius, color) {
 if (radius === undefined) { radius = 40; }
 if (color === undefined) { color = "#ff0000"; }
 this.x = 0;
 this.y = 0;
 this.radius = radius;
 this.vx = 0;
 this.vy = 0;
 this.mass = 1;
 this.rotation = 0;
 this.scaleX = 1;
 this.scaleY = 1;
 this.color = utils.parseColor(color);
 this.lineWidth = 1;
}

BILLIARD BALL PHYSICS

251

Ball.prototype.draw = function (context) {
 context.save();
 context.translate(this.x, this.y);
 context.rotate(this.rotation);
 context.scale(this.scaleX, this.scaleY);
 context.lineWidth = this.lineWidth;
 context.fillStyle = this.color;
 context.beginPath();
 context.arc(0, 0, this.radius, 0, (Math.PI * 2), true);
 context.closePath();
 context.fill();
 if (this.lineWidth > 0) {
 context.stroke();
 }
 context.restore();
};

Ball.prototype.getBounds = function () {
 return {
 x: this.x - this.radius,
 y: this.y - this.radius,
 width: this.radius * 2,
 height: this.radius * 2
 };
};

In the next example (document 01-billiard-1.html), you create two different balls with different sizes,
positions, and masses. Ignore the y axis this time around, so the balls have the same vertical position.
When you load the example in your browser, the setup looks something like Figure 11-1.

Figure 11-1. The anticipation builds! Setting up objects for conservation of momentum on one axis.

The balls are created and positioned at the beginning of the script. In the drawFrame animation loop, we
set up some basic motion code for one-axis velocity and simple distance-based collision detection; we'll
add the reaction code in a moment:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Billiard 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>

CHAPTER 11

252

 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball0 = new Ball(),
 ball1 = new Ball();

 ball0.mass = 2;
 ball0.x = 50;
 ball0.y = canvas.height / 2;
 ball0.vx = 1;

 ball1.mass = 1;
 ball1.x = 300;
 ball1.y = canvas.height / 2;
 ball1.vx = -1;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball0.x += ball0.vx;
 ball1.x += ball1.vx;
 var dist = ball1.x – ball0.x;

 if (Math.abs(dist) < ball0.radius + ball1.radius) {
 //reaction will go here
 }

 ball0.draw(context);
 ball1.draw(context);
 }());
 };
 </script>
 </body>
</html>

With this basic setup in place, we'll now look at how to program the reaction. Taking ball0 first, and
considering that ball0 is object 0 and ball1 is object 1, you need to apply the following formula:

 (m0 – m1) × v0 + 2 × m1 × v1
v0Final = ----------------------------
 m0 + m1

In JavaScript, this becomes the following code:

var vx0Final = ((ball0.mass - ball1.mass) * ball0.vx + 2 * ball1.mass * ball1.vx) /
 (ball0.mass + ball1.mass);

It shouldn’t be too hard to see where that came from. You can then do the same thing with ball1, so this:

BILLIARD BALL PHYSICS

253

 (m1 – m0) × v1 + 2 × m0 × v0
v1Final = ----------------------------
 m0 + m1

becomes this:

var vx1Final = ((ball1.mass - ball0.mass) * ball1.vx + 2 * ball0.mass * ball0.vx) /
 (ball0.mass + ball1.mass);

After adding the reaction code, the complete drawFrame function ends up like this:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball0.x += ball0.vx;
 ball1.x += ball1.vx;
 var dist = ball1.x – ball0.x;

 if (Math.abs(dist) < ball0.radius + ball1.radius) {
 var vx0Final = ((ball0.mass - ball1.mass) * ball0.vx + 2 * ball1.mass * ball1.vx) /
 (ball0.mass + ball1.mass),
 vx1Final = ((ball1.mass - ball0.mass) * ball1.vx + 2 * ball0.mass * ball0.vx) /
 (ball0.mass + ball1.mass);
 ball0.vx = vx0Final;
 ball1.vx = vx1Final;

 ball0.x += ball0.vx;
 ball1.y += ball1.vx;
 }

 ball0.draw(context);
 ball1.draw(context);
}());

Because the momentum calculations reference the velocity of each ball, you need to store their results in
the temporary variables vx0Final and vx1Final, rather than assign them directly to the ball0.vx and
ball1.vx properties.

Placing the Objects

The last two lines of the reaction code we just added deserve some explanation. After you figure out the
new velocities for each ball, you add them back to the ball’s position. If you recall the bouncing examples
in Chapter 6, you needed to move the ball so that it touched the edge of the wall and not get stuck.
Otherwise, it's possible that the ball can miss the edge and on subsequent frames, it can bounce back and
forth along the boundary. It's the same problem in this example, but now there are two moving objects that
you don’t want embedded in each other.

CHAPTER 11

254

You can place one of the balls just on the edge of the other one, but which one should you move?
Whichever one you moved would appear to “jump” into its new position unnaturally, which would be
especially noticeable at low speeds.

There are probably a number of ways to determine the correct placement of the balls, ranging from simple
to complex and accurate to totally faked. The simple solution we used for this first example is to add the
new velocity back to the objects, moving them apart again. This is realistic, quite simple, and
accomplished in two lines of code. You can also see that the total system momentum is still the same after
the collision, with -1/3 as the final velocity value for vx0Final and 5/3 for vx1Final:

(ball0.mass * ball0.vx) + (ball1.mass * ball1.v) = (2 * 1) + (1 * -1) = (2 * -1/3) + (1 * 5/3)
= 1

Later, in the “Solving a Potential Problem” section, you'll see a problem that can crop up with this method
and we'll work on a solution that’s a little more robust.

Go ahead and load the 01-billiard-1.html document in your browser. Change the masses and
velocities of each ball until you see what’s going on, and then change the sizes of each. You'll see that the
size doesn’t have anything to do with the reaction. In most cases, the larger object has a higher mass and
you can probably figure out the relative area of the two balls and set some realistic masses for their sizes.
But usually, it's more effective to just mess around with numbers for mass until things look and feel right.
We're creating visual programs, so, sometimes, the eye is the best judge.

Optimizing the Code

The worst part of this solution is that huge equation right in the middle of the code, and that we have
almost exactly the same equation in there twice. We should get rid of one of them.

But it’s going to take a bit more math and algebra. You need to find the relative velocity of the two objects
before the condition; this is their combined total velocity. Then, after you get the final velocity of one object,
you can find the difference between it and the total velocity to get the final velocity for the other object.

You find the total velocity by subtracting the velocities of the two objects. That might seem strange, but
think of it from the viewpoint of the system. Let's imagine the system has two cars going the same
direction on a highway. One is moving at 50 mph and the other at 60 mph. Depending on which car you’re
in, you can see the other car going at 10 mph or -10 mph. In other words, it’s either slowly moving ahead
of you or falling behind you.

Before you do anything with collisions, you need to find out the total velocity (from ball1’s viewpoint) by
subtracting ball1.vx from ball0.vx:

var vxTotal = ball0.vx - ball1.vx;

Then, after calculating vx0Final, add that to vxTotal, and you’ll have vx1Final. This might not be the
most intuitive formula, but you’ll see it works:

vx1Final = vxTotal + vx0Final;

BILLIARD BALL PHYSICS

255

Now that’s better than that horrible double formula. Also, since the formula for ball1.vx doesn’t reference
ball0.vx anymore, you can get rid of the temporary variables. Here’s the revised drawFrame function
(from document 02-billiard-2.html):

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball0.x += ball0.vx;
 ball1.x += ball1.vx;
 var dist = ball1.x – ball0.x;

 if (Math.abs(dist) < ball0.radius + ball1.radius) {
 var vxTotal = ball0.vx – ball1.vx;
 ball0.vx = ((ball0.mass - ball1.mass) * ball0.vx + 2 * ball1.mass * ball1.vx) /
 (ball0.mass + ball1.mass);
 ball1.vx = vxTotal + ball0.vx;

 ball0.x += ball0.vx;
 ball1.y += ball1.vx;
 }

 ball0.draw(context);
 ball1.draw(context);
}());

We've gotten rid of quite a few math operations and still have the same result—not bad.

This isn’t one of those formulas that you’re necessarily going to understand inside out. You might not
memorize it, but at least you know you can always find the formula here. Whenever you need it for your
own programs, just pull this book out and copy it!

Conservation of Momentum on Two Axes
Take a deep breath, because you’re going to the next level. So far, you’ve applied a long-winded formula,
but it’s pretty much plug-and-play. You take the mass and the velocity of the two objects, plug them into
the formula, and get your result.

Now we throw one more layer of complexity into it—another dimension. You use coordinate rotation to do
it, but let’s take a look at why.

Understanding the Theory and Strategy

Figure 11-2 illustrates the example you just saw: collision in one dimension.

CHAPTER 11

256

vx = 10 vx = –6

mass = 2
mass = 3

Figure 11-2. A one-dimensional collision

As you can see, the objects have different sizes, different masses, and different velocities. The velocities
are represented by arrows coming out from the center of each ball—these are vectors. A velocity vector
points in the direction of the motion and its length indicates the speed.

The one-dimensional example is simple because both velocity vectors were along the x axis, so you can
add and subtract their magnitudes directly. But, take a look at Figure 11-3, which shows two balls colliding
in two dimensions.

Figure 11-3. A two-dimensional collision

Because the velocities are in completely different directions, you can’t just plug the velocities into the
momentum-conservation formula. So, how do you solve this?

You start by making the second diagram look a bit more like the first by rotating it. First, figure out the
angle formed by the positions of the two balls and rotate the entire scene—positions and velocities—
counterclockwise by that amount. For example, if the angle is 30 degrees, rotate everything by -30. This is
exactly the same thing you did in Chapter 10 to bounce off an angled surface. The resulting diagram looks
like Figure 11-4.

BILLIARD BALL PHYSICS

257

Figure 11-4. A two-dimensional collision, rotated

That angle between the two balls is important; that's the angle of collision. It’s the only part of the ball’s
velocities that you care about—the portion of the velocity that lies on that angle.

Take a look at the diagram in Figure 11-5. Here, we’ve added vector lines for the vx and vy for both
velocities. The vx for both balls lies exactly along the angle of collision.

Figure 11-5. Draw in the x and y velocities.

Because the only portion of the velocity you care about is the part that lies on the angle of collision—which
is now your vx—you can just forget all about vy. And, as you can see in Figure 11-6, it's been taken out of
the diagram.

Figure 11-6. All you care about is the x velocity.

CHAPTER 11

258

This should look familiar, because it’s the first diagram! You can easily solve this using the plug-and-play
momentum formula. When you apply the formula, you wind up with two new vx values. Remember that the
vy values never change, but the alteration of the vx alone changed the overall velocity to look something
Figure 11-7.

Figure 11-7. New x velocities and the same y velocities with the result of a new overall velocity

Now you just rotate everything back again, as shown in Figure 11-8, and you have the final real vx and vy
for each ball.

Figure 11-8. Everything rotated back

That's what the process looks like as a diagram, but now we have to convert all this into code.

Writing the Code

To begin, you create a base document that enables two balls to move at any angle and eventually hit each
other. Starting off with the same setup as before, you have two Ball instances: ball0 and ball1. Let’s
make them a little larger now, as shown in Figure 11-9, so there’s a good chance of them bumping into
each other.

BILLIARD BALL PHYSICS

259

Figure 11-9. Setting the objects for the conservation of momentum on two axes

Here's the example, 03-billiard-3.html, though don't test it yet, because we still need to define the
checkCollision function, which we do in a moment:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Billiard 3</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball0 = new Ball(80),
 ball1 = new Ball(40),
 bounce = -1.0;

 ball0.mass = 2;
 ball0.x = canvas.width – 200;
 ball0.y = canvas.height – 200;
 ball0.vx = Math.random() * 10 – 5;
 ball0.vy = Math.random() * 10 – 5;

 ball1.mass = 1;
 ball1.x = 100;
 ball1.y = 100;
 ball1.vx = Math.random() * 10 – 5;
 ball1.vy = Math.random() * 10 – 5;

 function checkCollision (ball0, ball1) {
 //not defined yet...
 }

 function checkWalls (ball) {
 if (ball.x + ball.radius > canvas.width) {
 ball.x = canvas.width – ball.radius;

CHAPTER 11

260

 ball.vx *= bounce;
 } else if (ball.x - ball.radius < 0) {
 ball.x = ball.radius;
 ball.vx *= bounce;
 }
 if (ball.y + ball.radius > canvas.height) {
 ball.y = canvas.height – ball.radius;
 ball.vy *= bounce;
 } else if (ball.y - ball.radius < 0) {
 ball.y = ball.radius;
 ball.vy *= bounce;
 }
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball0.x += ball0.vx;
 ball0.y += ball0.vy;
 ball1.x += ball1.vx;
 ball1.y += ball1.vy;

 checkCollision(ball0, ball1);
 checkWalls(ball0);
 checkWalls(ball1);

 ball0.draw(context);
 ball1.draw(context);
 }());
 };
 </script>
 </body>
</html>

In this exercise, you set the boundaries, set some random velocities, throw in some mass, move each ball
according to its velocity, and check the boundaries. You notice that the boundary-checking code has been
moved into its own function, checkWalls, and we still need to write the function for collision-checking.

The beginning of the checkCollision function is simple; it’s just a distance-based collision detection
setup:

function checkCollision (ball0, ball1) {
 var dx = ball1.x – ball0.x,
 dy = ball1.y – ball0.y,
 dist = Math.sqrt(dx * dx + dy * dy);

 if (dist < ball0.radius + ball1.radius) {
 //collision handling code here
 }
}

BILLIARD BALL PHYSICS

261

The first thing that the collision-handling code needs to do is figure out the angle between the two balls,
which you'll recall from the trigonometry in Chapter 3, you can do with Math.atan2(dy, dx). You'll store
the cosine and sine calculations, as you’ll be using them over and over:

//calculate angle, sine, and cosine
var angle = Math.atan2(dy, dx),
 sin = Math.sin(angle),
 cos = Math.cos(angle);

Then, you need to perform the coordinate rotation for the velocity and position of both balls. Let’s call the
rotated positions x0, y0, x1, and y1 and the rotated velocities vx0, vy0, vx1, and vy1.

Because you are use ball0 as the “pivot point,” its coordinates are 0, 0. That won’t change even after
rotation, so you can just write this:

//rotate ball0's position
var x0 = 0,
 y0 = 0;

Next, ball1’s position is in relation to ball0’s position. This corresponds to the distance values you’ve
already figured out, dx and dy. So, you can rotate those to get ball1’s rotated position:

//rotate ball1's position
var x1 = dx * cos + dy * sin,
 y1 = dy * cos - dx * sin;

Now, rotate all the velocities. You should see a pattern forming:

//rotate ball0's velocity
var vx0 = ball0.vx * cos + ball0.vy * sin,
 vy0 = ball0.vy * cos - ball0.vx * sin;

//rotate ball1's velocity
var vx1 = ball1.vx * cos + ball1.vy * sin,
 vy1 = ball1.vy * cos - ball1.vx * sin;

And here’s all the rotation code in place:

function checkCollision (ball0, ball1) {
 var dx = ball1.x – ball0.x,
 dy = ball1.y – ball0.y,
 dist = Math.sqrt(dx * dx + dy * dy);

 if (dist < ball0.radius + ball1.radius) {
 //calculate angle, sine, and cosine
 var angle = Math.atan2(dy, dx),
 sin = Math.sin(angle),
 cos = Math.cos(angle),

 //rotate ball0's position
 x0 = 0,
 y0 = 0,

CHAPTER 11

262

 //rotate ball1's position
 x1 = dx * cos + dy * sin,
 y1 = dy * cos - dx * sin,

 //rotate ball0's velocity
 vx0 = ball0.vx * cos + ball0.vy * sin,
 vy0 = ball0.vy * cos - ball0.vx * sin,

 //rotate ball1's velocity
 vx1 = ball1.vx * cos + ball1.vy * sin,
 vy1 = ball1.vy * cos - ball1.vx * sin;
 }
}

Now perform a simple one-dimensional collision reaction with vx0 and ball0.mass and with vx1 and
ball1.mass. From the one-dimensional example presented earlier, you had the following code:

var vxTotal = ball0.vx – ball1.vx;
ball0.vx = ((ball0.mass - ball1.mass) * ball0.vx + 2 * ball1.mass * ball1.vx) /
 (ball0.mass + ball1.mass);
ball1.vx = vxTotal + ball0.vx;

You can rewrite that as follows:

var vxTotal = vx0 – vx1;
vx0 = ((ball0.mass - ball1.mass) * vx0 + 2 * ball1.mass * vx1) /
 (ball0.mass + ball1.mass);
vx1 = vxTotal + vx0;

All you did was replace the ball0.vx and ball1.vx with the rotated versions vx0 and vx1. Let’s plug the
new version into the function definition:

function checkCollision (ball0, ball1) {
 var dx = ball1.x – ball0.x,
 dy = ball1.y – ball0.y,
 dist = Math.sqrt(dx * dx + dy * dy);

 if (dist < ball0.radius + ball1.radius) {
 //calculate angle, sine, and cosine
 var angle = Math.atan2(dy, dx),
 sin = Math.sin(angle),
 cos = Math.cos(angle),

 //rotate ball0's position
 x0 = 0,
 y0 = 0,

 //rotate ball1's position
 x1 = dx * cos + dy * sin,
 y1 = dy * cos - dx * sin,

 //rotate ball0's velocity
 vx0 = ball0.vx * cos + ball0.vy * sin,
 vy0 = ball0.vy * cos - ball0.vx * sin,

BILLIARD BALL PHYSICS

263

 //rotate ball1's velocity
 vx1 = ball1.vx * cos + ball1.vy * sin,
 vy1 = ball1.vy * cos - ball1.vx * sin,

 //collision reaction
 vxTotal = vx0 – vx1;
 vx0 = ((ball0.mass - ball1.mass) * vx0 + 2 * ball1.mass * vx1) /
 (ball0.mass + ball1.mass);
 vx1 = vxTotal + vx0;
 x0 += vx0;
 x1 += vx1;
 }
}

This code also adds the new x velocities to the x positions, to move them apart, as in the one-dimensional
example.

Now that you have updated post-collision positions and velocities, rotate everything back. Start by getting
the unrotated, final positions:

//rotate positions back
var x0Final = x0 * cos - y0 * sin,
 y0Final = y0 * cos + x0 * sin,
 x1Final = x1 * cos - y1 * sin,
 y1Final = y1 * cos + x1 * sin;

Remember to reverse the + and - in the rotation equations, as you are going in the other direction now.
These “final” positions are actually not quite final. They are in relation to the pivot point of the system,
which is ball0’s original position. You need to add all of these to ball0’s position to get the actual
coordinate positions. Let’s do ball1 first, so that it uses ball0’s original position, not the updated one:

//adjust positions to actual screen positions
ball1.x = ball0.x + x1Final;
ball1.y = ball0.y + y1Final;
ball0.x = ball0.x + x0Final;
ball0.y = ball0.y + y0Final;

Last, but not least, rotate back the velocities. These can be applied directly to the balls’ vx and vy
properties:

//rotate velocities back
ball0.vx = vx0 * cos - vy0 * sin;
ball0.vy = vy0 * cos + vx0 * sin;
ball1.vx = vx1 * cos - vy1 * sin;
ball1.vy = vy1 * cos + vx1 * sin;

Finally, take a look at the entire completed function:

function checkCollision (ball0, ball1) {
 var dx = ball1.x – ball0.x,
 dy = ball1.y – ball0.y,
 dist = Math.sqrt(dx * dx + dy * dy);

CHAPTER 11

264

 if (dist < ball0.radius + ball1.radius) {
 //calculate angle, sine, and cosine
 var angle = Math.atan2(dy, dx),
 sin = Math.sin(angle),
 cos = Math.cos(angle),

 //rotate ball0's position
 x0 = 0,
 y0 = 0,

 //rotate ball1's position
 x1 = dx * cos + dy * sin,
 y1 = dy * cos - dx * sin,

 //rotate ball0's velocity
 vx0 = ball0.vx * cos + ball0.vy * sin,
 vy0 = ball0.vy * cos - ball0.vx * sin,

 //rotate ball1's velocity
 vx1 = ball1.vx * cos + ball1.vy * sin,
 vy1 = ball1.vy * cos - ball1.vx * sin,

 //collision reaction
 vxTotal = vx0 – vx1;
 vx0 = ((ball0.mass - ball1.mass) * vx0 + 2 * ball1.mass * vx1) /
 (ball0.mass + ball1.mass);
 vx1 = vxTotal + vx0;
 x0 += vx0;
 x1 += vx1;

 //rotate positions back
 var x0Final = x0 * cos - y0 * sin,
 y0Final = y0 * cos + x0 * sin,
 x1Final = x1 * cos - y1 * sin,
 y1Final = y1 * cos + x1 * sin;

 //adjust positions to actual screen positions
 ball1.x = ball0.x + x1Final;
 ball1.y = ball0.y + y1Final;
 ball0.x = ball0.x + x0Final;
 ball0.y = ball0.y + y0Final;

 //rotate velocities back
 ball0.vx = vx0 * cos - vy0 * sin;
 ball0.vy = vy0 * cos + vx0 * sin;
 ball1.vx = vx1 * cos - vy1 * sin;
 ball1.vy = vy1 * cos + vx1 * sin;
 }
}

Play around with this example. Change the size of the Ball instances, the initial velocities, masses, and
so on. Become convinced that it works well.

BILLIARD BALL PHYSICS

265

As for that checkCollision function, it’s difficult. But if you read the comments, you see it’s broken up
into (relatively) simple chunks. We optimized it a bit to remove some duplication that enables us to reuse
parts of code, which can make it easier to maintain. You can see the final result in 04-billiard-4.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Billiard 4</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball0 = new Ball(80),
 ball1 = new Ball(40),
 bounce = -1.0;

 ball0.mass = 2;
 ball0.x = canvas.width – 200;
 ball0.y = canvas.height – 200;
 ball0.vx = Math.random() * 10 – 5;
 ball0.vy = Math.random() * 10 – 5;

 ball1.mass = 1;
 ball1.x = 100;
 ball1.y = 100;
 ball1.vx = Math.random() * 10 – 5;
 ball1.vy = Math.random() * 10 – 5;

 function rotate (x, y, sin, cos, reverse) {
 return {
 x: (reverse) ? (x * cos + y * sin) : (x * cos - y * sin),
 y: (reverse) ? (y * cos - x * sin) : (y * cos + x * sin)
 };
 }

 function checkCollision (ball0, ball1) {
 var dx = ball1.x – ball0.x,
 dy = ball1.y – ball0.y,
 dist = Math.sqrt(dx * dx + dy * dy);

 //collision handling code here
 if (dist < ball0.radius + ball1.radius) {
 //calculate angle, sine, and cosine
 var angle = Math.atan2(dy, dx),
 sin = Math.sin(angle),
 cos = Math.cos(angle),

CHAPTER 11

266

 //rotate ball0's position
 pos0 = {x: 0, y: 0}, //point

 //rotate ball1's position
 pos1 = rotate(dx, dy, sin, cos, true),

 //rotate ball0's velocity
 vel0 = rotate(ball0.vx, ball0.vy, sin, cos, true),

 //rotate ball1's velocity
 vel1 = rotate(ball1.vx, ball1.vy, sin, cos, true),

 //collision reaction
 vxTotal = vel0.x – vel1.x;
 vel0.x = ((ball0.mass - ball1.mass) * vel0.x + 2 * ball1.mass * vel1.x) /
 (ball0.mass + ball1.mass);
 vel1.x = vxTotal + vel0.x;

 //update position
 pos0.x += vel0.x;
 pos1.x += vel1.x;

 //rotate positions back
 var pos0F = rotate(pos0.x, pos0.y, sin, cos, false),
 pos1F = rotate(pos1.x, pos1.y, sin, cos, false);

 //adjust positions to actual screen positions
 ball1.x = ball0.x + pos1F.x;
 ball1.y = ball0.y + pos1F.y;
 ball0.x = ball0.x + pos0F.x;
 ball0.y = ball0.y + pos0F.y;

 //rotate velocities back
 var vel0F = rotate(vel0.x, vel0.y, sin, cos, false),
 vel1F = rotate(vel1.x, vel1.y, sin, cos, false);
 ball0.vx = vel0F.x;
 ball0.vy = vel0F.y;
 ball1.vx = vel1F.x;
 ball1.vy = vel1F.y;
 }
 }

 function checkWalls (ball) {
 if (ball.x + ball.radius > canvas.width) {
 ball.x = canvas.width – ball.radius;
 ball.vx *= bounce;
 } else if (ball.x - ball.radius < 0) {
 ball.x = ball.radius;
 ball.vx *= bounce;
 }
 if (ball.y + ball.radius > canvas.height) {
 ball.y = canvas.height – ball.radius;

BILLIARD BALL PHYSICS

267

 ball.vy *= bounce;
 } else if (ball.y - ball.radius < 0) {
 ball.y = ball.radius;
 ball.vy *= bounce;
 }
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball0.x += ball0.vx;
 ball0.y += ball0.vy;
 ball1.x += ball1.vx;
 ball1.y += ball1.vy;

 checkCollision(ball0, ball1);
 checkWalls(ball0);
 checkWalls(ball1);

 ball0.draw(context);
 ball1.draw(context);
 }());
 };
 </script>
 </body>
</html>

In this example, we created a rotate function that accepts a few parameters and returns an object
representing a rotated point with x and y properties. This version isn’t quite as easy to read when you’re
learning the principles involved, but it results in less duplicated code.

Adding More Objects

Making two balls collide and react is no easy task, but you made it. Now let’s add a few more colliding
objects—say eight. It seems as if it’s going to be four times more complex, but it’s not. The function you
have now checks two balls at a time, but that’s all you need anyway. You add more objects, move them
around, and check each one against all the others. You’ve already did that in the collision-detection
examples in Chapter 9. All you need to do is to plug in the checkCollision function where you would
normally do the collision detection.

For this example (05-multi-billiard-1.html), start with eight balls in an array. The checkCollision
and checkWalls functions aren't listed in their entirety, but you can use the exact same ones from the
previous example:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Multi Billiard 1</title>
 <link rel="stylesheet" href="style.css">
 </head>

CHAPTER 11

268

 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 balls = [],
 numBalls = 8,
 bounce = -1.0;

 for (var radius, ball, i = 0; i < numBalls; i++) {
 radius = Math.random() * 20 + 15;
 ball = new Ball(radius);
 ball.mass = radius;
 ball.x = i * 100;
 ball.y = i * 50;
 ball.vx = Math.random() * 10 – 5;
 ball.vy = Math.random() * 10 – 5;
 balls.push(ball);
 }

 function rotate (x, y, sin, cos, reverse) {
 return {
 x: (reverse) ? (x * cos + y * sin) : (x * cos - y * sin),
 y: (reverse) ? (y * cos - x * sin) : (y * cos + x * sin)
 };
 }

 function checkCollision (ball0, ball1) {
 //not listed, same as previous example...
 }

 function checkWalls (ball) {
 //not listed, same as previous example...
 }

 function move (ball) {
 ball.x += ball.vx;
 ball.y += ball.vy;
 checkWalls(ball);
 }

 function draw (ball) {
 ball.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 balls.forEach(move);

BILLIARD BALL PHYSICS

269

 for (var ballA, i = 0, len = numBalls - 1; i < len; i++) {
 ballA = balls[i];
 for (var ballB, j = i + 1; j < numBalls; j++) {
 ballB = balls[j];
 checkCollision(ballA, ballB);
 }
 }
 balls.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

The balls are spaced out to ensure that they do not touch each other to start with. If so, they can get stuck
together.

The drawFrame function is surprisingly simple; it iterates over the balls three times: one for basic
movement, one for collision detection, and of course, one to draw. The first forEach iteration passes each
ball to the move function, which updates the ball’s position, moving it and bouncing it off the walls. Then,
the double-nested for loop performs the collision detection. Here, you get a reference to two balls at a
time and pass them to the checkCollision function. The checkWalls and checkCollision functions
are the same as before, so just add them to this file from the previous example.

To add more balls, just update the numBalls variable to the new total and make sure they do not touch at
the start of the animation.

Solving a Potential Problem

One word of warning regarding the setup described in this chapter: It’s still possible for a pair of objects to
get stuck together. This usually happens in a crowded environment with many objects bouncing off each
other, and is worse when they are moving at high speeds. You can also occasionally see this behavior if
two or three balls collide in a corner.

If there are three balls on the screen—ball0, ball1, and ball2—and they all happen to be close together,
here’s what happens:

 The code moves all three according to their velocities.

 The code checks ball0 versus. ball1 and ball0 versus ball2. It finds no collision.

 The code checks ball1 versus ball2. These two happen to be hitting, so it does all the
calculations for their new velocities and updates their positions so that they are no longer
touching. This inadvertently puts ball1 in contact with ball0. However, this particular
combination has already been checked for a collision, so it now goes unnoticed.

 On the next loop, the code again moves each according to its velocity. This potentially drives
ball0 and ball1 even further together.

 Now the code does notice that ball0 and ball1 hit. It calculates their new velocities and adds
the new velocities to the positions, to move them apart. But, because they were already touching,
this might not be enough to actually separate them. They become stuck.

CHAPTER 11

270

Again, this mostly occurs when you have a lot of objects in a small space, moving at higher speeds. It also
happens if the objects already touch at the start of the animation. As you might have already seen when
testing the example, this issue crops up now and then, so it’s good to know where the problem is. The
exact point is in the checkCollision function; specifically, it occurs in the following lines:

//update position
pos0.x += vel0.x;
pos1.x += vel1.x;

This assumes that the collision occurs due to only the two ball’s own velocities, and that adding back on
the new velocities separates them. Most of the time, this is true. But the situations just described are
exceptions. If you run into this problem, you need something more stringent to ensure the objects are
definitely separated before moving on. Try using the following method:

//update position
var absV = Math.abs(vel0.x) + Math.abs(vel1.x),
 overlap = (ball0.radius + ball1.radius) - Math.abs(pos0.x – pos1.x);
pos0.x += vel0.x / absV * overlap;
pos1.x += vel1.x / absV * overlap;

This might not be the most mathematically accurate solution, but it seems to work well. It first determines
the absolute velocity; this is the sum of the absolute values of both velocities. For instance, if one velocity
is -5 and the other is 10, the absolute values are 5 and 10, and the total is 5 + 10, or 15.

Next, it determines how much the balls actually overlap. It does this by getting their total radii and
subtracting their distance.

Then, it moves each ball a portion of the overlap, according to their percent of the absolute velocity. The
result is that the balls should be exactly touching each other, with no overlap. It’s a bit more complex than
the earlier version, but it clears up the bugs.

In fact, in the next version, 06-multi-billiard-2.html, we created 15 balls, made them a bit larger,
and randomly placed them on the canvas. The ones that overlap still freak out for a few frames, but
eventually, because of this new code, they settle down. Here's the complete code listing for the example:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Multi Billiard 2</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 balls = [],
 numBalls = 15,

BILLIARD BALL PHYSICS

271

 bounce = -1.0;

 for (var radius, ball, i = 0; i < numBalls; i++) {
 radius = Math.random() * 20 + 15;
 ball = new Ball(radius, Math.random() * 0xffffff);
 ball.mass = radius;
 ball.x = Math.random() * canvas.width;
 ball.y = Math.random() * canvas.height;
 ball.vx = Math.random() * 10 - 5;
 ball.vy = Math.random() * 10 - 5;
 balls.push(ball);
 }

 function rotate (x, y, sin, cos, reverse) {
 return {
 x: (reverse) ? (x * cos + y * sin) : (x * cos - y * sin),
 y: (reverse) ? (y * cos - x * sin) : (y * cos + x * sin)
 };
 }

 function checkCollision (ball0, ball1) {
 var dx = ball1.x - ball0.x,
 dy = ball1.y - ball0.y,
 dist = Math.sqrt(dx * dx + dy * dy);

 //collision handling code here
 if (dist < ball0.radius + ball1.radius) {
 //calculate angle, sine, and cosine
 var angle = Math.atan2(dy, dx),
 sin = Math.sin(angle),
 cos = Math.cos(angle),

 //rotate ball0's position
 pos0 = {x: 0, y: 0}, //point

 //rotate ball1's position
 pos1 = rotate(dx, dy, sin, cos, true),

 //rotate ball0's velocity
 vel0 = rotate(ball0.vx, ball0.vy, sin, cos, true),

 //rotate ball1's velocity
 vel1 = rotate(ball1.vx, ball1.vy, sin, cos, true),

 //collision reaction
 vxTotal = vel0.x - vel1.x;
 vel0.x = ((ball0.mass - ball1.mass) * vel0.x + 2 * ball1.mass * vel1.x) /
 (ball0.mass + ball1.mass);
 vel1.x = vxTotal + vel0.x;

 //update position - to avoid objects becoming stuck together
 var absV = Math.abs(vel0.x) + Math.abs(vel1.x),
 overlap = (ball0.radius + ball1.radius) - Math.abs(pos0.x - pos1.x);
 pos0.x += vel0.x / absV * overlap;

CHAPTER 11

272

 pos1.x += vel1.x / absV * overlap;

 //rotate positions back
 var pos0F = rotate(pos0.x, pos0.y, sin, cos, false),
 pos1F = rotate(pos1.x, pos1.y, sin, cos, false);

 //adjust positions to actual screen positions
 ball1.x = ball0.x + pos1F.x;
 ball1.y = ball0.y + pos1F.y;
 ball0.x = ball0.x + pos0F.x;
 ball0.y = ball0.y + pos0F.y;

 //rotate velocities back
 var vel0F = rotate(vel0.x, vel0.y, sin, cos, false),
 vel1F = rotate(vel1.x, vel1.y, sin, cos, false);
 ball0.vx = vel0F.x;
 ball0.vy = vel0F.y;
 ball1.vx = vel1F.x;
 ball1.vy = vel1F.y;
 }
 }

 function checkWalls (ball) {
 if (ball.x + ball.radius > canvas.width) {
 ball.x = canvas.width - ball.radius;
 ball.vx *= bounce;
 } else if (ball.x - ball.radius < 0) {
 ball.x = ball.radius;
 ball.vx *= bounce;
 }
 if (ball.y + ball.radius > canvas.height) {
 ball.y = canvas.height - ball.radius;
 ball.vy *= bounce;
 } else if (ball.y - ball.radius < 0) {
 ball.y = ball.radius;
 ball.vy *= bounce;
 }
 }

 function move (ball) {
 ball.x += ball.vx;
 ball.y += ball.vy;
 checkWalls(ball);
 }

 function draw (ball) {
 ball.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 balls.forEach(move);

BILLIARD BALL PHYSICS

273

 for (var ballA, i = 0, len = numBalls - 1; i < len; i++) {
 ballA = balls[i];
 for (var ballB, j = i + 1; j < numBalls; j++) {
 ballB = balls[j];
 checkCollision(ballA, ballB);
 }
 }
 balls.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

Of course, you’re free to investigate your own solutions to the problem, and if you come up with something
that is simpler, more efficient, and more accurate, please share!

Important Formulas in this Chapter
The important formula in this chapter is the one for conservation of momentum.

Conservation of Momentum, in Straight Mathematical Terms

 (m0 - m1) × v0 + 2 × m1 × v1
v0Final = ----------------------------
 m0 + m1

 (m1 - m0) × v1 + 2 × m0 × v0
v1Final = ----------------------------
 m0 + m1

Conservation of Momentum in JavaScript, with a Shortcut

var vxTotal = vx0 – vx1;
vx0 = ((ball0.mass - ball1.mass) * vx0 + 2 * ball1.mass * vx1) /
 (ball0.mass + ball1.mass);
vx1 = vxTotal + vx0;

Summary
Congratulations! You’ve made it through the heaviest math in the book and you now have in your
repertoire the methods for handling accurate collision reactions. One thing we’ve ignored in these
examples, just to keep them simple, is the concept of friction. You can try to add that into the system
because you certainly know enough at this point to do so. Be sure to check out Chapter 19, where you'll
see a little trick to use in the case that both objects have the same mass.

CHAPTER 11

274

In the next chapter, we tone things down a bit and look into particle attraction, though adding in some
billiard ball physics to the examples there would be quite fitting.

275

Chapter 12

Particle Attraction and Gravity

What we’ll cover in this chapter:

 Particles

 Gravity

 Springs

During the progression of this book, each chapter has added a new concept to enhance the motion quality
of our animations. At first, you just had things moving around. Then things started interacting with the
environment, then with the user, and then with each other through collisions. In this chapter, we expand on
the ways objects interact with each other, particularly from a distance. Specifically, we cover particles,
gravity (a little differently this time), springs (again!), and have them all interact with each other.

Particles
For the purposes of this chapter, a particle is simply a single unit, generally in the company of several (or
many) other similar units. For example, a particle can be a marble, a balloon, or a planet.

Particles generally share a common type of behavior, but also can have their own individuality. In the book
examples, you’ve already seen this when using instances of the Ball class. Each object has its own
properties: velocity, mass, size, color, etc., but all of the balls move using the same rules.

In this chapter, you again use the Ball class, because it already has the functionality you need here. The
particle object holds only properties, and the rest of the script takes care of moving each particle. Another
strategy is to define a move method in the particle class, so each object takes responsibility for moving

CHAPTER 12

276

itself and handling any reactions. Either way works, but for the examples in this book, the animation code
is kept outside of the particle object for simplicity’s sake.

The general setup for the code is the same in each of the examples here, because most of the variations
are in the interaction and attraction between the particles. Here's the basic document that we build on,
which creates several particles and positions them randomly around the canvas element:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Particles</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 particles = [],
 numParticles = 30;

 for (var particle, i = 0; i < numParticles; i++) {
 particle = new Ball(5);
 particle.x = Math.random() * canvas.width;
 particle.y = Math.random() * canvas.height;
 particle.mass = 1;
 particles.push(particle);
 }

 function draw (particle) {
 particle.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 particles.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

Here, you create 30 particles and initialize each one’s radius to 5 and set the mass to 1. Later on, we'll
change that around to get different effects. You can also start off the particles with a random velocity or
randomly size them.

PARTICLE ATTRACTION AND GRAVITY

277

Hold on to this file, because the rest of the examples in this chapter assume this basic setup and will add
code to it. But before we get to that, you'll first need some background theory.

Gravity
The first kind of particle attraction we discuss is gravity. Gravity was covered in Chapter 5, but that was
gravity as seen from close up.

Standing on earth, gravity has a simple description: It pulls things down. In fact, it pulls things down at a
specific rate. The acceleration it applies is equal to about 32 feet per second. One way of expressing
acceleration is by how much velocity it adds over a specific time period. Gravity makes things go 32 feet
per second faster, every second it pulls on them. You can go to the tallest mountain or the lowest valley,
and that number 32 isn’t going to change enough for you to notice (without a specialized measuring tool).

Gravitational force
When you step back, the farther away you are from a planet or large body, the smaller the force of gravity
becomes. This has the pleasant side effect of keeping the earth, as well as other planets, from being
sucked into the sun and smashed together. From this far-away, “top-down” view of the solar system,
where you can refer to planets as particles, the distance between them affects the gravitational pull.

How much the distance affects the force is easy to describe: It’s inversely proportional to the square of the
distance. Well, maybe that needs some explanation. Gravity is closely tied to mass—the more mass
something has, the more force it will pull on other things and the more it will be pulled by them. And there
is also something called the gravitational constant (abbreviated as G) that fits in there. Here’s the full
equation for the force of gravity:

force = G × m

1
 × m

2
 / distance2

This means the force of gravity on an object by another object is equal to this gravitational constant, times
both masses, divided by the square of the distance between them. Sounds simple enough—you just need
to know what the gravitational constant is, and you’ll be all set. Well, here’s the official definition of it:

G = 6.674 × 10-11 × m3 × kg-1 × s-2

Maybe it is not so simple after all. But thankfully, we can just remove G from the formula and our
animations will look fine:

force = m

1
 × m

2
 / distance2

This might seem like we're cheating a bit—because we are—but it's something you're not likely to notice
and will save us a bunch of calculations. Think of the gravitational constant, G, as a way to normalize the
equation to get the force in the proper measurement for your particular implementation. If modeling the
universe, you'd want this value in the unit of Newtons, so you set G to the previous long equation. But in
our animation implementation, we can work in our own little universe, and just set G to 1 and remove it. In
fact, this is also what particle physicists do in their equations. Now, if you are making a canvas-based

CHAPTER 12

278

satellite guidance system for NASA, you might want to leave G in there. But if you’re programming the next
great space wars game, you can probably live without it.

Now that you have the updated formula, let’s put it into code. In the drawFrame animation loop, iterate
over each particle and pass it to the move function. Inside that you call another function named gravitate
so you can separate the code that handles gravity:

function move (partA, i) {
 partA.x += partA.vx;
 partA.y += partA.vy;

 for (var partB, j = i + 1; j < numParticles; j++) {
 partB = particles[j];
 gravitate(partA, partB);
 }
}

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 particles.forEach(move);
 particles.forEach(draw);
}());

In the move function, you use a for loop to get the interactions of one particle to the rest. After you have
partA and partB, you pass these two objects to the gravitate function, which is:

function gravitate (partA, partB) {
 var dx = partB.x – partA.x,
 dy = partB.y – partA.y,
 distSQ = dx * dx + dy * dy,
 dist = Math.sqrt(distSQ),
 force = partA.mass * partB.mass / distSQ,
 ax = force * dx / dist,
 ay = force * dy / dist;

 partA.vx += ax / partA.mass;
 partA.vy += ay / partA.mass;
 partB.vx -= ax / partB.mass;
 partB.vy -= ay / partB.mass;
}

In this function, you first find the distance (dx and dy) between the two particles, and the total distance.
Remember that the formula for gravity, force = m1 × m2 / distance

2, contains the distance squared.
Normally, we calculate distance all at once using: dist = Math.sqrt(dx * dx + dy * dy). But then to
get distance squared, we would square something that was a square root—that’s double work. If we use
the variable distSQ to grab a reference to dx * dx + dy * dy before we take the square root, we save
ourselves that calculation.

Next, we find the total force by multiplying the masses and dividing by the distance squared. Then we
figure the total acceleration on the x and y axes. Again, we use the shortcut we discussed at the end of

PARTICLE ATTRACTION AND GRAVITY

279

Chapter 9, using dx/dist instead of Math.cos(angle), and then dy/dist instead of Math.sin(angle).
This saves us from needing to use Math.atan2(dy, dx) to find the angle in the first place.

Now, notice that we talk about the total force and the total acceleration. This is the combined force acting
between the two objects. You need to divvy it up between the two, based on their masses. If you think of
the earth and the sun, there is a particular force between them. It is the product of their masses, divided by
the square of their distance. So, they pull toward each other with that total force. The earth is pulled toward
the sun, and the sun is pulled toward the earth. Obviously, the earth gets more of that acceleration
because it has much less mass than the sun. So, to get the individual acceleration for either object in the
system, you divide the total acceleration by that object’s mass. Thus, you have the last four lines of the
formula. Notice that partA gets the acceleration added, and partB gets it subtracted. This is merely due
to the order of subtraction used to get dx and dy.

The final code for this example can be found in 01-gravity.html. When you test it, you should see
something like Figure 12-1. The particles start out motionless, but are then attracted to each other.
Occasionally, a couple of them sort of orbit around each other; but for the most part, the particles pull close
together then fly off in opposite directions.

Figure 12-1. A bunch of particles

Is this hitting and then speeding off a bug? Well, this motion is not a bug in the code, because it’s
expected. The behavior is something called the slingshot effect, and it’s what NASA uses to send probes
into deep space. As an object gets closer and closer to a planet, it feels more and more acceleration, and
it starts traveling with a high velocity. If you aim it just right, so it comes close to the planet, but just misses
it, then the object whips off into space too fast for the planet’s gravity to capture it. What happens in our
program is that the objects are within a very small distance of each other—almost zero distance. Thus, the
force between them becomes huge, almost infinite. So, mathematically, it’s correct. But, from a simulation
viewpoint, it’s unrealistic. What should happen is that if the objects get close enough together, they collide
and we model that collision. If you aimed that space probe directly at the planet, it would not zoom past it
at infinite speed … it would make a crater.

CHAPTER 12

280

Collision detection and reaction
For your particles, there needs to be some kind of collision detection and reaction. What you do is up to
you. You can have them explode and disappear, or have one particle disappear and add its mass to the
other one, as if they had joined. In the next example, we'll just have them bounce off each other.

We can use some nice collision and reaction code left over from the previous chapter, in a function called
checkCollision. Let’s plug that into the move function, like so:

function move (partA, i) {
 partA.x += partA.vx;
 partA.y += partA.vy;

 for (var partB, j = i + 1; j < numParticles; j++) {
 partB = particles[j];
 checkCollision(partA, partB);
 gravitate(partA, partB);
 }
}

Only that one line in bold has changed. And of course, you must copy and paste the checkCollision and
rotate functions into the file. This code can be found in document 02-gravity-bounce.html.

Now the particles are attracted to each other, but bounce off when they hit. Change the mass of the
particles and see how they attract differently. You can even do bizarre things such as give the particles
negative mass and watch them repel each other!

In the document 03-gravity-random.html, we kept everything the same except for a few lines at the top
of the script where the particles are initialized:

for (var size, particle, i = 0; i < numParticles; i++) {
 size = Math.random() * 20 + 5;
 particle = new Ball(size);
 particle.x = Math.random() * canvas.width;
 particle.y = Math.random() * canvas.height;
 particle.mass = size;
 particles.push(particle);
}

This gives each particle a random size and a mass based on that size, as you can see in Figure 12-2.
Things are now starting to get interesting.

PARTICLE ATTRACTION AND GRAVITY

281

Figure 12-2. When worlds collide

Orbiting
Just to show you how realistic this gets, we will set up a simple planetary system with a sun and planet.
Make a large sun with a mass of 10,000, and a planet with a mass of 1. Then move the planet a distance
away from the sun and give it some velocity perpendicular to the line between it and the sun. The setup
looks something like Figure 12-3.

Figure 12-3. Setting up the solar system

If you get the masses, distance, and velocity just right, you should be able to get the planet into orbit (after
some trial and error). You'll find a working example of this in document 04-orbit.html. All you see here
is the setup code near the top of the script. We create two particles, a big one for the sun, and a small
earth to orbit it; the rest of the code remains the same:

CHAPTER 12

282

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 particles = [],
 numParticles = 2,
 sun = new Ball(100, "#ffff00"),
 planet = new Ball(10, "#00ff00");

sun.x = canvas.width / 2;
sun.y = canvas.height / 2;
sun.mass = 10000;
particles.push(sun);

planet.x = canvas.width / 2 + 200;
planet.y = canvas.height / 2;
planet.vy = 7;
planet.mass = 1;
particles.push(planet);

Decrease planet.vy a little to see how it falls out of orbit and plummets towards the sun (and bounces
right off).

As an extra bonus, stop clearing the canvas element in the drawFrame function to trace the orbit path with
a line:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);

 particles.forEach(move);
 particles.forEach(draw);
}());

This example is in 04-orbit-draw.html, and you can make some interesting patterns by playing around
with the variables.

Springs
The other kind of particle attraction you probably want to try is springs. Recall that in Chapter 8, you tried
out chains of springs and objects springing to each other. Here, you look at a broader application, where
you have many particles, all springing to each other, as in the gravity examples you just saw.

The inspiration for this example came from a piece called “Node Garden” by Jared Tarbell
(www.levitated.net), written for Flash. The idea is that you have several nodes (particles), and they
each have various types of interactions with any other nearby nodes.

Gravity versus springs
If you look at gravity and springs, you see they are similar, yet almost exactly opposite. Both apply
acceleration to two objects to pull them together. But in gravity, the farther apart the objects are, the less
acceleration there is. In a spring, the acceleration gets larger as the distance increases.

http://www.levitated.net
http://www.levitated.net

PARTICLE ATTRACTION AND GRAVITY

283

You can swap out the gravity code and plug the spring code into the previous examples, but the effect might not
be interesting. The particles would eventually just lump into a mass—springs can’t tolerate distance.

So here's the dilemma: You want particles to attract with a spring force, but you want them to tolerate
some distance and not pull themselves together. We solve this by setting a minimum distance for the
particles to be within before they react to one another. If the particles are farther apart than this, they
ignore each other.

A springy node garden
Let’s make our own springy node garden example that we go through step by step. Here is the code listed
in its entirety (document 06-node-garden.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Node Garden</title>
 <link rel="stylesheet" href="style.css">
 <style>
 #canvas {
 background-color: #000000;
 }
 </style>
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 particles = [],
 numParticles = 30,
 minDist = 100,
 springAmount = 0.001;

 for (var particle, i = 0; i < numParticles; i++) {
 particle = new Ball(5, "#ffffff");
 particle.x = Math.random() * canvas.width;
 particle.y = Math.random() * canvas.height;
 particle.vx = Math.random() * 6 - 3;
 particle.vy = Math.random() * 6 - 3;
 particles.push(particle);
 }

 function spring (partA, partB) {
 var dx = partB.x - partA.x,
 dy = partB.y - partA.y,
 dist = Math.sqrt(dx * dx + dy * dy);

CHAPTER 12

284

 if (dist < minDist) {
 var ax = dx * springAmount,
 ay = dy * springAmount;
 partA.vx += ax;
 partA.vy += ay;
 partB.vx -= ax;
 partB.vy -= ay;
 }
 }

 function move (partA, i) {
 partA.x += partA.vx;
 partA.y += partA.vy;

 if (partA.x > canvas.width) {
 partA.x = 0;
 } else if (partA.x < 0) {
 partA.x = canvas.width;
 }
 if (partA.y > canvas.height) {
 partA.y = 0;
 } else if (partA.y < 0) {
 partA.y = canvas.height;
 }
 for (var partB, j = i + 1; j < numParticles; j++) {
 partB = particles[j];
 spring(partA, partB);
 }
 }

 function draw (particle) {
 particle.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 particles.forEach(move);
 particles.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

Make sure the background color of the canvas element is set to black (using CSS in the document
header), so you can see the white nodes. At the top of the script, we declare variables for the particles, the
minimum distance we mentioned, and a spring value:

var particles = [],
 numParticles = 30,
 minDist = 100,

PARTICLE ATTRACTION AND GRAVITY

285

 springAmount = 0.001;

In the spring examples in Chapter 8, you used something like 0.03 for a spring amount. You need to use
something even lower here, because a lot more particles are interacting. If the value is too high, the
velocity will build up too fast. But, if the value is too low, the particles will just stroll across the screen,
seemingly unaware of each other. After we declare the particles, we initialize them:

for (var particle, i = 0; i < numParticles; i++) {
 particle = new Ball(5, "#ffffff");
 particle.x = Math.random() * canvas.width;
 particle.y = Math.random() * canvas.height;
 particle.vx = Math.random() * 6 – 3;
 particle.vy = Math.random() * 6 – 3;
 particles.push(particle);
}

This creates several particles, throws them around the canvas, and gives them random velocities. There's
no mass on these particles, but in a later section, we show you an experiment that adds mass back.

Next comes the drawFrame animation loop, which iterates over the particles twice per frame. Each particle
is passed to the move and draw functions:

function move (partA, i) {
 partA.x += partA.vx;
 partA.y += partA.vy;

 if (partA.x > canvas.width) {
 partA.x = 0;
 } else if (partA.x < 0) {
 partA.x = canvas.width;
 }
 if (partA.y > canvas.height) {
 partA.y = 0;
 } else if (partA.y < 0) {
 partA.y = canvas.height;
 }
 for (var partB, j = i + 1; j < numParticles; j++) {
 partB = particles[j];
 spring(partA, partB);
 }
}

This is similar to the previous examples where we added in screen wrapping. But instead of calling
gravitate, we use the spring function:

function spring (partA, partB) {
 var dx = partB.x – partA.x,
 dy = partB.y – partA.y,
 dist = Math.sqrt(dx * dx + dy * dy);

 if (dist < minDist) {
 var ax = dx * springAmount,
 ay = dy * springAmount;

CHAPTER 12

286

 partA.vx += ax;
 partA.vy += ay;
 partB.vx -= ax;
 partB.vy -= ay;
 }
}

Here, you find the distance between the two particles. If it’s not less than minDist, you move on. But if it is
less, you determine the acceleration on each axis, based on the distance and springAmount. You add
that acceleration to partA’s velocity and subtract it from partB’s velocity. This pulls the particles together.

Try it out and you see something like Figure 12-4. The particles clump together like flies buzzing around a
garbage can. But even those clumps move around, break up, and join other clumps. It’s interesting
emergent behavior. Change the minDist and springAmount values to see what happens.

Figure 12-4. Nodes in action

Nodes with connections
Although it is obvious that the nodes are interacting with one other, it's not obvious what the specific
interaction is between each pair of nodes. However, we can visualize this by drawing lines between the
nodes, and that’s simple to do—just add some canvas drawing code to the spring function. If two nodes
interact, this draws a line between them:

function spring (partA, partB) {
 var dx = partB.x – partA.x,
 dy = partB.y – partA.y,
 dist = Math.sqrt(dx * dx + dy * dy);

 if (dist < minDist) {
 context.strokeStyle = "#ffffff";
 context.beginPath();
 context.moveTo(partA.x, partA.y);

w

PARTICLE ATTRACTION AND GRAVITY

287

 context.lineTo(partB.x, partB.y);
 context.stroke();

 var ax = dx * springAmount,
 ay = dy * springAmount;
 partA.vx += ax;
 partA.vy += ay;
 partB.vx -= ax;
 partB.vy -= ay;
 }
}

Now, the nodes are connected, but the lines snap on and off as nodes come in and out of range of each
other—we can make this look better with a gradient between them. If two nodes are under minDist apart,
the line should be almost completely transparent. As they get closer and closer, the line should become
brighter and brighter. So, if we calculate dist/minDist, this gives us a fraction from 0 to 1 for alpha. But
this is backward, because if dist equals minDist, alpha is 1. As dist approaches 0, alpha approaches 0.
Take that number and subtract it from 1, which reverses the effect.

Remember when we discussed colors on the canvas in Chapter 4. In order to use transparency, we need
to format the color as a CSS-style RGBA string. So we pass the color and alpha value to the
utils.colorToRGB function that we included in the utils.js file. Here’s the final line-drawing code:

var alpha = 1 - dist / minDist;
context.strokeStyle = utils.colorToRGB("#ffffff", alpha);
context.beginPath();
context.moveTo(partA.x, partA.y);
context.lineTo(partB.x, partB.y);
context.stroke();

This is a beautiful effect, as shown in Figure 12-5. The result is in 07-node-garden-lines.html.

CHAPTER 12

288

Figure 12-5. Subtle change, but a world of difference

Nodes with mass
We can also experiment further with this example by having nodes with mass (document 08-nodes-
mass.html). At the top of the script, set each node to a random size, and then set the mass based on that
size:

for (var size, particle, i = 0; i < numParticles; i++) {
 size = Math.random() * 10 + 2;
 particle = new Ball(size, "#ffffff");
 particle.x = Math.random() * canvas.width;
 particle.y = Math.random() * canvas.height;
 particle.vx = Math.random() * 6 – 3;
 particle.vy = Math.random() * 6 – 3;
 particle.mass = size;
 particles.push(particle);
}

The mass is used in the spring function when adding in the velocities. Divide the velocity by the mass of
each particle, which gives the larger ones more inertia:

function spring (partA, partB) {
 var dx = partB.x – partA.x,
 dy = partB.y – partA.y,
 dist = Math.sqrt(dx * dx + dy * dy);

 if (dist < minDist) {
 var alpha = 1 - dist / minDist;
 context.strokeStyle = utils.colorToRGB("#ffffff", alpha);

PARTICLE ATTRACTION AND GRAVITY

289

 context.beginPath();
 context.moveTo(partA.x, partA.y);
 context.lineTo(partB.x, partB.y);
 context.stroke();

 var ax = dx * springAmount,
 ay = dy * springAmount;
 partA.vx += ax / partA.mass;
 partA.vy += ay / partA.mass;
 partB.vx -= ax / partB.mass;
 partB.vy -= ay / partB.mass;
 }
}

Because this cuts down the overall effect of the spring, set springAmount to something small like 0.0005.
You can see the effect in Figure 12-6.

Figure 12-6. One more for the road

Aside from the nodes just looking impressive, imagine all of the game scenarios you could build with them.
You might want to add in the spaceship from earlier chapters, and make it avoid the nodes. That would be
a nice challenge!

CHAPTER 12

290

Important formulas in this chapter
Obviously, the big formula here is gravity.

Basic gravity

force = G × m

1
 × m

2
 / distance2

JavaScript-friendly gravity implementation

function gravitate (partA, partB) {
 var dx = partB.x – partA.x,
 dy = partB.y – partA.y,
 distSQ = dx * dx + dy * dy,
 dist = Math.sqrt(distSQ),
 force = partA.mass * partB.mass / distSQ,
 ax = force * dx / dist,
 ay = force * dy / dist;

 partA.vx += ax / partA.mass;
 partA.vy += ay / partA.mass;
 partB.vx -= ax / partB.mass;
 partB.vy -= ay / partB.mass;
}

This function is using an instance of the Ball class, but you can use any object, as long as it can store
values for velocity, mass, and position.

Summary
This chapter covered interaction between particles at a distance, and how you can use gravity and
springing for interesting effects. As a result, you have two new ways to make some very dynamic motion
graphics involving many objects.

In the next couple of chapters, we discuss some new subjects: forward kinematics and inverse kinematics.
These techniques enable you to make neat things such as robot arms and walking figures.

291

Chapter 13

Forward Kinematics: Making Things Walk

What we’ll cover in this chapter:

 Introducing forward and inverse kinematics

 Getting started programming forward kinematics

 Automating the process

 Making it really walk

The previous chapters covered the basics of interactive JavaScript animations using the canvas element,
and even some advanced “basics.” Now, we branch off and explore some other interesting techniques that
use kinematics.

What exactly is kinematics? The name might sound intimidating, but it's really not that difficult. In fact, the
previous chapters covered just about all the concepts you need. You just have to put them together in the
right way.

The simple definition of kinematics is, at least for our purposes, the branch of mathematics that deals with
the motion of objects without regard for force or mass; so, it’s speed, direction, and velocity.

When people in computer science, graphics, and games talk about kinematics, they are referring to two
specific branches of kinematics: forward kinematics and inverse kinematics. Let’s start there.

CHAPTER 13

292

Introducing Forward and Inverse Kinematics
Forward and inverse kinematics generally relate to a system of connected parts, such as a chain or a
jointed arm. They have to do with how that system moves, and how each part moves in relation to the
other parts and to the whole.

Often, a kinematics system has two ends: the base and the free end. A jointed arm is usually attached to
something fixed at one end, and the other end moves around to reach and grab things. A chain might be
attached to something on one or both ends, or not at all.

Forward kinematics (FK) deals with motion that originates at the base of the system and moves out to the
free end. Inverse kinematics (IK) deals with the opposite: motion originating at, or determined by, the free
end and going back to the base, if there is one.

Some examples should make this distinction clearer. In most cases, the limbs of a body in a walk cycle are
done with forward kinematics. The thigh moves, which moves the calf. The calf moves, which moves the
foot. The foot moves. In this case, the foot isn’t determining anything. It winds up wherever it winds up,
based on the positions of all the limbs before it.

An example of inverse kinematics is pulling another person by the hand. Here, the force applied on the
free end—the person's hand—controls the position and movements of the hand, forearm, upper arm, and
eventually the whole body of the other person.

Another, more subtle, example of inverse kinematics is an arm reaching for something. Again, the hand is
what is driving the system. Of course, you can say that, in this example, the upper arm and forearm are
moving, and they control the position of the hand. That's true, but there is a direct intention to put that hand
in a specific place—that is the driving force. In this case, it’s not a physical force, but an intention. The
forearm and upper arm are simply arranging themselves in whatever configuration necessary to position
that hand.

The differences become clearer as you work through the examples in this and the next chapter. But for
now, remember that dragging and reaching are generally inverse kinematics, whereas a repeated cycle of
motion, such as walking, is usually forward kinematics, which is the subject of this chapter.

Getting Started Programming Forward Kinematics
Programming both types of kinematics involves a few basic elements:

 The parts of the system—segments

 The position of each segment

 The rotation of each segment

Each segment in these examples are an oblong shape like a forearm or an upper arm, or any part of a leg.
Of course, the last segment can be some other shape, such as a hand or foot.

FORWARD KINEMATICS: MAKING THINGS WALK

293

Each segment has a pivot point at one end, around which it can rotate. If that segment has any
subsegments, they pivot on the opposite end of that segment. Just like your upper arm pivots on your
shoulder, your forearm pivots on your elbow, and your hand pivots on your wrist.

Of course, in many real systems, pivoting can be in many directions. Think of how many ways you can
move your wrist. But in these examples, the systems we're building are strictly two-dimensional.

Moving One Segment
We start with a single segment and need to get it moving somehow. Here is the Segment class that you
use in these next two chapters, segment.js:

function Segment (width, height, color) {
 this.x = 0;
 this.y = 0;
 this.width = width;
 this.height = height;
 this.vx = 0;
 this.vy = 0;
 this.rotation = 0;
 this.scaleX = 1;
 this.scaleY = 1;
 this.color = (color === undefined) ? "#ffffff" : utils.parseColor(color);
 this.lineWidth = 1;
}

Segment.prototype.draw = function (context) {
 var h = this.height,
 d = this.width + h, //top-right diagonal
 cr = h / 2; //corner radius

 context.save();
 context.translate(this.x, this.y);
 context.rotate(this.rotation);
 context.scale(this.scaleX, this.scaleY);
 context.lineWidth = this.lineWidth;
 context.fillStyle = this.color;
 context.beginPath();
 context.moveTo(0, -cr);
 context.lineTo(d-2*cr, -cr);
 context.quadraticCurveTo(-cr+d, -cr, -cr+d, 0);
 context.lineTo(-cr+d, h-2*cr);
 context.quadraticCurveTo(-cr+d, -cr+h, d-2*cr, -cr+h);
 context.lineTo(0, -cr+h);
 context.quadraticCurveTo(-cr, -cr+h, -cr, h-2*cr);
 context.lineTo(-cr, 0);
 context.quadraticCurveTo(-cr, -cr, 0, -cr);
 context.closePath();
 context.fill();
 if (this.lineWidth > 0) {
 context.stroke();
 }

CHAPTER 13

294

 //draw the 2 "pins"
 context.beginPath();
 context.arc(0, 0, 2, 0, (Math.PI * 2), true);
 context.closePath();
 context.stroke();
 context.beginPath();
 context.arc(this.width, 0, 2, 0, (Math.PI * 2), true);
 context.closePath();
 context.stroke();
 context.restore();
};

Segment.prototype.getPin = function () {
 return {
 x: this.x + Math.cos(this.rotation) * this.width,
 y: this.y + Math.sin(this.rotation) * this.width
 };
};

When you create a segment, you specify a width, a height, and an optional color, which draws a rounded
rectangle. It also adds a small circle at the origin point of the segment (0, 0) and one at the end point.
These are the two pins, where the segments attach to other segments. (You may also notice a couple of
properties, such as vx and vy, we'll discuss these later in the “Handling the Reaction” section.)

The following example creates a few segments with different widths and heights to give you an idea how
the Segment class is used (document 01-segment.html), and is shown in Figure 13-1:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Segment</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="segment.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 segment0 = new Segment(100, 20),
 segment1 = new Segment(200, 10),
 segment2 = new Segment(80, 40);

 segment0.x = 100;
 segment0.y = 50;
 segment0.draw(context);

 segment1.x = 100;
 segment1.y = 80;
 segment1.draw(context);

FORWARD KINEMATICS: MAKING THINGS WALK

295

 segment2.x = 100;
 segment2.y = 120;
 segment2.draw(context);
 };
 </script>
 </body>
</html>

Figure 13-1. Some sample segments

Something to notice in Figure 13-1 is that the segment width is the distance between the two pins, and the
actual width of the segment goes beyond that in both directions. You can see that each segment is placed
at an x position of 100. Although their left edges do not line up, all of the pins on the left do. When you
rotate the segment, it rotates around the left-hand pin.

The Segment class also contains the method getPin, which returns an object representing a point. This
contains x and y properties that are the position of the right-hand pin. Because the position changes as the
segment is rotated, we use some basic trigonometry to calculate it. This pin is where the next segment is
attached—which you see in the next section of this chapter.

For the next example, we created a single segment and put it on the canvas. We also added a new
Slider class, which is used to adjust the segment's position. Although not necessary for understanding
kinematics, it's a convenient user interface element for changing numeric values on the fly. Remember,
you can download all the code from this book at www.apress.com, which you’re free to use for whatever
you want. We don’t spend much time explaining it because it's simple enough. You drag the lever with the
mouse to adjust the value. Don't confuse this class with the new HTML5 slider element for form input, this
interface element has been created entirely in JavaScript and drawn to the canvas. Here's the file that we
use in some of the remaining chapter examples (slider.js):

function Slider (min, max, value) {
 this.min = (min === undefined) ? 0 : min;
 this.max = (max === undefined) ? 100 : max;
 this.value = (value === undefined) ? 100 : value;
 this.onchange = null;
 this.x = 0;
 this.y = 0;
 this.width = 16;
 this.height = 100;
 this.backColor = "#cccccc";

http://www.apress.com

CHAPTER 13

296

 this.backBorderColor = "#999999";
 this.backWidth = 4;
 this.backX = this.width / 2 - this.backWidth / 2;
 this.handleColor = "#eeeeee";
 this.handleBorderColor = "#cccccc";
 this.handleHeight = 6;
 this.handleY = 0;
 this.updatePosition();
}

Slider.prototype.draw = function (context) {
 context.save();
 context.translate(this.x, this.y);
 context.fillStyle = this.backColor;
 context.beginPath();
 context.fillRect(this.backX, 0, this.backWidth, this.height);
 context.closePath();
 context.strokeStyle = this.handleBorderColor;
 context.fillStyle = this.handleColor;
 context.beginPath();
 context.rect(0, this.handleY, this.width, this.handleHeight);
 context.closePath();
 context.fill();
 context.stroke();
 context.restore();
};

Slider.prototype.updateValue = function () {
 var old_value = this.value,
 handleRange = this.height – this.handleHeight,
 valueRange = this.max – this.min;

 this.value = (handleRange - this.handleY) / handleRange * valueRange + this.min;

 if (typeof this.onchange === 'function' && this.value !== old_value) {
 this.onchange();
 }
};

Slider.prototype.updatePosition = function () {
 var handleRange = this.height – this.handleHeight,
 valueRange = this.max – this.min;

 this.handleY = handleRange - ((this.value - this.min) / valueRange) * handleRange;
};

Slider.prototype.captureMouse = function (element) {
 var self = this,
 mouse = utils.captureMouse(element),
 bounds = {};

 setHandleBounds();

 element.addEventListener('mousedown', function () {

FORWARD KINEMATICS: MAKING THINGS WALK

297

 if (utils.containsPoint(bounds, mouse.x, mouse.y)) {
 element.addEventListener('mouseup', onMouseUp, false);
 element.addEventListener('mousemove', onMouseMove, false);
 }
 }, false);

 function onMouseUp () {
 element.removeEventListener('mousemove', onMouseMove, false);
 element.removeEventListener('mouseup', onMouseUp, false);
 setHandleBounds();
 }

 function onMouseMove () {
 var pos_y = mouse.y – self.y;
 self.handleY = Math.min(self.height – self.handleHeight, Math.max(pos_y, 0));
 self.updateValue();
 }

 function setHandleBounds () {
 bounds.x = self.x;
 bounds.y = self.y + self.handleY;
 bounds.width = self.width;
 bounds.height = self.handleHeight;
 }
};

For this slider (which you can see in Figure 13-2), you can pass in the minimum, maximum, and value
arguments when you instantiate it. In the following example, we set the minimum to –90, the maximum to
90, and the value to 0. For the slider to “see” the mouse, we need to register the canvas element with it
using slider.captureMouse(canvas). This is similar to the way we use the
utils.captureMouse(canvas) function in previous examples. It adds a couple of mouse event listeners
to the canvas element and checks to see whether the position of the mouse cursor falls within the bounds
of the slider. In this example, you can see the slider in action by using it to rotate a segment (02-single-
segment.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Single Segment</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="segment.js"></script>
 <script src="slider.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 segment = new Segment(100, 20),

CHAPTER 13

298

 slider = new Slider(-90, 90, 0);

 segment.x = 100;
 segment.y = 100;

 slider.x = 300;
 slider.y = 20;
 slider.captureMouse(canvas);
 slider.onchange = drawFrame;

 function drawFrame () {
 context.clearRect(0, 0, canvas.width, canvas.height);

 segment.rotation = slider.value * Math.PI / 180;
 segment.draw(context);
 slider.draw(context);
 }

 drawFrame(); //call once for initial display
 };
 </script>
 </body>
</html>

In this example, whenever the slider is moved, it calls the function that's assigned as its slider.onchange
method—here, drawFrame—which sets the rotation of segment to the slider’s value. Try that out, and you
should see something like Figure 13-2. If it all works, you completed the first phase of forward kinematics.

Figure 13-2. It moves!

Moving Two Segments
Now that we've set up a single segment to rotate with a slider, we can move on to something a little more
exciting … two segments! Rename the the original slider and segment to slider0 and segment0,
respectively. Create another instance of Segment, name it segment1, and also create another slider
instance and call it slider1. The new slider will control the rotation of the new segment, which is
positioned at the point returned by the getPin() method of segment0. Here’s the code for example 03-
two-segments.html:

<!doctype html>
<html>

FORWARD KINEMATICS: MAKING THINGS WALK

299

 <head>
 <meta charset="utf-8">
 <title>Two Segments</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="segment.js"></script>
 <script src="slider.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 segment0 = new Segment(100, 20),
 segment1 = new Segment(100, 20),
 slider0 = new Slider(-90, 90, 0),
 slider1 = new Slider(-90, 90, 0);

 segment0.x = 100;
 segment0.y = 100;

 slider0.x = 320;
 slider0.y = 20;
 slider0.captureMouse(canvas);
 slider0.onchange = drawFrame;

 slider1.x = 340;
 slider1.y = 20;
 slider1.captureMouse(canvas);
 slider1.onchange = drawFrame;

 function drawFrame () {
 context.clearRect(0, 0, canvas.width, canvas.height);

 segment0.rotation = slider0.value * Math.PI / 180;
 segment1.rotation = slider1.value * Math.PI / 180;
 segment1.x = segment0.getPin().x;
 segment1.y = segment0.getPin().y;

 segment0.draw(context);
 segment1.draw(context);
 slider0.draw(context);
 slider1.draw(context);
 }

 drawFrame(); //call once for initial display
 };
 </script>
 </body>
</html>

CHAPTER 13

300

Take a look at the new code in the drawFrame function; you see that it now contains code to position
segment1 based on the return value of segment0.getPin(). The drawFrame function is first called after
the objects are initialized, to make sure they are positioned properly at the start.

You set up slider1 to call the drawFrame function in the same way as slider0, by assigning the function
to its onchange property. And, obviously, you have segment1’s rotation now based on slider1.

Figure 13-3. Forward kinematics with two segments

If you test this file in your browser, you see that as you rotate segment0 around, segment1 remains
attached to the end of it, as shown in Figure 13-3. But there is no actual attachment between the two
segments—it’s all done with math. You can also rotate segment1 independently with its slider. For some
fun, change the height and width of the segments and see that it all still works perfectly. One thing that
looks a bit strange is that although segment1 moves with segment0, it doesn’t rotate with it. It’s like there’s
some gyro-stabilizer inside of it, holding its orientation steady. Because this is not how our arms move
naturally, it doesn't look right. What really should happen is that segment1’s rotation should be segment0’s
rotation plus the value of slider1. The document 04-two-segments-2.html handles this with the
following code:

function drawFrame () {
 context.clearRect(0, 0, canvas.width, canvas.height);

 segment0.rotation = slider0.value * Math.PI / 180;
 segment1.rotation = segment0.rotation + (slider1.value * Math.PI / 180);
 segment1.x = segment0.getPin().x;
 segment1.y = segment0.getPin().y;

 segment0.draw(context);
 segment1.draw(context);
 slider0.draw(context);
 slider1.draw(context);
}

Now, that looks more like a real arm. Of course, if you’re thinking about a human arm, you might not like
the way the elbow can bend in both directions. To look more normal, change the range of slider1 so
minimum is something like –160 and maximum is 0, as in the following code.

var slider1 = new Slider(-160, 0, 0);

This might be a good time to reflect on the term forward kinematics again. The base of this system is the
pivot point of segment0. The free end is the other end of segment1, where you might imagine a hand. The

FORWARD KINEMATICS: MAKING THINGS WALK

301

rotation and position of the base determine the position of segment1. And segment1’s rotation and
position determine the position of the free end. The free end has no say in where it is, should be, or would
like to be—it just goes along for the ride. Thus, control moves forward from the base to the free end.

Automating the Process
All these sliders for rotation give you a lot of control, but what you’ve created is something like a piece of
construction machinery with hydraulic levers to move around the parts. If you want to make something
really walk, step back and give it some self-control.

You need a way for each segment to smoothly swing back and forth, and then somehow synchronize them
all. That sounds like a job for a sine wave.

In example 05-walking-1.html, we replaced the sliders with a trigonometry function. It takes the sine of
the cycle variable (which is initialized to 0) and multiplies it by 90, resulting in a value from 90 to –90. The
cycle variable is constantly increased, so you get an oscillation. For now, we used the resulting angle
variable to control both segments. The drawFrame function has been converted to an animation loop that
controls the action, so the motion is continuous. The output looks like the previous example, except this
time the motion is automated.

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Walking 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="segment.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 segment0 = new Segment(100, 20),
 segment1 = new Segment(100, 20),
 cycle = 0;

 segment0.x = 200;
 segment0.y = 200;

 segment1.x = segment0.getPin().x;
 segment1.y = segment0.getPin().y;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 cycle += 0.02;

CHAPTER 13

302

 var angle = (Math.sin(cycle) * 90) * Math.PI / 180;

 segment0.rotation = angle;
 segment1.rotation = segment0.rotation + angle;
 segment1.x = segment0.getPin().x;
 segment1.y = segment0.getPin().y;

 segment0.draw(context);
 segment1.draw(context);
 }());
 };
 </script>
 </body>
</html>

Building a Natural Walk Cycle
Now you have something moving around looking vaguely arm-like, but let’s turn it into a leg. Start with the
following changes:

 Make the system point down by adding 90 to segment0’s rotation and reducing its range of
motion from 90 degrees in both directions to 45 degrees.

 Use a separate angle for each segment, so you have angle0 and angle1.

 Reduce angle1’s range to 45, and then add 45 to it. This makes its final range 0 to 90, so that it
bends in only one direction, like a real knee. If that isn’t totally clear, try it with and without the
added 45 to see what it’s doing, and try some other numbers until you get a feel for how it all fits
together.

You end up with the following code from 06-walking-2.html. Only the drawFrame method is shown,
because nothing else has changed:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 cycle += 0.02;
 var angle0 = (Math.sin(cycle) * 45 + 90) * Math.PI / 180,
 angle1 = (Math.sin(cycle) * 45 + 45) * Math.PI / 180;

 segment0.rotation = angle0;
 segment1.rotation = segment0.rotation + angle1;
 segment1.x = segment0.getPin().x;
 segment1.y = segment0.getPin().y;

 segment0.draw(context);
 segment1.draw(context);
}());

Well, you’re getting there, as shown in Figure 13-4. This is starting to look like a leg, or at least starting to
move like one.

FORWARD KINEMATICS: MAKING THINGS WALK

303

Figure 13-4. The beginnings of a walk cycle

But it doesn’t really look like it’s walking. Maybe it’s a half-hearted attempt to kick a ball, but it’s not
walking. What’s happening now is that both segments are moving in the same direction at the same time.
They are in sync, which, if you were to analyze an actual walk cycle, is not how it works.

The segments are in sync because they are both using the cycle variable to calculate their angle. To
throw them out of sync, you can resort to using cycle0 and cycle1 variables, but you don’t need to go
that far with it. Instead, you can offset cycle a bit when using it to find angle1, like so:

var angle1 = Math.sin(cycle + offset) * 45 + 45;

You need to define offset earlier in the code, but how much should offset be? Experiment until you find
something that looks good, but here's a hint: It should be a number between Math.PI and -Math.PI (or
3.14 and -3.14). Anything more or less than that is going to double back on itself. For instance, we use -
Math.PI/2, which puts it a quarter of a cycle behind angle0. Of course, -Math.PI/2 is about -1.57, so
you might want to try other numbers around that value, like –1.7 or -1.3, and see whether that looks better
or worse. A little later, we throw in a slider to do it all dynamically. The file with this offset included is in 07-
walking-3.html.

We should probably add another leg while we're at it. Start by throwing in two more segments, named
segment2 and segment3. segment2 should be in the same position as segment0, because it will also be
the top level, or base, of the whole leg, and segment3 should be positioned using segment2’s getPin()
method.

Rather than duplicate all the code that makes segment0 and segment1 walk, it has been abstracted into
its own method, called walk:

function walk (segA, segB, cyc) {
 var angle0 = (Math.sin(cyc) * 45 + 90) * Math.PI / 180,
 angle1 = (Math.sin(cyc + offset) * 45 + 45) * Math.PI / 180;

 segA.rotation = angle0;
 segB.rotation = segA.rotation + angle1;
 segB.x = segA.getPin().x;
 segB.y = segA.getPin().y;
}

CHAPTER 13

304

This function has three parameters: two segments (segA and segB) and cyc, which stands for cycle. The
rest of the code is what you’ve been using. Now, to make segment0 and segment1 walk, just call it like
this:

walk(segment0, segment1, cycle);

And now you’re ready to make segment2 and segment3 walk as well. This is what your drawFrame
function ends up as:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 cycle += 0.02;
 walk(segment0, segment1, cycle);
 walk(segment2, segment3, cycle);

 segment0.draw(context);
 segment1.draw(context);
 segment2.draw(context);
 segment3.draw(context);
}());

But if you try that, you’re not going to see the second leg. The problem is that both legs are moving exactly
in sync, so they appear as one. Once again, you need to desynchronize. Last time, you offset the bottom
segment’s position on the cycle from the top segment’s position. This time, you offset the second leg from
the first. Again, this comes down to changing the value it’s using for cycle. And once again, rather than
keeping track of two different variables, just add something to or subtract something from cycle before
you send it into the walk method. So, the drawFrame function becomes the following:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 cycle += 0.02;
 walk(segment0, segment1, cycle);
 walk(segment2, segment3, cycle + Math.PI);

 segment0.draw(context);
 segment1.draw(context);
 segment2.draw(context);
 segment3.draw(context);
}());

We use Math.PI to put the second leg 180 degrees out of sync with the first, so the first leg moves
forward while the second is moving back, and vice versa. You can try it out with some different values, say
Math.PI/2, and see that it looks a lot more like a gallop than a walk or run—which you might need to use
someday!

The file is available as 08-walking-4.html and looks like Figure 13-5. The base segments (the “thighs”)
have been made a bit larger than the lower segments (the “calves”). And because of the dynamic way
everything is set up, it all works no matter what the sizes are. In the next version, you make more things

FORWARD KINEMATICS: MAKING THINGS WALK

305

dynamic with sliders. You should play around with some of these variables now manually, by changing the
values in the code and seeing how the values affect things.

Figure 13-5. Behold! It walks!

Making It Dynamic
Next, let’s work with this walk cycle and see just how much you can change it by altering the various
values that go into it. The 09-walking-5.html example brings back the Slider class so you can start
changing some of these variables instantly.

In this example, we create and position five of these sliders across the top of the animation, as shown in
Figure 13-6.

CHAPTER 13

306

Figure 13-6. Adding the sliders to control the walk

Table 13-1 shows the slider names (from left to right), what they do, and the settings to use for them.
These are just ranges and values that seem to work well, but feel free to experiment with other values.

Table 13-1. The Sliders for Controlling the Walk Cycle

Instance Description Settings

speedSlider Controls the speed at which the system moves. minimum: 0
maximum: 0.2
value: 0.08

thighRangeSlider Controls how far back and forth the top-level segments (thighs)
can move.

minimum: 0
maximum: 90
value: 45

thighBaseSlider Controls the base angle of the top-level segments. So far, this has
been 90, meaning that the legs point straight down and move back
and forth from there. But you can get some interesting effects by
changing this value.

minimum: 0
maximum: 180
value: 90

calfRangeSlider Controls how much range of motion the lower segments (calves)
have.

minimum: 0
maximum: 90
value: 45

calfOffsetSlider Controls the offset value (you’ve been using -Math.PI/2). minimum: –3.14
maximum: 3.14
value: –1.57

Now, change the code so that it uses the values provided by the sliders, rather than hard-coded values.

FORWARD KINEMATICS: MAKING THINGS WALK

307

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Walking 5</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="segment.js"></script>
 <script src="slider.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 segment0 = new Segment(100, 30),
 segment1 = new Segment(100, 20),
 segment2 = new Segment(100, 30),
 segment3 = new Segment(100, 20),
 speedSlider = new Slider(0, 0.2, 0.08),
 thighRangeSlider = new Slider(0, 90, 45),
 thighBaseSlider = new Slider(0, 180, 90),
 calfRangeSlider = new Slider(0, 90, 45),
 calfOffsetSlider = new Slider(-3.14, 3.14, -1.57),
 cycle = 0;

 segment0.x = 200;
 segment0.y = 200;

 segment1.x = segment0.getPin().x;
 segment1.y = segment0.getPin().y;

 segment2.x = 200;
 segment2.y = 200;

 segment3.x = segment2.getPin().x;
 segment3.y = segment2.getPin().y;

 speedSlider.x = 10;
 speedSlider.y = 10;
 speedSlider.captureMouse(canvas);

 thighRangeSlider.x = 30;
 thighRangeSlider.y = 10;
 thighRangeSlider.captureMouse(canvas);

 thighBaseSlider.x = 50;
 thighBaseSlider.y = 10;
 thighBaseSlider.captureMouse(canvas);

 calfRangeSlider.x = 70;

CHAPTER 13

308

 calfRangeSlider.y = 10;
 calfRangeSlider.captureMouse(canvas);

 calfOffsetSlider.x = 90;
 calfOffsetSlider.y = 10;
 calfOffsetSlider.captureMouse(canvas);

 function walk (segA, segB, cyc) {
 var angle0 = (Math.sin(cyc) * thighRangeSlider.value + thighBaseSlider.value) * Math.PI
/ 180,
 angle1 = (Math.sin(cyc + calfOffsetSlider.value) * calfRangeSlider.value +
calfRangeSlider.value) * Math.PI / 180;

 segA.rotation = angle0;
 segB.rotation = segA.rotation + angle1;
 segB.x = segA.getPin().x;
 segB.y = segA.getPin().y;
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 cycle += speedSlider.value;
 walk(segment0, segment1, cycle);
 walk(segment2, segment3, cycle + Math.PI);

 segment0.draw(context);
 segment1.draw(context);
 segment2.draw(context);
 segment3.draw(context);
 speedSlider.draw(context);
 thighRangeSlider.draw(context);
 thighBaseSlider.draw(context);
 calfRangeSlider.draw(context);
 calfOffsetSlider.draw(context);
 }());
 };
 </script>
 </body>
</html>

This code is exactly as it was before, but now it uses the slider values rather than hard-coded values. You
can have a lot of fun with this exercise, exploring different variations of the walk cycle.

Making It Really Walk
You have a couple of legs moving around in a manner that looks realistic, but they are just floating in
space. Earlier in the book, you got something moving with velocity and acceleration, and then had it
interact with the environment. It’s time to do the same thing here.

FORWARD KINEMATICS: MAKING THINGS WALK

309

This portion of the chapter gets pretty complex, so we go through the code one concept at a time. The final
document, with all of these concepts incorporated, is 10-real-walk.html.

Giving It Some Space
Because this thing is actually going to be walking around the screen, let’s make all the parts a bit smaller
so that there is room for it to move around. Take the original four segments and make them half of what
they were:

var segment0 = new Segment(50, 15),
 segment1 = new Segment(50, 10),
 segment2 = new Segment(50, 15),
 segment3 = new Segment(50, 10);

Next, because it will move around and react with boundaries, define variables for vx and vy:

var vx = 0,
 vy = 0;

At this point, if you run the file, you’d have a miniature, working version of the previous example.

Adding Gravity
Now you need to create some gravity; otherwise—even if you add in the boundary detection—the legs are
just going to float in space. The gravity variable is controlled by another slider, so, create a new slider
object, name it gravitySlider, and set its minimum to 0, maximum to 1, and value to 0.2. Here’s the
relevant of code that initializes that last slider:

var gravitySlider = new Slider(0, 1, 0.2);

gravitySlider.x = 110;
gravitySlider.y = 10;
gravitySlider.captureMouse(canvas);

You also need to do the velocity calculations, along with the gravity acceleration. Rather than jamming all
this into the drawFrame function, make a call to another function named setVelocity:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 cycle += speedSlider.value;
 setVelocity();
 walk(segment0, segment1, cycle);
 walk(segment2, segment3, cycle + Math.PI);

 segment0.draw(context);
 segment1.draw(context);
 segment2.draw(context);
 segment3.draw(context);
 speedSlider.draw(context);

CHAPTER 13

310

 thighRangeSlider.draw(context);
 thighBaseSlider.draw(context);
 calfRangeSlider.draw(context);
 calfOffsetSlider.draw(context);
 gravitySlider.draw(context);
}());

And in that function, add gravity to vy, and then add vx and vy to the position of segment0 and segment2.
Remember that you don’t need to worry about segment1 and segment3, because their positions are
calculated in relationship to the higher-level segments.

function setVelocity () {
 vy += gravitySlider.value;
 segment0.x += vx;
 segment0.y += vy;
 segment2.x += vx;
 segment2.y += vy;
}

You can test this version if you want, but it won’t be very exciting. There’s no x velocity happening yet, and
gravity pulls the legs right through the floor. So, you need to check the floor to see whether the legs have
hit it, and that means it’s time for collision detection.

Handling the Collision
To start, make drawFrame call another function: checkFloor. This happens after the calls to walk, so it
operates on the latest positions. We check only segment1 and segment3—the lower-level segments—to
see whether they hit the floor. So, we pass them both to checkFloor.

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 cycle += speedSlider.value;
 setVelocity();
 walk(segment0, segment1, cycle);
 walk(segment2, segment3, cycle + Math.PI);
 checkFloor(segment1);
 checkFloor(segment3);

 segment0.draw(context);
 segment1.draw(context);
 segment2.draw(context);
 segment3.draw(context);
 speedSlider.draw(context);
 thighRangeSlider.draw(context);
 thighBaseSlider.draw(context);
 calfRangeSlider.draw(context);
 calfOffsetSlider.draw(context);
 gravitySlider.draw(context);
}());

FORWARD KINEMATICS: MAKING THINGS WALK

311

Now comes the first interesting part: the collision detection. You want to know whether the bottom of the
segment in question has gone below the bottom boundary. In this example, that's specified by
canvas.height.

Probably the easiest way to do this is by performing a rough calculation of our segment bottom by getting
the y position of its pin, and adding on the extra space of the segment end. Then check whether it is
greater than the height of the canvas. It's not the most precise measurement, but it serves the purposes of
this example, so that’s how you start the checkFloor function:

function checkFloor (seg) {
 var yMax = seg.getPin().y + (seg.height / 2);

 if (yMax > canvas.height) {
 //do reaction...
 }
}

If you’ve determined that yMax is greater than the canvas.height (or, if the leg has hit the floor), what do
you do? Just as in other boundary collisions, you first want to move the object so it’s touching the
boundary. If yMax is the lowest edge of the segment and canvas.height is the floor, you need to move
the segment back up exactly the distance between them. In other words, say canvas.height is 400 and
yMax is 420. You need to change the segment’s y position by –20, but you don’t want to move only the
segment. You want to move all the segments by that amount, because they are all part of the same body
and must move as one. So, you get something like this:

function checkFloor (seg) {
 var yMax = seg.getPin().y + (seg.height / 2);

 if (yMax > canvas.height) {
 var dy = yMax – canvas.height;
 segment0.y -= dy;
 segment1.y -= dy;
 segment2.y -= dy;
 segment3.y -= dy;
 }
}

This iteration of the example is worth playing with some more. Adjust the slider values to see the different
walk cycles in action. You get more of a feel for them with the legs interacting with the environment. Of
course, it’s still not really walking yet—that’s up next.

Handling the Reaction
The legs are successfully colliding with the floor, but other than repositioning themselves, there’s no real
reaction. The whole reason you walk is to get some horizontal motion going—x velocity, in this case.
Furthermore, your walk cycle should give you a bit of y velocity as well, at least enough to briefly
counteract gravity. You see this more in a fast run, where you might get slightly airborne during a cycle.

One way of looking at this is that your foot is moving down. When it hits the floor, it can’t move down any
more, so that vertical momentum goes back up to your body, moving it up. The stronger your foot is

CHAPTER 13

312

moving down, the more lift you get. Likewise, if your foot moves backward when it hits, the horizontal
momentum goes back to your body, moving it forward. The faster your foot moves back, the more
horizontal thrust you get.

If you can keep track of the foot’s x and y velocity, then when you get a collision, you can subtract that x
and y velocity from the vx and vy values. But, you don’t have any feet yet. You can add some and
calculate their positions, or instead, use the position of virtual feet, which is the value returned by
getPin() on the lower segments.

If you keep track of where the pin is before the segment moves and where it is after the segment moves,
you can subtract the two and get the foot’s velocity on both x and y. You can do that in the walk function
and store the values in the vx and vy properties of the segment (now you see where those come in).

function walk (segA, segB, cyc) {
 var angle0 = (Math.sin(cyc) * thighRangeSlider.value + thighBaseSlider.value) * Math.PI /
180,
 angle1 = (Math.sin(cyc + calfOffsetSlider.value) * calfRangeSlider.value +
calfRangeSlider.value) * Math.PI / 180,
 foot = segB.getPin();

 segA.rotation = angle0;
 segB.rotation = segA.rotation + angle1;
 segB.x = segA.getPin().x;
 segB.y = segA.getPin().y;
 segB.vx = segB.getPin().x – foot.x;
 segB.vy = segB.getPin().y – foot.y;
}

Each bottom segment has a vx and vy property, which represents not the velocity of the segment itself,
but the velocity of the bottom pivot point, or virtual foot.

So, what do you do with this velocity? You wait until you have a collision with the floor, and then you
subtract it from the overall velocity. In other words, if the foot moves down at 3 pixels per frame (a vy of 3)
when it hits, subtract 3 from the overall vy. You do the same with the vx. In code, it’s really simple:

function checkFloor (seg) {
 var yMax = seg.getPin().y + (seg.height / 2);

 if (yMax > canvas.height) {
 var dy = yMax – canvas.height;
 segment0.y -= dy;
 segment1.y -= dy;
 segment2.y -= dy;
 segment3.y -= dy;
 vx -= seg.vx;
 vy -= seg.vy;
 }
}

This is an extremely simplified, and possibly a completely inaccurate, representation of how the forces
involved in walking actually work. If you test it, there is a pair of legs walking across the screen!

FORWARD KINEMATICS: MAKING THINGS WALK

313

Screen Wrapping, Revisited
Now the legs walk off screen, never to return—but a little screen wrapping fixes that. When the legs go off
to the right, you move them back to the left. It’s a little more complex than before, because now you move
four pieces around in unison, instead of a single object. But then again, remember that you need to check
only one of the two top segments, because they are always in the same position, and the positions of the
lower segments are determined by the upper ones. Add a call to a function named checkWalls after the
floor checks in drawFrame:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 cycle += speedSlider.value;
 setVelocity();
 walk(segment0, segment1, cycle);
 walk(segment2, segment3, cycle + Math.PI);
 checkFloor(segment1);
 checkFloor(segment3);
 checkWalls();

 segment0.draw(context);
 segment1.draw(context);
 segment2.draw(context);
 segment3.draw(context);
 speedSlider.draw(context);
 thighRangeSlider.draw(context);
 thighBaseSlider.draw(context);
 calfRangeSlider.draw(context);
 calfOffsetSlider.draw(context);
 gravitySlider.draw(context);
}());

Let’s leave a general margin of 100 pixels, so that either leg can move 100 pixels off the right of the
canvas element before wrapping. If it goes past that, reposition everything way over to the left, which is the
width of the canvas plus 200, for the 100-pixel margin on each side. Start your if statement in the
checkWalls function like so:

function checkWalls () {
 var w = canvas.width + 200;

 if (segment0.x > canvas.width + 100) {
 segment0.x -= w;
 segment1.x -= w;
 segment2.x -= w;
 segment3.x -= w;
 }
}

Then do the same thing for the left edge, because some walk cycles can make the legs go backward.
Here’s the complete checkWalls function:

CHAPTER 13

314

function checkWalls () {
 var w = canvas.width + 200;

 if (segment0.x > canvas.width + 100) {
 segment0.x -= w;
 segment1.x -= w;
 segment2.x -= w;
 segment3.x -= w;
 } else if (segment0.x < -100) {
 segment0.x += w;
 segment1.x += w;
 segment2.x += w;
 segment3.x += w;
 }
}

And there you have it. If you thought this section was a bit confusing, here's the entire code listing (and
can be found in document 10-real-walk.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Real Walk</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="segment.js"></script>
 <script src="slider.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 segment0 = new Segment(50, 15),
 segment1 = new Segment(50, 10),
 segment2 = new Segment(50, 15),
 segment3 = new Segment(50, 10),
 speedSlider = new Slider(0, 0.2, 0.08),
 thighRangeSlider = new Slider(0, 90, 45),
 thighBaseSlider = new Slider(0, 180, 90),
 calfRangeSlider = new Slider(0, 90, 45),
 calfOffsetSlider = new Slider(-3.14, 3.14, -1.57),
 gravitySlider = new Slider(0, 1, 0.2),
 cycle = 0,
 vx = 0,
 vy = 0;

 segment0.x = 200;
 segment0.y = 200;

 segment1.x = segment0.getPin().x;
 segment1.y = segment0.getPin().y;

FORWARD KINEMATICS: MAKING THINGS WALK

315

 segment2.x = 200;
 segment2.y = 200;

 segment3.x = segment2.getPin().x;
 segment3.y = segment2.getPin().y;

 speedSlider.x = 10;
 speedSlider.y = 10;
 speedSlider.captureMouse(canvas);

 thighRangeSlider.x = 30;
 thighRangeSlider.y = 10;
 thighRangeSlider.captureMouse(canvas);

 thighBaseSlider.x = 50;
 thighBaseSlider.y = 10;
 thighBaseSlider.captureMouse(canvas);

 calfRangeSlider.x = 70;
 calfRangeSlider.y = 10;
 calfRangeSlider.captureMouse(canvas);

 calfOffsetSlider.x = 90;
 calfOffsetSlider.y = 10;
 calfOffsetSlider.captureMouse(canvas);

 gravitySlider.x = 110;
 gravitySlider.y = 10;
 gravitySlider.captureMouse(canvas);

 function setVelocity () {
 vy += gravitySlider.value;
 segment0.x += vx;
 segment0.y += vy;
 segment2.x += vx;
 segment2.y += vy;
 }

 function walk (segA, segB, cyc) {
 var angle0 = (Math.sin(cyc) * thighRangeSlider.value + thighBaseSlider.value) * Math.PI
/ 180,
 angle1 = (Math.sin(cyc + calfOffsetSlider.value) * calfRangeSlider.value +
calfRangeSlider.value) * Math.PI / 180,
 foot = segB.getPin();

 segA.rotation = angle0;
 segB.rotation = segA.rotation + angle1;
 segB.x = segA.getPin().x;
 segB.y = segA.getPin().y;
 segB.vx = segB.getPin().x – foot.x;
 segB.vy = segB.getPin().y – foot.y;
 }

CHAPTER 13

316

 function checkFloor (seg) {
 var yMax = seg.getPin().y + (seg.height / 2);

 if (yMax > canvas.height) {
 var dy = yMax – canvas.height;
 segment0.y -= dy;
 segment1.y -= dy;
 segment2.y -= dy;
 segment3.y -= dy;
 vx -= seg.vx;
 vy -= seg.vy;
 }
 }

 function checkWalls () {
 var w = canvas.width + 200;

 if (segment0.x > canvas.width + 100) {
 segment0.x -= w;
 segment1.x -= w;
 segment2.x -= w;
 segment3.x -= w;
 } else if (segment0.x < -100) {
 segment0.x += w;
 segment1.x += w;
 segment2.x += w;
 segment3.x += w;
 }
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 cycle += speedSlider.value;
 setVelocity();
 walk(segment0, segment1, cycle);
 walk(segment2, segment3, cycle + Math.PI);
 checkFloor(segment1);
 checkFloor(segment3);
 checkWalls();

 segment0.draw(context);
 segment1.draw(context);
 segment2.draw(context);
 segment3.draw(context);
 speedSlider.draw(context);
 thighRangeSlider.draw(context);
 thighBaseSlider.draw(context);
 calfRangeSlider.draw(context);
 calfOffsetSlider.draw(context);
 gravitySlider.draw(context);
 }());
 };

FORWARD KINEMATICS: MAKING THINGS WALK

317

 </script>
 </body>
</html>

Summary
You’ve done some pretty powerful stuff in this chapter, conquering the basics of forward kinematics. The
methods presented here are probably not the only solutions to the subject, they’re tailored toward a
particular application of the technology: making something walk. Feel free to leave things out, change
things, or add whatever you want to this system. Experiment and see what you can come up with.

Next up, you look at the other side of the coin: inverse kinematics.

319

Chapter 14

Inverse Kinematics: Dragging and Reaching

What we’ll cover in this chapter:

 Reaching and dragging single segments

 Dragging multiple segments

 Reaching with multiple segments

 Using the standard inverse kinematics method

In Chapter 13, we covered the basics of kinematics and the difference between inverse and forward
kinematics. The last chapter was about forward kinematics, and now you’re ready for its close relative,
inverse kinematics: the movements for dragging and reaching.

As with the forward kinematics examples, the code in this chapter build systems from individual segments.
You begin with single segments, and then move on to multiple segments. First, you'll see the simplest
method for calculating the various angles and positions. This just approximates measurements using the
basic trigonometry you’ve already seen in action. Then, we briefly cover another method using the law of
cosines, which can be more accurate at the cost of being more complex—that familiar trade-off.

Reaching and Dragging Single Segments
When the free end of the system reaches for a target, the other end of the system, the base, might be
unmovable. So the free end might never be able to get all the way to the target if it is out of range. An
example of this is when you grab hold of something. Your fingers move toward the object, your wrist pivots
to put your fingers as close as possible, and your elbow, shoulder, and the rest of your body move in
whatever way they can, to give you as much reach as possible. Sometimes, the combination of all these

CHAPTER 14

320

positions put your fingers in contact with the object, and other times, you won’t be able to reach it. If the
object moves from side to side, all your limbs constantly reposition themselves to keep your fingers
reaching as close as they can to the object. Inverse kinematics shows you how to position all the pieces to
give the best reach.

The other type of inverse kinematics is when something is dragged. In this case, the free end is moved by
some external force. Wherever it is, the rest of the parts of the system follow along behind it, positioning
themselves in whatever way is physically possible. For this, imagine another person lying on the floor, that
you grab by the hand and drag around. The force you apply to their hand causes the wrist, elbow,
shoulder, and rest of their body to pivot and move in whatever way they can as they are dragged along. In
this case, inverse kinematics shows you how the pieces fall into the correct positions as they are dragged.

To give you an idea of the difference between these two methods—drag and reach—let’s run through an
example of each one with a single segment. You need the Segment class we used in the Chapter 13, so
make sure you include that script in your document.

Reaching with a Single Segment
For reaching, all the segment is able to do is turn toward the target. The target, in these examples, is the
mouse cursor. To turn the segment toward the target, you need the distance between the two on the x and
y axes. You then can use Math.atan2 to get the angle between them in radians, which we use to rotate
the segment. Here’s the code (which you also find in 01-one-segment.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>One Segment</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="segment.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 segment0 = new Segment(100, 20);

 segment0.x = canvas.width / 2;
 segment0.y = canvas.height / 2;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = mouse.x - segment0.x,
 dy = mouse.y – segment0.y;

INVERSE KINEMATICS: DRAGGING AND REACHING

321

 segment0.rotation = Math.atan2(dy, dx);

 segment0.draw(context);
 }());
 };
 </script>
 </body>
</html>

Figure 14-1 shows the result. Test this and watch how the segment follows the mouse around. Even if the
segment is too far away, you can see how it seems to be reaching for the mouse.

Figure 14-1. A single segment reaching toward the mouse

Dragging with a Single Segment
Now, let’s try dragging. The first part of the dragging method is the same as the reaching method: You
rotate the object toward the mouse. But then you go a step further and move the segment to a position that
places the second pivot point exactly where the mouse is. To do that, you need to know the distance
between the two pins on each axis. You can get this from the difference (on each axis) between the
segment’s getPin() point and its actual x, y location—we call these w and h. Then subtract w and h from
the current mouse position, and you know where to put the segment. Here’s the drawFrame function from
02-one-segment-drag.html, which is the only part that has changed from the previous example:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = mouse.x – segment0.x,
 dy = mouse.y – segment0.y;

 segment0.rotation = Math.atan2(dy, dx);

 var w = segment0.getPin().x - segment0.x,
 h = segment0.getPin().y – segment0.y;

 segment0.x = mouse.x - w;
 segment0.y = mouse.y - h;

CHAPTER 14

322

 segment0.draw(context);
}());

The segment is now permanently attached to the mouse and rotates to drag along behind it. You can even
push the segment around in the opposite direction.

Dragging Multiple Segments
Dragging a system with inverse kinematics is a bit simpler than reaching, so we cover that first. We begin
moving a couple of segments.

Dragging Two Segments
Starting with the previous example, create another segment, segment1, at the top of the script. Because
segment0 is already dragging to the mouse position, you have segment1 drag on segment0. To start with,
you can use some of the same code as before—just change a few references. The new additions to the
drawFrame function are shown in bold:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = mouse.x – segment0.x,
 dy = mouse.y – segment0.y;

 segment0.rotation = Math.atan2(dy, dx);

 var w = segment0.getPin().x – segment0.x,
 h = segment0.getPin().y – segment0.y:

 segment0.x = mouse.x - h;
 segment0.y = mouse.y - w;

 dx = segment0.x – segment1.x;
 dy = segment0.y – segment1.y;

 segment1.rotation = Math.atan2(dy, dx);

 w = segment1.getPin().x – segment1.x;
 h = segment1.getPin().y – segment1.y;
 segment1.x = segment0.x – w;
 segment1.y = segment0.y – h;

 segment0.draw(context);
 segment1.draw(context);
}());

In the new section of code, you figure out the distance from segment1 to segment0, and use that for the
angle, rotation, and position of segment1—reusing the variables from the previous calculation. You can
test this example and see how it’s a pretty realistic two-segment system.

INVERSE KINEMATICS: DRAGGING AND REACHING

323

In the next example, we remove some of the duplicated code by creating a new function named drag. The
parameters for this are the segment to drag and the x, y point to drag to. Then you move segment0 to
point mouse.x, mouse.y and segment1 to point segment0.x, segment0.y. Here’s the complete code
listing for document 03-two-segment-drag.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Two Segment Drag</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="segment.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 segment0 = new Segment(100, 20),
 segment1 = new Segment(100, 20);

 function drag (segment, xpos, ypos) {
 var dx = xpos - segment.x,
 dy = ypos – segment.y;

 segment.rotation = Math.atan2(dy, dx);

 var w = segment.getPin().x - segment.x,
 h = segment.getPin().y – segment.y;

 segment.x = xpos - w;
 segment.y = ypos - h;
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 drag(segment0, mouse.x, mouse.y);
 drag(segment1, segment0.x, segment0.y);

 segment0.draw(context);
 segment1.draw(context);
 }());
 };
 </script>
 </body>
</html>

CHAPTER 14

324

Dragging More Segments
Now you can add as many segments as you want. In the next example, add five segments, named
segment0 through segment4, and store them in an array. Each segment is passed as an argument to the
drag function. Here's the code (document 04-multi-segment-drag.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Multi Segment Drag</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="segment.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 segments = [],
 numSegments = 5;

 while (numSegments--) {
 segments.push(new Segment(50, 10));
 }

 function drag (segment, xpos, ypos) {
 var dx = xpos – segment.x,
 dy = ypos – segment.y;

 segment.rotation = Math.atan2(dy, dx);

 var w = segment.getPin().x – segment.x,
 h = segment.getPin().y – segment.y;

 segment.x = xpos - w;
 segment.y = ypos - h;
 }

 function move (segment, i) {
 if (i !== 0) {
 drag(segment, segments[i-1].x, segments[i-1].y);
 }
 }

 function draw (segment, i) {
 segment.draw(context);
 }

 (function drawFrame () {

INVERSE KINEMATICS: DRAGGING AND REACHING

325

 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 drag(segments[0], mouse.x, mouse.y);
 segments.forEach(move);

 segments.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

In the drawFrame animation loop, the first segment is positioned at the mouse cursor. Then, each segment
is passed to the move function as an argument, and positioned behind the segment before it (using the
drag function). The first segment is ignored in the move function because it has already been positioned.
Figure 14-2 shows the result.

Figure 14-2. Multiple-segment dragging

Well, there you have the basics of inverse kinematics. You can add as many segments as you want by
changing the numSegments variable. In Figure 14-3, you can see 50 segments, demonstrating just how
robust this system is.

CHAPTER 14

326

Figure 14-3. Dragging 50 segments

Reaching with Multiple Segments
The following excercises build off the first example in this chapter, 01-one-segment.html, and add to
that. That animation contained a segment rotating to a target, which was the mouse position.

Reaching for the Mouse
To reach with multiple segments, first determine the position of the segment for it to touch the target, which
is the same calculation you use to position the segment when you drag. In this case, you don’t move the
segment; you just find the position. You use the position as the target of the next segment up the line and
have the segment rotate to that position. When you reach the base of the system, you then work back
through the line, positioning each piece on the end of its parent. Figure 14-4 illustrates how this works.

tx, ty

segment 0

segment 1

Figure 14-4. segment0 is moved to the mouse cursor. In turn, segment1 follows segment0, positioning itself toward
point tx, ty.

INVERSE KINEMATICS: DRAGGING AND REACHING

327

For our example, we first need to add another segment to work with. At the top of the script, create an
additional segment and position it in the center of the canvas element. Since this segment will now act as
the base, remove the initial positioning for segment0 as well:

var segment1 = new Segment(100, 20);

segment1.x = canvas.width / 2;
segment1.y = canvas.height / 2;

The next step is to find the point where segment0 will hit the target. Once again, this is the same point you
moved the segment to in the dragging examples, but don’t move it, just store the position. So, you get this:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = mouse.x – segment0.x,
 dy = mouse.y – segment0.y;

 segment0.rotation = Math.atan2(dy, dx);

 var w = segment0.getPin().x – segment0.x,
 h = segment0.getPin().y – segment0.y,
 tx = mouse.x – w,
 ty = mouse.y – h;

 segment0.draw(context);
 segment1.draw(context);
}());

We called the point tx, ty because it will be the target for segment1 to rotate to.

Next, you add the rotation code for segment1 to rotate to its target. This code is the same as the
calculation for segment0, but it uses a different segment and different target:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = mouse.x – segment0.x,
 dy = mouse.y – segment0.y;

 segment0.rotation = Math.atan2(dy, dx);

 var w = segment0.getPin().x – segment0.x,
 h = segment0.getPin().y – segment0.y,
 tx = mouse.x – w,
 ty = mouse.y – h;

 dx = tx – segment1.x;
 dy = ty – segment1.y;

 segment1.rotation = Math.atan2(dy, dx);

CHAPTER 14

328

 segment0.draw(context);
 segment1.draw(context);
}());

Finally, reposition segment0 so it sits on the end of segment1, because segment1 is now rotated to a
different position:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = mouse.x – segment0.x,
 dy = mouse.y – segment0.y;

 segment0.rotation = Math.atan2(dy, dx);

 var w = segment0.getPin().x – segment0.x,
 h = segment0.getPin().y – segment0.y,
 tx = mouse.x – w,
 ty = mouse.y – h;

 dx = tx – segment1.x;
 dy = ty – segment1.y;

 segment1.rotation = Math.atan2(dy, dx);

 segment0.x = segment1.getPin().x;
 segment0.y = segment1.getPin().y;

 segment0.draw(context);
 segment1.draw(context);
}());

When you test this example, you see that the segments work as a unit to reach for the mouse. Now, let’s
clean up the code so you can add more segments to it easily. Move all of the rotation code into its own
function, named reach:

function reach (segment, xpos, ypos) {
 var dx = xpos – segment.x,
 dy = ypos – segment.y;

 segment.rotation = Math.atan2(dy, dx);

 var w = segment.getPin().x – segment.x,
 h = segment.getPin().y – segment.y;

 return {
 x: xpos – w,
 y: ypos – h
 };
}

INVERSE KINEMATICS: DRAGGING AND REACHING

329

This function sets the rotation of the segment parameter, and then uses it to return an object with x and y
properties based on our previous calculations for tx and ty. This allows you to call the reach function to
rotate a segment, and returns a target you can pass to the next call. So, the drawFrame function becomes
the following:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var target = reach(segment0, mouse.x, mouse.y);
 reach(segment1, target.x, target.y);

 segment0.draw(context);
 segment1.draw(context);
}());

Here, segment0 reaches toward the mouse, and segment1 reaches toward segment0. We then move the
positioning code into its own function:

function position (segmentA, segmentB) {
 segmentA.x = segmentB.getPin().x;
 segmentA.y = segmentB.getPin().y;
}

Then you can position segment0 on the end of segment1 by calling:

position(segment0, segment1);

Here’s the final code for 05-two-segment-reach.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Two Segment Reach</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="segment.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 segment0 = new Segment(100, 20),
 segment1 = new Segment(100, 20);

 segment1.x = canvas.width / 2;
 segment1.y = canvas.height / 2;

 function reach (segment, xpos, ypos) {

CHAPTER 14

330

 var dx = xpos – segment.x,
 dy = ypos – segment.y;

 segment.rotation = Math.atan2(dy, dx);

 var w = segment.getPin().x – segment.x,
 h = segment.getPin().y – segment.y;

 return {
 x: xpos - w,
 y: ypos - h
 };
 }

 function position (segmentA, segmentB) {
 segmentA.x = segmentB.getPin().x;
 segmentA.y = segmentB.getPin().y;
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var target = reach(segment0, mouse.x, mouse.y);
 reach(segment1, target.x, target.y);
 position(segment0, segment1);

 segment0.draw(context);
 segment1.draw(context);
 }());
 };
 </script>
 </body>
</html>

Building off this example, it’s easy to create an array to hold as many segments as you like. The next
exercise does just that, 06-multi-segment-reach.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Multi Segment Reach</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="segment.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),

INVERSE KINEMATICS: DRAGGING AND REACHING

331

 segments = [],
 numSegments = 5,
 target; //referenced by drawFrame and move

 while (numSegments--) {
 segments.push(new Segment(50, 10));
 }

 //center the last one
 segments[segments.length - 1].x = canvas.width / 2;
 segments[segments.length - 1].y = canvas.height / 2;

 function reach (segment, xpos, ypos) {
 var dx = xpos – segment.x,
 dy = ypos – segment.y;

 segment.rotation = Math.atan2(dy, dx);

 var w = segment.getPin().x – segment.x,
 h = segment.getPin().y – segment.y;

 return {
 x: xpos - w,
 y: ypos - h
 };
 }

 function position (segmentA, segmentB) {
 segmentA.x = segmentB.getPin().x;
 segmentA.y = segmentB.getPin().y;
 }

 function move (segment, i) {
 if (i !== 0) {
 target = reach(segment, target.x, target.y);
 position(segments[i - 1], segment);
 }
 }

 function draw (segment) {
 segment.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 target = reach(segments[0], mouse.x, mouse.y);
 segments.forEach(move);

 segments.forEach(draw);
 }());
 };

CHAPTER 14

332

 </script>
 </body>
</html>

You can see the results of this example in Figure 14-5. Of couse, the segment chain doesn't have to chase
the mouse all day. Let’s see what happens when we give it a toy to play with.

Figure 14-5. Multiple-segment reaching

Reaching for an Object
Again, we build off the previous example. This time we need the Ball class, so include that file in your
document. Then create some new variables at the top of the script for the ball to use as it moves around:

var ball = new Ball(20),
 gravity = 0.5,
 bounce = -0.9;

ball.vx = 10; //start the ball with velocity on the x axis

We're also going to shrink the segments down a little bit, to give them more room to play. You can adjust
these values to see what looks best in your animation:

while (numSegments--) {
 segments.push(new Segment(20, 10));
}

Create another function, moveBall, that allows us to separate the ball-moving code so it doesn’t clutter up
the program:

function moveBall () {
 ball.vy += gravity;
 ball.x += ball.vx;
 ball.y += ball.vy;

 if (ball.x + ball.radius > canvas.width) {
 ball.x = canvas.width – ball.radius;
 ball.vx *= bounce;
 } else if (ball.x - ball.radius < 0) {

INVERSE KINEMATICS: DRAGGING AND REACHING

333

 ball.x = ball.radius;
 ball.vx *= bounce;
 }
 if (ball.y + ball.radius > canvas.height) {
 ball.y = canvas.height – ball.radius;
 ball.vy *= bounce;
 } else if (ball.y - ball.radius < 0) {
 ball.y = ball.radius;
 ball.vy *= bounce;
 }
}

Finally, in the drawFrame animation loop, call the moveBall function, and have the first segment reach for
the ball instead of the mouse:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 moveBall();
 target = reach(segments[0], ball.x, ball.y);
 segments.forEach(move);

 segments.forEach(draw);
 ball.draw(context);
}());

When you run this example you should see something like Figure 14-6. The ball now bounces around, and
the arm follows it. Pretty amazing, right?

Figure 14-6. It likes to play ball.

Right now, the arm touches the ball, but the ball completely ignores the arm. Let’s have them interact.

Adding Some Interaction
How the ball and the arm interact depends on what you want them to do. But, no matter what you do, the
first thing you need is some collision detection. Then, you can have the reaction if there is a collision.
Again, put all the code into its own function and call it from the drawFrame animation loop:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

CHAPTER 14

334

 moveBall();
 target = reach(segments[0], ball.x, ball.y);
 segments.forEach(move);
 checkHit();

 segments.forEach(draw);
 ball.draw(context);
}());

The collision detection is executed after the motion code, so everything is in its final position. Here’s the
start of the checkHit function:

function checkHit () {
 var segment = segments[0],
 dx = segment.getPin().x – ball.x,
 dy = segment.getPin().y – ball.y,
 dist = Math.sqrt(dx * dx + dy * dy);

 if (dist < ball.radius) {
 //reaction goes here
 }
}

The first thing you do is determine the distance from the end pin of the first arm to the ball, and use
distance-based collision detection to see whether it hits the ball.

Now you need to do something when you detect a hit. For this example, the arm throws the ball up in the
air (negative y velocity) and moves it randomly on the x axis (random x velocity), like so:

function checkHit () {
 var segment = segments[0],
 dx = segment.getPin().x – ball.x,
 dy = segment.getPin().y – ball.y,
 dist = Math.sqrt(dx * dx + dy * dy);

 if (dist < ball.radius) {
 ball.vx += Math.random() * 2 – 1;
 ball.vy -= 1;
 }
}

This works out pretty well, and the final code can be found in 07-play-ball.html. If the arm happens to
lose its ball, don't be sad, you can always refresh your browser to keep playing. But this example is just
that, an example. You might want to use this technique to have the arm catch the ball and throw it toward
a target, or play catch with another arm. Try different reactions, because you certainly know enough now
to do some interesting things.

Using the Standard Inverse Kinematics Method
The method we describe for inverse kinematics is relatively easy to understand and program, doesn't
require a lot of system resources to process, and most importantly, works. But there is a more standard,

INVERSE KINEMATICS: DRAGGING AND REACHING

335

mathematical, solution to this problem using the law of cosines. We take a look at the standard way of
doing inverse kinematics, so then you have a couple different methods at your disposal and can choose
whichever one you like.

Introducing the Law of Cosines
This way of calculating inverse kinematics uses something called the law of cosines. Recall that in Chapter
3, all the examples used right triangles, which are triangles with one right angle (90 degrees). The rules for
such triangles are fairly simple: Sine equals opposite over hypotenuse, cosine equals adjacent over
hypotenuse, etc. We use these rules quite extensively throughout the book.

But what if you have a triangle that doesn’t have a 90-degree angle? Well, that's where the law of cosines
fits in, it can help us figure out the various angles and lengths of this kind of triangle. It is a little more
complex, but if you have enough information about the triangle, you can use this formula to figure out the
rest. So what does this have to do with inverse kinematics? Take a look at the diagram in Figure 14-7.

a

b

Free end

B
Base

c

A

C

Figure 14-7. Two segments form a triangle with sides a, b, c, and angles A, B, C.

Here, you have two segments. The one on the left (side a) is the base, which is fixed, so you know that
location. You want to put the free end at the position shown. Thus, you’ve formed a triangle.

What do we know about this triangle? You can easily find the distance between the two ends—the length
of side c. And you know the length of each segment—sides a and b. So, you know all three lengths.

What do you need to know about this triangle? You just need the two angles of the two segments—angles
B and C. This is where the law of cosines can help you:

c2 = a2 + b2 - 2 × a × b × cos C

Now, you need to know angle C, so you can isolate that on one side. We won’t go through each step, but,
with a little algebra, you should wind up with this:

C = acos ((a2 + b2 - c2) / (2 × a × b))

The acos there is arccosine, or inverse cosine. The cosine of an angle gives you a ratio, and the arccosine
of that ratio gives you back the angle. The JavaScript function for this is Math.acos. Because you know
sides a, b, and c, you can now find angle C. Similarly, you need to know angle B, and the law of cosines
says this:

b2 = a2 + c2 - 2 × a × c × cos B

Which, when isolating angle B, boils down to this:

CHAPTER 14

336

B = acos((a2 + c2 - b2) / (2 × a × c))

Converting these equations to JavaScript gives you this:

var B = Math.acos((a * a + c * c - b * b) / (2 * a * c)),
 C = Math.acos((a * a + b * b - c * c) / (2 * a * b));

Now you have almost everything you need to position things. Almost, because the angles B and C aren’t
really the angles of rotation you use for the segments. Look at the next diagram in Figure 14-8.

a

b

Free end

B
Base

c

D

A

C

Figure 14-8. Figuring the rotation of side a

Although you know angle B, you still need to determine how much to actually rotate side a (segment1).
This is how far from zero, or horizontal, it’s going to be, and is represented by angles D plus B. To get
angle D, call Math.atan2 using the difference between the free end and base position. For the rotation of
side b (segment0), you know angle C, but that is only in relation to side a So you take the rotation of side
a, plus 180, plus angle C, (as shown in Figure 14-9), and this is your angle E.

Base
B

A

b

Angle of
segment1

Free end
a

+180
degrees

c

+C

Figure 14-9. Figuring out angle E and the rotation of side b

Yes, this way requires a lot more math. But let’s see how this looks in code, which should hopefully make the
calculations a little clearer.

Programming the Law of Cosines
First, here's the complete code listing for next example (08-cosines-1.html), then we'll step throught it:

INVERSE KINEMATICS: DRAGGING AND REACHING

337

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Cosines 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="segment.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 segment0 = new Segment(100, 20),
 segment1 = new Segment(100, 20);

 segment1.x = canvas.width / 2;
 segment1.y = canvas.height / 2;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = mouse.x – segment1.x,
 dy = mouse.y – segment1.y,
 dist = Math.sqrt(dx * dx + dy * dy),
 a = 100,
 b = 100,
 c = Math.min(dist, a + b),
 B = Math.acos((b * b - a * a - c * c) / (-2 * a * c)),
 C = Math.acos((c * c - a * a - b * b) / (-2 * a * b)),
 D = Math.atan2(dy, dx),
 E = D + B + Math.PI + C;

 segment1.rotation = (D + B);

 var target = segment1.getPin();
 segment0.x = target.x;
 segment0.y = target.y;
 segment0.rotation = E;

 segment0.draw(context);
 segment1.draw(context);
 }());
 };
 </script>
 </body>
</html>

Here’s the procedure for this excercise:

CHAPTER 14

338

 Get the distance from segment1 to the mouse.

 Get the lengths of the three sides. Sides a and b are easy. They're equal to 100, because
that’s how long we made the segments. Side c is equal to dist or a + b, whichever is
smaller. This is because one side of a triangle can’t be longer than the other two sides
added together.

 Figure out angles B and C using the law of cosines formula, and angle D using
Math.atan2. angle E, as mentioned, is D + B + 180 + C. But in code, you substitute
Math.PI radians for 180 degrees.

 Just as the diagram in Figure 14-8 shows, use the angle D + B as segment1’s rotation. Use
the same angle to find the end point of segment1 and position segment0 on it.

 Finally, segment0’s rotation is angle E.

So that's inverse kinematics using the law of cosines. You might notice that the joint always bends
the same way. This might be good if you’re building something like an elbow or a knee that can
bend only one way, but what if you want to bend it the other way?

When you figure out the angles analytically like this, there are two solutions to the problem: It can
bend this way, or it can bend that way. You coded it to bend one way by adding D and B, and then
adding C. If you subtracted them all, you get the same effect, but the segment bends in the other
direction. Here's the modified drawFrame function to see how this looks (document 09-cosines-
2.html):

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = mouse.x – segment1.x,
 dy = mouse.y – segment1.y,
 dist = Math.sqrt(dx * dx + dy * dy),
 a = 100,
 b = 100,
 c = Math.min(dist, a + b),
 B = Math.acos((b * b - a * a - c * c) / (-2 * a * c)),
 C = Math.acos((c * c - a * a - b * b) / (-2 * a * b)),
 D = Math.atan2(dy, dx),
 E = D - B + Math.PI – C;

 segment1.rotation = (D – B);

 var target = segment1.getPin();
 segment0.x = target.x;
 segment0.y = target.y;
 segment0.rotation = E;

 segment0.draw(context);
 segment1.draw(context);
}());

INVERSE KINEMATICS: DRAGGING AND REACHING

339

If you want it to bend either way, you need to figure out some kind of conditional logic to say: “If it’s in this
position, bend this way; otherwise, bend that way.” But these examples should give you plenty to get
started.

Important Formulas in This Chapter
For the standard form of inverse kinematics, you use the law of cosines formula.

Law of Cosines

a2 = b2 + c2 - 2 × b × c × cos A
b2 = a2 + c2 - 2 × a × c × cos B
c2 = a2 + b2 - 2 × a × b × cos C

Law of Cosines in JavaScript

var A = Math.acos((b * b + c * c – a * a) / (2 * b * c)),
 B = Math.acos((a * a + c * c – b * b) / (2 * a * c)),
 C = Math.acos((a * a + b * b – c * c) / (2 * a * b));

Summary
Inverse kinematics is a vast subject—far more than can ever be covered in a single chapter. Even so, this
chapter described some pretty interesting and useful things. You saw how to set up an inverse kinematics
system and two ways of looking at it: dragging and reaching. Hopefully you've seen that there's some fun
stuff you can build with it, and it doesn’t have to be that complex. There’s much more that can be done
with inverse kinematics, and you should be ready to go discover it and put it to use.

In the next chapter, you enter a whole new dimension, which enables you to add some depth to your
animations.

Part IV

3D Animation

343

Chapter 15

3D Basics

What we’ll cover in this chapter:

 The third dimension and perspective

 Velocity and acceleration

 Bouncing

 Gravity

 Wrapping

 Easing and springing

 Coordinate rotation

 Collision detection

Up to now, everything in this book has been in just two (and sometimes only one) dimensions, and you’ve
created some pretty interesting animations. Now, let’s take it to the next level.

Creating graphics in 3D is exciting because the extra dimension seems to make things really come to life.
We move through the basics of programming 3D fairly quickly, and after that, we'll see how the motion
effects discussed in the previous chapters can be done with a third dimension. Specifically, this chapter
covers velocity, acceleration, friction, gravity, bouncing, wrapping, easing, springing, coordinate rotation,
and collision detection.

For now, you are primarily concerned with taking an object and moving it around in 3D space, using
perspective to calculate its size and position on the screen. The object we draw is flat, of course. It won’t

CHAPTER 15

344

have a back, side, top, or bottom that you can see. Over the next couple of chapters, you do some
modeling of points, lines, shapes, and solids in 3D.

It's worth mentioning there is currently, at the time of writing, a 3D specification in development for the
canvas element, called WebGL. However, it is not considered part of the HTML5 specification, and is not
supported across all the major web browsers at this time (and it is not known if it ever will be). WebGL is,
by design, a low-level means to execute code on the computer's graphics card. Although WebGL is a
powerful way to run hardware-accelerated graphics in the browser, it's rather advanced and uses
JavaScript more as a way to tie together other programs, called shaders, which are written in a separate
shader language and are compiled when the browser loads the document. But WebGL could provide the
foundation for the next generation of web-based graphics, on which other, easier to use, libraries and 3D-
engines are built. There are still a number of issues facing its broad adoption by all browsers, but it does
offer a glimpse into the future of graphics and games on the web.

The third dimension and perspective
The main concept behind 3D is the existence of another dimension beyond the x and y axes. This is the
dimension of depth, and it is usually labeled z.

The canvas element does not have a built-in z dimension, but it isn’t too difficult to create one with
JavaScript. And it’s actually less complex than a lot of the stuff you did in the previous chapters!

The z axis
To begin with, you must decide which direction the z-axis will go: in or out. If you recall back to the
description of the canvas coordinate system in Chapter 3, it is in some ways opposite to most other
commonly used coordinate systems. The y axis goes down instead of up, and angles are measured
clockwise instead of counterclockwise.

If an object’s z position increases, is it going away from you or toward you on the z-axis? Neither way is
necessarily more correct than the other. In fact, this subject has been addressed enough times that there
are even names to describe the two methods: left-hand system and right-hand system.

Take either hand, and point the fingers in the direction of the positive x-axis and curl them toward the
positive y-axis. The direction your thumb points, either toward you or away from you, is the direction that
the positive z-axis points for that coordinate system. So, if you take your right-hand, point it away from you
following the positive x-axis, and then curl the fingers to the ground, toward the positive y-axis, your thumb
will point in front of you—the positive z-axis for the right-handed coordinate system. So in code, this means
the z-axis increases as it goes away from the viewer, and decreases as it goes toward the viewer, as
shown in Figure 15-1.

3D BASICS

345

–y

–x +x

+z

–z

+y

Figure 15-1. Right-hand coordinate system

If you try it with your left hand, you get the opposite result—your thumb is pointing behind you. Figure 15-2
shows the left-hand coordinate system.

–y

–x +x

–z

+z

+y

Figure 15-2. Left-hand coordinate system

We use the right-hand coordinate system (refer to Figure 15-1) for the examples here, so as an object's z
position increases, it moves further in front of us. But that is just the preference of this book, there’s no
reason that you couldn’t make a left-hand system.

The next step in creating a third (z) dimension is to figure out how to simulate perspective.

CHAPTER 15

346

Perspective
Perspective is how we determine whether something is closer to us or farther away, or—to put it another
way—how we make something look like it is closer or farther. There are a number of techniques for
presenting perspective, but we concentrate on two here:

 Things get smaller as they get farther away.

 Things converge on a vanishing point as they get farther away.

You’ve probably seen examples of train tracks coming to a point on the horizon to illustrate the vanishing
point. So, when you move something on the z axis, you need to do two things:

 Scale it up or down.

 Move it closer to or farther away from the vanishing point.

When working with only two dimensions, you can get away with using the screen x and y coordinates for
your object’s x and y position—you just do a one-to-one mapping. But this won't work in 3D, because two
objects can have the same x and y position, and yet, due to their depth, have a different position on the
screen. Each object you move in 3D should have its own x, y, and z coordinates that have nothing to do
with the screen position, these coordinates describe the object's position in virtual space. The perspective
calculation tells you where to put the object on the screen.

The perspective formula

The idea is that as something moves farther away (z increases), its scale approaches 0 and its x, y
position converges on the 0, 0 of the vanishing point. Because the ratio of distance to scale is the same as
the ratio of distance to convergence, you need to figure out what that ratio is for a given distance and use it
in both places. The diagram in Figure 15-3 helps to explain this concept.

Picture plane

Viewpoint

Object

z
fl

Figure 15-3. Perspective seen from the side

Here, you have an object off in the distance, a viewpoint we look from (the camera), and a picture plane,
which we look through to see the scene. You have the distance of the object to the picture plane, which is
the z value, and, you have the distance from the viewpoint to the picture plane. This last one is similar to
the focal length of a camera lens, so we use the variable fl to represent it. A long focal length can be
compared to a telephoto lens on a camera, with a narrow view that compresses the distance between

3D BASICS

347

objects. A short focal length is like a wide-angle lens, where you see a lot of the scene, but with a lot of
distortion. A medium focal length approximates what the human eye sees, and uses a value for fl that's
between 200 and 300. Here’s the perspective formula:

scale = fl / (fl + z)

This usually yields a number between 0.0 and 1.0, which is your ratio for scaling and converging on the
vanishing point. However, as z approaches -fl, (fl + z) approaches 0 and scale approaches infinity.
This is the coding equivalent to being poked in the eye.

What do you do with this scale value? Well, you can adjust the scale of the canvas context before drawing
the object. For example, in the Ball class we've used throughout the book, there are scaleX and scaleY
properties that are referenced in its draw method, like so:

context.scale(this.scaleX, this.scaleY);

Once the scale as been determined, you multiply the object’s x and y position by this factor to find its
screen x and y position.

Let’s look at an example where we use 250 as the focal length. If z is zero—in other words, the object is
exactly on the picture plane—then the scale will be 250 / (250 + 0). This comes out to exactly 1.0. That’s
your scaleX and scaleY (remember that for scale, 1.0 means 100%). Multiplying 1.0 by the object’s x and
y positions gives the same numbers back as a result, so the object’s screen position is exactly equal to its
x and y.

Now move it out so that z is 250. That makes the scale equal to 250 / (250 + 250), or 0.5 for scaleX and
scaleY. It also moves the object’s screen position. If the object were at 200, 300 on the x and y axis, its
screen position would now be 100, 150—it has moved halfway to the vanishing point. (Actually, the screen
position would be in relation to the vanishing point, which you see shortly.)

Move z out to 9750. This makes the scale equal to 250/10000, or 0.025 for scaleX and scaleY. The
object becomes just a speck that is close to the vanishing point.

Now we see how to write all of this in code.

Programming perspective

We use the Ball class again for these examples, and for interaction, let’s get fancy and use the mouse
and keyboard. The mouse controls the ball’s x and y position, and the up and down keys on the keyboard
move the ball forward and back on the z-axis. The variables xpos, ypos, and zpos are used to represent
the 3D position. Here’s the code for example 01-perspective-1.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Perspective 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>

CHAPTER 15

348

 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 ball = new Ball(),
 xpos = 0,
 ypos = 0,
 zpos = 0,
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2;

 window.addEventListener('keydown', function (event) {
 if (event.keyCode === 38) { //up
 zpos += 5;
 } else if (event.keyCode === 40) { //down
 zpos -= 5;
 }
 }, false);

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var scale = fl / (fl + zpos);
 xpos = mouse.x - vpX;
 ypos = mouse.y - vpY;
 ball.scaleX = ball.scaleY = scale;
 ball.x = vpX + xpos * scale;
 ball.y = vpY + ypos * scale;

 ball.draw(context);
 }());
 };
 </script>
 </body>
</html>

First, you create variables for xpos, ypos, and zpos, as well as fl. Then you create a vanishing point,
vpX, vpY. Remember, as objects move off in the distance, they converge on 0, 0. If you don’t offset this
somehow, everything converges at the top-left corner of the screen, which is not what you want. You use
vpX, vpY to make the center of the canvas element the vanishing point.

Next, add a listener for the keydown event that changes the zpos variable. If the up key is pressed, zpos
increases, and pressing the down key decreases it. This makes the ball move farther from, or closer to, the
viewer.

In the drawFrame animation loop, set xpos and ypos to the mouse position, as offset by the vanishing
point. In other words, if the mouse is 200 pixels right of center, xpos is 200. If it’s 200 pixels left of center,
xpos is –200.

3D BASICS

349

Calculate scale using the perspective formula we just covered, and size and position the ball accordingly.
The x and y positions of the ball on the canvas element are calculated from the vanishing point, adding on
the xpos and ypos times the scale. Thus, as scale becomes small, the ball converges on the vanishing
point.

When this example is run in your browser, at first it looks like you’re simply dragging the ball with the
mouse. This is because zpos is zero, making scale 1.0. So, no noticeable perspective is applied. As you
press the up cursor key, the ball appears to slide into the distance, as shown in Figure 15-4. Now as you
move the mouse around, the ball moves with it, but much less, giving you a parallax effect. If you want to
set up a scene to use parallax, hard-code the z value for each layer, rather than calculating it dynamically.

Figure 15-4. Perspective in action

You might notice that if you keep pressing the down key, the ball gets very large. This is expected—if you
hold a pebble close to your eye, it looks like a boulder. However, if you continue to press the down key,
you see that the ball grows to an infinite size and then shrinks down again. (It’s actually upside down and
reversed, but it's difficult to tell that from a circle.) This is the ball going behind the viewpoint.

Mathematically, what happens is that when zpos is equal to -fl, the formula scale = fl / (fl +
zpos) becomes scale = fl / 0. In many languages, dividing by zero gives you an error. In JavaScript,
it gives you Infinity. As you decrease zpos even more, you divide fl by a negative number. scale
becomes negative, which when applied to the canvas context, has the effect of flipping the image
coordinate system, so your ball looks upside down and backward.

A simple way to handle this is to make the ball invisible if it goes past a certain point. If zpos is less than or
equal to -fl, you have a problem, so you can test for that condition and handle it. Here's the updated
drawFrame function in document 02-perspective-2.html (the rest of the script is the same as the
previous example):

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 if (zpos > -fl) {
 var scale = fl / (fl + zpos);
 xpos = mouse.x – vpX;
 ypos = mouse.y – vpY;
 ball.scaleX = ball.scaleY = scale;
 ball.x = vpX + xpos * scale;
 ball.y = vpY + ypos * scale;
 ball.visible = true;

CHAPTER 15

350

 } else {
 ball.visible = false;
 }

 if (ball.visible) {
 ball.draw(context);
 }
}());

If the ball is not in front of us, there's no need to scale and position it. And if the ball isn't visible, there is no
need to draw it to the canvas.

Well, there you have it, the bare-bones basics of 3D. Not so painful, is it? Make sure you play around with
this example and get a good feel for it. In particular, change the value of fl and see how it affects how the
scene is rendered. This is the equivalent of changing the lens on a camera.

The rest of the chapter is devoted to programming the various motion effects covered in previous chapters,
but now in 3D.

Velocity and acceleration
Accomplishing velocity and acceleration in 3D is surprisingly easy. For 2D, you have vx and vy variables
to represent velocity on two axes. Now you just need to add the vz variable for the third dimension.
Similarly, if you have something such as ax and ay for acceleration, you add az.

You can modify the last exercise to make it work sort of like the earlier spaceship examples, but in 3D. It's
all keyboard-controlled now, with the cursor keys providing the thrust on the x and y axes, and the Shift
and Control keys used for z thrust. Here’s the code for document 03-velocity-3d.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Velocity 3D</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 xpos = 0,
 ypos = 0,
 zpos = 0,
 vx = 0,
 vy = 0,
 vz = 0,

3D BASICS

351

 friction = 0.98,
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2;

 window.addEventListener('keydown', function (event) {
 switch (event.keyCode) {
 case 38: //up
 vy -= 1;
 break;
 case 40: //down
 vy += 1;
 break;
 case 37: //left
 vx -= 1;
 break;
 case 39: //right
 vx += 1;
 break;
 case 16: //shift
 vz += 1;
 break;
 case 17: //control
 vz -= 1;
 break;
 }
 }, false);

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 xpos += vx;
 ypos += vy;
 zpos += vz;
 vx *= friction;
 vy *= friction;
 vz *= friction;

 if (zpos > -fl) {
 var scale = fl / (fl + zpos);
 ball.scaleX = ball.scaleY = scale;
 ball.x = vpX + xpos * scale;
 ball.y = vpY + ypos * scale;
 ball.visible = true;
 } else {
 ball.visible = false;
 }

 if (ball.visible) {
 ball.draw(context);
 }
 }());

CHAPTER 15

352

 };
 </script>
 </body>
</html>

All we did here is add variables for velocity on each axis and some friction. When one of the six keys is
pressed, it adds or subtracts from the appropriate velocity (remember that acceleration changes velocity).
Then it adds the velocity to the position on each axis and computes friction.

Now you have a 3D object moving with acceleration, velocity, and friction. And done quite easily.

Bouncing
For the purposes of this section, we bounce a ball off a flat surface—in other words, one that aligns
perfectly with the x, y, or z axis. This is analogous to bouncing off the sides of our canvas element you did
in 2D.

Single object bouncing
When bouncing in 3D, again you detect when the object has gone past a boundary, adjust it to touch that
boundary, and then reverse its velocity on the appropriate axis. One of the differences with 3D is in how
you decide where the boundaries are. In 2D, you generally use the canvas element or some other visible
rectangular area. In 3D, things aren’t quite so simple because there is no real concept of a visible edge—
unless you draw one. You will draw in 3D in the next chapter, so for now, bounce your objects off arbitrarily
placed, invisible walls.

The boundaries are set up as before, but now you position them in 3D space, which means that they can
be negative as well as positive. And a boundary can be set up on the z-axis. For the next example, our
boundaries look like this:

var top = -100,
 bottom = 100,
 left = -100,
 right = 100,
 front = -100,
 back = 100;

After determining the object’s new position, check it against all six boundaries. Remember that you take
half of the object’s width into account when checking for the collision, and that you already stored that
value in a property of the Ball class called radius. Here’s the full code listing for 3D bouncing (document
04-bounce-3d.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Bounce 3d</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>

3D BASICS

353

 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 xpos = 0,
 ypos = 0,
 zpos = 0,
 vx = Math.random() * 10 – 5,
 vy = Math.random() * 10 – 5,
 vz = Math.random() * 10 – 5,
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2,
 top = -100,
 bottom = 100,
 left = -100,
 right = 100,
 front = -100,
 back = 100;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 xpos += vx;
 ypos += vy;
 zpos += vz;

 //check boundaries
 if (xpos + ball.radius > right) {
 xpos = right – ball.radius;
 vx *= -1;
 } else if (xpos - ball.radius < left) {
 xpos = left + ball.radius;
 vx *= -1;
 }
 if (ypos + ball.radius > bottom) {
 ypos = bottom – ball.radius;
 vy *= -1;
 } else if (ypos - ball.radius < top) {
 ypos = top + ball.radius;
 vy *= -1;
 }
 if (zpos + ball.radius > back) {
 zpos = back – ball.radius;
 vz *= -1;
 } else if (zpos - ball.radius < front) {
 zpos = front + ball.radius;
 vz *= -1;

CHAPTER 15

354

 }

 if (zpos > -fl) {
 var scale = fl / (fl + zpos);
 ball.scaleX = ball.scaleY = scale;
 ball.x = vpX + xpos * scale;
 ball.y = vpY + ypos * scale;
 ball.visible = true;
 } else {
 ball.visible = false;
 }

 if (ball.visible) {
 ball.draw(context);
 }
 }());
 };
 </script>
 </body>
</html>

All of the key-handling code has been removed from the previous example, and the ball has been given a
random velocity on each axis. Now you can see the ball is definitely bouncing around, but you can’t really
tell what it is bouncing against—remember that these are arbitrarily placed invisible boundaries.

Multiple object bouncing
One thing you can do to visualize the walls a little better is to fill up the space with more objects. To do
this, we need multiple instances of the Ball class. But then each instance needs its own xpos, ypos,
zpos, and velocities on each axis as well. It can get messy keeping track of all of that in the main code, so
we'll create a new class, Ball3d, to keep track of the values for us. Save the following script to the file
ball3d.js and we'll import it into the next examples:

function Ball3d (radius, color) {
 if (radius === undefined) { radius = 40; }
 if (color === undefined) { color = "#ff0000"; }
 this.x = 0;
 this.y = 0;
 this.xpos = 0;
 this.ypos = 0;
 this.zpos = 0;
 this.vx = 0;
 this.vy = 0;
 this.vz = 0;
 this.radius = radius;
 this.mass = 1;
 this.rotation = 0;
 this.scaleX = 1;
 this.scaleY = 1;
 this.color = utils.parseColor(color);
 this.lineWidth = 1;
 this.visible = true;

3D BASICS

355

}

Ball3d.prototype.draw = function (context) {
 context.save();
 context.translate(this.x, this.y);
 context.rotate(this.rotation);
 context.scale(this.scaleX, this.scaleY);
 context.lineWidth = this.lineWidth;
 context.fillStyle = this.color;
 context.beginPath();
 context.arc(0, 0, this.radius, 0, (Math.PI * 2), true);
 context.closePath();
 context.fill();
 if (this.lineWidth > 0) {
 context.stroke();
 }
 context.restore();
};

As you can see, all this does is add properties for position and velocity on each axis to our ball. In 05-
multi-bounce-3d.html, we created 50 instances of this new class. Each one now has its own values for
xpos, ypos, and zpos, and vx, vy, vz. The drawFrame animation loop now iterates twice over each
Ball3d object, passing it to the move and draw functions. This code does the same thing to each ball that
the previous example did to just one. Here’s the example 05-multi-bounce-3d.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Multi Bounce 3d</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball3d.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 balls = [],
 numBalls = 50,
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2,
 top = -100,
 bottom = 100,
 left = -100,
 right = 100,
 front = -100,
 back = 100;

 for (var ball, i = 0; i < numBalls; i++) {

CHAPTER 15

356

 ball = new Ball3d(15);
 ball.vx = Math.random() * 10 – 5;
 ball.vy = Math.random() * 10 – 5;
 ball.vz = Math.random() * 10 – 5;
 balls.push(ball);
 }

 function move (ball) {
 ball.xpos += ball.vx;
 ball.ypos += ball.vy;
 ball.zpos += ball.vz;

 //check boundaries
 if (ball.xpos + ball.radius > right) {
 ball.xpos = right – ball.radius;
 ball.vx *= -1;
 } else if (ball.xpos - ball.radius < left) {
 ball.xpos = left + ball.radius;
 ball.vx *= -1;
 }
 if (ball.ypos + ball.radius > bottom) {
 ball.ypos = bottom – ball.radius;
 ball.vy *= -1;
 } else if (ball.ypos - ball.radius < top) {
 ball.ypos = top + ball.radius;
 ball.vy *= -1;
 }
 if (ball.zpos + ball.radius > back) {
 ball.zpos = back – ball.radius;
 ball.vz *= -1;
 } else if (ball.zpos - ball.radius < front) {
 ball.zpos = front + ball.radius;
 ball.vz *= -1;
 }

 if (ball.zpos > -fl) {
 var scale = fl / (fl + ball.zpos);
 ball.scaleX = ball.scaleY = scale;
 ball.x = vpX + ball.xpos * scale;
 ball.y = vpY + ball.ypos * scale;
 ball.visible = true;
 } else {
 ball.visible = false;
 }
 }

 function draw (ball) {
 if (ball.visible) {
 ball.draw(context);
 }
 }

 (function drawFrame () {

3D BASICS

357

 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 balls.forEach(move);
 balls.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

When you run this script, you'll see the balls fill up the space between the six boundaries, as shown in
Figure 15-5, and you can get an idea of the shape of this space.

Figure 15-5. Bouncing 3D balls

Z-sorting
Now, this addition of multiple objects brings up an issue lacking in the code you have so far—something
called z-sorting. Z-sorting is how objects are sorted on the z-axis, or which one goes in front of another
one. If you look closely at the ball outlines, you can see which ball is on top of which. This pretty much
ruins the whole 3D effect, because smaller objects are now appearing in front of larger ones. But we can
fix the order the balls are drawn to the canvas element by applying z-sorting.

Our code draws the balls in the order they are positioned in the balls array. In the prior example, that
order is determined when the balls are first initialized and added to the array. So if we want to draw the
balls according to their position on the z-index, we need to reorder them accordingly. To reorder an array
in JavaScript, we need to define a function to sort it.

JavaScript arrays have a sort method that is defined as Array.sort([compareFunction]). The
method has an optional function parameter that defines the sort order by comparing each element. If this
argument omitted, the array is sorted alphabetically by the element names.

CHAPTER 15

358

The compareFunction parameter is a function that in turn takes two arguments, and these are the array
elements that are compared as it iterates over the entire collection. How the array is ordered is determined
by the numeric return value of the compareFunction when passed successive elements using the
following rules:

Let n = compareFunction(a, b),

 If n is less than 0, sort element a to a lower index than element b.

 If n returns 0, leave element a and element b unchanged.

 If n is greater than 0, sort element b to a lower index than element a.

For example, to sort an array of numbers in ascending order:

var arr = [3, 5, 1, 4, 2];
arr.sort(function (a, b) { return (a - b); });

console.log(arr); //prints [1, 2, 3, 4, 5]

In terms of 3D depth ordering, index 0 is the bottom, and any objects with a higher number appear in front
of objects with a lower number. You want to sort the array of objects from the highest depth (farthest away)
to lowest (closest). The following code defines our sort function, and then orders the balls array:

function zSort (a, b) {
 return (b.zpos – a.zpos);
}

balls.sort(zSort);

This sorts the array based on the zpos property of each object, in reverse numerical order—in other
words, from high to low. The result is that the ball that is farthest away (highest zpos value) is first in the
array and therefore drawn first to the canvas element. The closest ball is the last element in the array and
drawn on top of every other ball.

Once you add this function to previous example, you need to call it before you draw the balls:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 balls.forEach(move);
 balls.sort(zSort);
 balls.forEach(draw);
}());

The rest of the code remains the same as the previous exercise. The full listing can be found in document
06-z-sort.html.

3D BASICS

359

Gravity
In this section, we look at simple gravity as seen from the earth’s surface, and as described in Chapter 5.
In this case, gravity works pretty much the same in 3D as it does in 2D. Choose a number for the force
gravity that is exerting on the object, and add that number to the object’s y velocity on each animation
frame.

Gravity in 3D may be simple, but something simple can create a great looking effect. In this example, we
combine gravity with bouncing to give the appearance of dumping a bucket of tiny rubber bouncy balls
onto the floor.

You need an object to represent a single rubber bouncy ball, so we again use the Ball3d class, but with a
smaller radius. Make each ball a random color, and it also helps to change the background color to black.
Here's the code for exercise, 07-bouncy-balls.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Fireworks</title>
 <link rel="stylesheet" href="style.css">
 <style>
 #canvas {
 background-color: #000000;
 }
 </style>
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball3d.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 balls = [],
 numBalls = 100,
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2,
 gravity = 0.2,
 floor = 200,
 bounce = -0.6;

 for (var ball, i = 0; i < numBalls; i++) {
 ball = new Ball3d(3, Math.random() * 0xffffff);
 ball.ypos = -100;
 ball.vx = Math.random() * 6 – 3;
 ball.vy = Math.random() * 6 – 3;
 ball.vz = Math.random() * 6 – 3;
 balls.push(ball);
 }

CHAPTER 15

360

 function move (ball) {
 ball.vy += gravity;
 ball.xpos += ball.vx;
 ball.ypos += ball.vy;
 ball.zpos += ball.vz;

 if (ball.ypos > floor) {
 ball.ypos = floor;
 ball.vy *= bounce;
 }

 if (ball.zpos > -fl) {
 var scale = fl / (fl + ball.zpos);
 ball.scaleX = ball.scaleY = scale;
 ball.x = vpX + ball.xpos * scale;
 ball.y = vpY + ball.ypos * scale;
 ball.visible = true;
 } else {
 ball.visible = false;
 }
 }

 function zSort (a, b) {
 return (b.zpos – a.zpos);
 }

 function draw (ball) {
 if (ball.visible) {
 ball.draw(context);
 }
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 balls.forEach(move);
 balls.sort(zSort);
 balls.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

Here, we add a few properties: gravity, bounce, and floor. The first two you should know by now, and
the floor property is just that—the bottom-most y value that the balls can hit before they bounce.

Other than the one line that adds gravity to each ball’s vy property, and the bouncing when each one hits
the floor, there’s not a lot going on here that we haven’t covered, but things are starting to look pretty nice.

The result looks something like Figure 15-6.

3D BASICS

361

Figure 15-6. A bunch of rubber bouncy balls! (Trust me, it looks much better in motion.)

Wrapping
Recall in Chapter 6, we discussed three possible reactions when an object hits a boundary. We just
covered bouncing, and there was also wrapping and regeneration. For 3D, wrapping can be useful, but
primarily on the z axis.

In 2D wrapping, you check whether the object went off the screen on the x or y axis. This works pretty well,
because when the object goes beyond one of those boundaries, you can’t see it anymore, so you can
easily reposition it without jarring the viewer’s attention. You don’t have that luxury in 3D.

In 3D wrapping, there are only two points where it’s safe to remove and reposition an object. One is when
the object has gone behind the viewpoint. The previous examples test for this and make the object
invisible in such a case. The other is when the object is so far in the distance and shrunk to such a small
size that it’s practically invisible. This means that you can safely wrap on the z axis. When something goes
behind you, you toss it way out in front of you, and let it come at you again. Or, if something has gone so
far out that you can barely see it, remove it and replace it behind you. If you want, you can try wrapping on
the x or y axis as well, but in most cases, you’re going to wind up with an unnatural popping in and out of
existence effect.

It's worth mentioning, if an object has moved too far out of sight on the x or y axis, you can always
reposition it along the z-axis. This is not really screen wrapping, but can be an effective way to reuse
objects.

But z-axis wrapping can be useful, especially in 3D racing type games, and we'll create a basic setup here.
The idea is to place various 3D objects in front of the viewpoint, then, you move those objects toward the
viewpoint. In other words, you give them some negative z velocity. Depending on how you set it up, this
can either look like a lot of objects coming toward you, or it can trick the eye to look like you’re moving

CHAPTER 15

362

toward the objects. Once an object has gone behind the viewpoint, replace it way out in the distance. That
way there is a never-ending supply of objects to move past.

The objects we use in the next example are simple, stylized trees with randomized branch positions. This
is the Tree class, which has the 3D position properties and draws a somewhat random stick figure tree.
This code will be file tree.js:

function Tree () {
 this.x = 0;
 this.y = 0;
 this.xpos = 0;
 this.ypos = 0;
 this.zpos = 0;
 this.scaleX = 1;
 this.scaleY = 1;
 this.color = "#ffffff";
 this.alpha = 1;
 this.lineWidth = 1;
 this.branch = [];

 //generate some random branch positions
 this.branch[0] = -140 - Math.random() * 20;
 this.branch[1] = -30 - Math.random() * 30;
 this.branch[2] = Math.random() * 80 – 40;
 this.branch[3] = -100 - Math.random() * 40;
 this.branch[4] = -60 - Math.random() * 40;
 this.branch[5] = Math.random() * 60 – 30;
 this.branch[6] = -110 - Math.random() * 20;
}

Tree.prototype.draw = function (context) {
 context.save();
 context.translate(this.x, this.y);
 context.scale(this.scaleX, this.scaleY);
 context.lineWidth = this.lineWidth;
 context.strokeStyle = utils.colorToRGB(this.color, this.alpha);
 context.beginPath();
 context.moveTo(0, 0);
 context.lineTo(0, this.branch[0]);
 context.moveTo(0, this.branch[1]);
 context.lineTo(this.branch[2], this.branch[3]);
 context.moveTo(0, this.branch[4]);
 context.lineTo(this.branch[5], this.branch[6]);
 context.stroke();
 context.restore();
};

Again, for this example, we use a white on a black background color. The script creates several trees, and
they are spread out randomly on the x-axis, 1,000 pixels in either direction. They are also spread out on
the z-axis, from 0 to 10,000. They all have the same y position though, based on the floor property,
which gives the impression of a ground plane.

The following code is for excercise 08-trees-1.html, and you can see what it looks like in Figure 15-7.

3D BASICS

363

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Trees 1</title>
 <link rel="stylesheet" href="style.css">
 <style>
 #canvas {
 background-color: #000000;
 }
 </style>
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="tree.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 trees = [],
 numTrees = 100,
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2,
 floor = 200,
 vz = 0,
 friction = 0.98;

 for (var tree, i = 0; i < numTrees; i++) {
 tree = new Tree();
 tree.xpos = Math.random() * 2000 – 1000;
 tree.ypos = floor;
 tree.zpos = Math.random() * 10000;
 trees.push(tree);
 }

 window.addEventListener('keydown', function (event) {
 if (event.keyCode === 38) { //up
 vz -= 1;
 } else if (event.keyCode === 40) { //down
 vz += 1;
 }
 }, false);

 function move (tree) {
 tree.zpos += vz;
 if (tree.zpos < -fl) {
 tree.zpos += 10000;
 }
 if (tree.zpos > 10000 - fl) {
 tree.zpos -= 10000;
 }

v

CHAPTER 15

364

 var scale = fl / (fl + tree.zpos);
 tree.scaleX = tree.scaleY = scale;
 tree.x = vpX + tree.xpos * scale;
 tree.y = vpY + tree.ypos * scale;
 tree.alpha = scale;
 }

 function zSort (a, b) {
 return (b.zpos – a.zpos);
 }

 function draw (tree) {
 tree.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 trees.forEach(move);
 vz *= friction;
 trees.sort(zSort);
 trees.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

There is only a single variable for z velocity, because the trees won’t move on the x or y axis, and all move
in unison on the z-axis. We attached a keydown event listener to the document, which increments or
decrements vz accordingly. Applying a little friction in the drawFrame function keeps the speed from
increasing infinitely, and slows you down if no key is pressed.

The code then loops through each tree, updating its z position with the current z velocity. Then it checks
whether a tree has gone behind you. If so, rather than making it invisible, it moves the tree 10,000 pixels
into the z axis. Likewise, if it has gone past 10,000 - fl, it moves the tree back 10,000.

You then do the standard perspective actions. Here, we also add another little extra to enhance the illusion
of depth:

tree.alpha = scale;

This sets the transparency of the tree in relation to its depth on the z-axis. The farther away it goes, the
more it fades out. This is atmospheric perspective, simulating the effect of the atmosphere between the
viewer and the object. This is particularly effective when you have objects moving way out in the distance,
as in this example. The effect is applied to the canvas context within the tree's draw method:

context.strokeStyle = utils.colorToRGB(this.color, this.alpha);

This specific calculation for transparency gives the effect of a dark, spooky night. You might want to try
something like the following:

3D BASICS

365

tree.alpha = scale * 0.7 + 0.3;

This gives the trees an opacity of at least 30%—not quite so foggy. There are no right or wrong values for
most of this, just different values that create different effects.

We left the z-sorting method in there, though, in this particular case, it doesn’t make much of a visual
difference because the trees are just simple lines of the same color. If you draw more complex,
overlapping objects, it is pretty important.

Figure 15-7. Watch out for the trees!

Let's add a few enhancements beyond the scope of screen wrapping, just to give you an idea of where this
can go. Here is the result (which can also be found in 09-trees-2.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Trees 2</title>
 <link rel="stylesheet" href="style.css">
 <style>
 #canvas {
 background-color: #000000;
 }
 </style>
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="tree.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

CHAPTER 15

366

 trees = [],
 numTrees = 100,
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2,
 floor = 50,
 ax = 0,
 ay = 0,
 az = 0,
 vx = 0,
 vy = 0,
 vz = 0,
 gravity = 0.3,
 friction = 0.95;

 for (var tree, i = 0; i < numTrees; i++) {
 tree = new Tree();
 tree.xpos = Math.random() * 2000 – 1000;
 tree.ypos = floor;
 tree.zpos = Math.random() * 10000;
 trees.push(tree);
 }

 window.addEventListener('keydown', function (event) {
 switch (event.keyCode) {
 case 38: //up
 az = -1;
 break;
 case 40: //down
 az = 1;
 break;
 case 37: //left
 ax = 1;
 break;
 case 39: //right
 ax = -1;
 break;
 case 32: //space
 ay = 1;
 break;
 }
 }, false);

 window.addEventListener('keyup', function (event) {
 switch (event.keyCode) {
 case 38: //up
 case 40: //down
 az = 0;
 break;
 case 37: //left
 case 39: //right
 ax = 0;
 break;

3D BASICS

367

 case 32: //space
 ay = 0;
 break;
 }
 }, false);

 function move (tree) {
 tree.xpos += vx;
 tree.ypos += vy;
 tree.zpos += vz;
 if (tree.ypos < floor) {
 tree.ypos = floor;
 }
 if (tree.zpos < -fl) {
 tree.zpos += 10000;
 }
 if (tree.zpos > 10000 - fl) {
 tree.zpos -= 10000;
 }
 var scale = fl / (fl + tree.zpos);
 tree.scaleX = tree.scaleY = scale;
 tree.x = vpX + tree.xpos * scale;
 tree.y = vpY + tree.ypos * scale;
 tree.alpha = scale;
 }

 function zSort (a, b) {
 return (b.zpos – a.zpos);
 }

 function draw (tree) {
 tree.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 vx += ax;
 vy += ay;
 vz += az;
 vy -= gravity;
 trees.forEach(move);
 vx *= friction;
 vy *= friction;
 vz *= friction;
 trees.sort(zSort);
 trees.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

CHAPTER 15

368

Here, we add velocity for the x and y axis, as well as some gravity. We also do some fancy footwork to
detect multiple key presses by attaching a keydown and keyup event listener. When the key is pressed,
we set the acceleration on the appropriate axis to 1 or –1;then when that key is released, we set the
acceleration back to 0. The acceleration for each axis gets added to the velocity on that axis in the
drawFrame animation loop. The left and right cursor keys were obvious choices for the x velocity, and we
use the spacebar for y. One interesting point is that we are subtracting gravity from vy. This is because we
want it to seem like the viewer is the one who is falling down to where the trees are, as shown in Figure
15-8. Really, the trees are “falling up” to where the viewpoint is, but it winds up looking the same. The y
position of the trees is limited to 50, which makes it look like you landed on the ground.

Figure 15-8. Look, I’m flying!

There is nothing to limit movement on the x-axis, which means you can go off to the side of the forest if
you want. As an additional exercise, it wouldn't be too hard for you to set up some side boundaries.

Easing and springing
Easing and springing are also not much more complex in 3D than they are in 2D (the subject of Chapter
8). Just add another variable or two for the z-axis, and you’re all set.

Easing
There’s not a lot to cover on easing. In 2D, you have tx and ty as a target point. You just add tz for the z-
axis. On each animation frame, you measure the distance from the object to the target on each axis, and
move it a fraction of the way there.

Let’s look at a simple example that eases an instance of Ball3d to a random target in 3D space. When
the ball arrives at the coordinate, it picks another target and moves there. Here’s the code (document 10-
easing-3d.html):

3D BASICS

369

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Easing 3d</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball3d.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball3d(),
 tx = Math.random() * 500 – 250,
 ty = Math.random() * 500 – 250,
 tz = Math.random() * 500,
 easing = 0.1,
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = tx – ball.xpos,
 dy = ty – ball.ypos,
 dz = tz – ball.zpos,
 dist = Math.sqrt(dx * dx + dy * dy + dz * dz);

 ball.xpos += dx * easing;
 ball.ypos += dy * easing;
 ball.zpos += dz * easing;

 if (dist < 1) {
 tx = Math.random() * 500 – 250;
 ty = Math.random() * 500 – 250;
 tz = Math.random() * 500;
 }

 if (ball.zpos > -fl) {
 var scale = fl / (fl + ball.zpos);
 ball.scaleX = ball.scaleY = scale;
 ball.x = vpX + ball.xpos * scale;
 ball.y = vpY + ball.ypos * scale;
 ball.visible = true;
 } else {
 ball.visible = false;
 }

CHAPTER 15

370

 if (ball.visible) {
 ball.draw(context);
 }
 }());
 };
 </script>
 </body>
</html>

The most interesting part of this code is calculating the 3D distance:

var dist = Math.sqrt(dx * dx + dy * dy + dz * dz);

If you remember, in 2D, you measure the distance between two points by the following equation:

var dist = Math.sqrt(dx * dx + dy * dy);

To move into 3D distances, just add the square of the distance on the third axis. It's pretty simple.

Springing
Springing, a close cousin to easing, requires a similar adjustment for 3D. You use the distance to the
target to change the velocity, rather than the position. In this example, 11-spring-3d.html, clicking the
mouse creates a new random target for the ball to spring to:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Spring 3d</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball3d.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball3d(),
 tx = Math.random() * 500 – 250,
 ty = Math.random() * 500 – 250,
 tz = Math.random() * 500,
 spring = 0.1,
 friction = 0.94,
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2;

 window.addEventListener('mousedown', function () {
 tx = Math.random() * 500 – 250;
 ty = Math.random() * 500 – 250;

3D BASICS

371

 tz = Math.random() * 500;
 }, false);

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var dx = tx – ball.xpos,
 dy = ty – ball.ypos,
 dz = tz – ball.zpos;

 ball.vx += dx * spring;
 ball.vy += dy * spring;
 ball.vz += dz * spring;
 ball.xpos += ball.vx;
 ball.ypos += ball.vy;
 ball.zpos += ball.vz;
 ball.vx *= friction;
 ball.vy *= friction;
 ball.vz *= friction;

 if (ball.zpos > -fl) {
 var scale = fl / (fl + ball.zpos);
 ball.scaleX = ball.scaleY = scale;
 ball.x = vpX + ball.xpos * scale;
 ball.y = vpY + ball.ypos * scale;
 ball.visible = true;
 } else {
 ball.visible = false;
 }

 if (ball.visible) {
 ball.draw(context);
 }
 }());
 };
 </script>
 </body>
</html>

This code uses the basic spring formula from Chapter 8, but with a third axis.

Coordinate rotation
Next up is coordinate rotation in 3D. This gets a bit more complex than 2D, which you saw in Chapters 10
and 11. Not only can you choose between three different axes to rotate on, you can even rotate on more
than one of them at once.

In 2D coordinate rotation, the points rotate around the z-axis, as shown in Figure 15-9. Think of a spinning
windmill with an axle through the center. The axle is the z-axis. Only the x and y coordinates change.

CHAPTER 15

372

z axis

Figure 15-9. Rotation on the z axis

In 3D, you can also rotate on the x or y axis. An x-axis rotation looks like a car tire rolling toward you, as
shown in Figure 15-10, with the axle as the x-axis. Points rotate around that and change their y and z
positions.

x axis

Figure 15-10. Rotation on the x axis

For y-axis rotation, imagine a record player, something like Figure 15-11. The spindle is the y-axis, and the
points move on the x and z axes.

3D BASICS

373

y axis

Figure 15-11. Rotation on the y axis

Thus, for 3D, when you rotate an object on one axis, its position changes on the other two axes.

In Chapter 10, we calculated 2D coordinate rotation using the formula:

x1 = x * cos(angle) – y * sin(angle)
y1 = y * cos(angle) + x * sin(angle)

In 3D, you do basically the same thing, but you need to specify which angle you’re talking about: x, y, or z.
Thus, you get the following three formulas:

x1 = x * cos(angleZ) – y * sin(angleZ)
y1 = y * cos(angleZ) + x * sin(angleZ)

x1 = x * cos(angleY) – z * sin(angleY)
z1 = z * cos(angleY) + x * sin(angleY)

y1 = y * cos(angleX) – z * sin(angleX)
z1 = z * cos(angleX) + y * sin(angleX)

We'll perform a y-axis rotation in the next example, 12-rotate-y.html. It creates 50 instances of Ball3d
and randomly positions them. Then, it gets a y angle based on the mouse’s x position. The farther right the
mouse goes, the higher the number for the angle. This makes the objects seem to follow the mouse in
their rotation.

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Rotate Y</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball3d.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),

CHAPTER 15

374

 mouse = utils.captureMouse(canvas),
 balls = [],
 numBalls = 50,
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2,
 angleY; //referenced in drawFrame and move

 for (var ball, i = 0; i < numBalls; i++) {
 ball = new Ball3d(15);
 ball.xpos = Math.random() * 200 – 100;
 ball.ypos = Math.random() * 200 – 100;
 ball.zpos = Math.random() * 200 – 100;
 balls.push(ball);
 }

 function rotateY (ball, angle) {
 var cos = Math.cos(angle),
 sin = Math.sin(angle),
 x1 = ball.xpos * cos - ball.zpos * sin,
 z1 = ball.zpos * cos + ball.xpos * sin;

 ball.xpos = x1;
 ball.zpos = z1;

 if (ball.zpos > -fl) {
 var scale = fl / (fl + ball.zpos);
 ball.scaleX = ball.scaleY = scale;
 ball.x = vpX + ball.xpos * scale;
 ball.y = vpY + ball.ypos * scale;
 ball.visible = true;
 } else {
 ball.visible = false;
 }
 }

 function move (ball) {
 rotateY(ball, angleY);
 }

 function zSort (a, b) {
 return (b.zpos – a.zpos);
 }

 function draw (ball) {
 if (ball.visible) {
 ball.draw(context);
 }
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

3D BASICS

375

 angleY = (mouse.x - vpX) * 0.001;

 balls.forEach(move);
 balls.sort(zSort);
 balls.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

The important parts are in bold. You get an angle, and pass it and each ball to the rotateY function.
Inside this function, you get the sine and cosine of the angle, calculate the rotation, and assign x1 and z1
back to the ball's xpos and zpos properties. After that, it’s just standard perspective and z-sorting. Figure
15-12 shows the result.

Figure 15-12. Rotation on the y-axis

After you try that, you can switch the example over to an x-axis rotation. Add a new angleX variable to the
top of the script, and update the drawFrame and move functions:

function move (ball) {
 rotateX(ball, angleX);
}

(function drawFrame () {

CHAPTER 15

376

 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 angleX = (mouse.y - vpY) * 0.001;

 balls.forEach(move);
 balls.sort(zSort);
 balls.forEach(draw);
}());

Then, you just need to create the rotateX function to perform the rotation:

function rotateX (ball, angle) {
 var cos = Math.cos(angle),
 sin = Math.sin(angle),
 y1 = ball.ypos * cos - ball.zpos * sin,
 z1 = ball.zpos * cos + ball.ypos * sin;

 ball.ypos = y1;
 ball.zpos = z1;

 if (ball.zpos > -fl) {
 var scale = fl / (fl + ball.zpos);
 ball.scaleX = ball.scaleY = scale;
 ball.x = vpX + ball.xpos * scale;
 ball.y = vpY + ball.ypos * scale;
 ball.visible = true;
 } else {
 ball.visible = false;
 }
}

The angle is based on the mouse’s y position. You take the cosine and sine of the angle, and use them to
get y1 and z1, which are passed to the ball’s ypos and zpos properties.

For the next example, let’s combine the two rotations. Here’s the code for 13-rotate-xy.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Rotate XY</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball3d.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 balls = [],

3D BASICS

377

 numBalls = 50,
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2,
 angleX, angleY; //referenced in drawFrame and move

 for (var ball, i = 0; i < numBalls; i++) {
 ball = new Ball3d(15);
 ball.xpos = Math.random() * 200 – 100;
 ball.ypos = Math.random() * 200 – 100;
 ball.zpos = Math.random() * 200 – 100;
 balls.push(ball);
 }

 function rotateX (ball, angle) {
 var cos = Math.cos(angle),
 sin = Math.sin(angle),
 y1 = ball.ypos * cos - ball.zpos * sin,
 z1 = ball.zpos * cos + ball.ypos * sin;

 ball.ypos = y1;
 ball.zpos = z1;
 }

 function rotateY (ball, angle) {
 var cos = Math.cos(angle),
 sin = Math.sin(angle),
 x1 = ball.xpos * cos - ball.zpos * sin,
 z1 = ball.zpos * cos + ball.xpos * sin;

 ball.xpos = x1;
 ball.zpos = z1;
 }

 function setPerspective (ball) {
 if (ball.zpos > -fl) {
 var scale = fl / (fl + ball.zpos);
 ball.scaleX = ball.scaleY = scale;
 ball.x = vpX + ball.xpos * scale;
 ball.y = vpY + ball.ypos * scale;
 ball.visible = true;
 } else {
 ball.visible = false;
 }
 }

 function move (ball) {
 rotateX(ball, angleX);
 rotateY(ball, angleY);
 setPerspective(ball);
 }

 function zSort (a, b) {

CHAPTER 15

378

 return (b.zpos – a.zpos);
 }

 function draw (ball) {
 if (ball.visible) {
 ball.draw(context);
 }
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 angleX = (mouse.y - vpY) * 0.001;
 angleY = (mouse.x - vpX) * 0.001;

 balls.forEach(move);
 balls.sort(zSort);
 balls.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

Here, you find both angleY and angleX, and call both rotateX and rotateY functions for each ball. The
perspective code has been moved out of the rotate functions and into its own function, setPerspective,
since it doesn't need to be called twice. You can easily add a rotateZ function based on what you learned
and the preceding formulas.

Collision detection
The last thing to cover in this introduction to 3D is collision detection. The only feasible way of calculating
collision detection in 3D with the canvas and JavaScript is distance-based. This is not too much different
from collision detection in 2D: You find the distance between two objects (using the 3D distance formula),
and if that is less than the sum of their radii, you have a hit.

For a 3D collision detection example, we alter one of the earlier 3D bouncing examples, giving it fewer
objects and more space. First, we perform the normal 3D motion and perspective, and then do a double
iteration to compare the locations of all the balls and check for a collision. If any are less distance apart
than twice their radius, it's a hit, and we change the color of both balls to blue. Here’s the code for exercise
14-collision-3d.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Collision 3d</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>

3D BASICS

379

 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball3d.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 balls = [],
 numBalls = 20,
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2,
 top = -200,
 bottom = 200,
 left = -200,
 right = 200,
 front = -200
 back = 200;

 for (var ball, i = 0; i < numBalls; i++) {
 ball = new Ball3d(15);
 ball.xpos = Math.random() * 400 – 200;
 ball.ypos = Math.random() * 400 – 200;
 ball.zpos = Math.random() * 400 – 200;
 ball.vx = Math.random() * 5 – 1;
 ball.vy = Math.random() * 5 – 1;
 ball.vz = Math.random() * 5 – 1;
 balls.push(ball);
 }

 function move (ball) {
 ball.xpos += ball.vx;
 ball.ypos += ball.vy;
 ball.zpos += ball.vz;

 //check boundaries
 if (ball.xpos + ball.radius > right) {
 ball.xpos = right – ball.radius;
 ball.vx *= -1;
 } else if (ball.xpos - ball.radius < left) {
 ball.xpos = left + ball.radius;
 ball.vx *= -1;
 }
 if (ball.ypos + ball.radius > bottom) {
 ball.ypos = bottom – ball.radius;
 ball.vy *= -1;
 } else if (ball.ypos - ball.radius < top) {
 ball.ypos = top + ball.radius;
 ball.vy *= -1;
 }
 if (ball.zpos + ball.radius > back) {
 ball.zpos = back – ball.radius;
 ball.vz *= -1;
 } else if (ball.zpos - ball.radius < front) {

CHAPTER 15

380

 ball.zpos = front + ball.radius;
 ball.vz *= -1;
 }

 if (ball.zpos > -fl) {
 var scale = fl / (fl + ball.zpos);
 ball.scaleX = ball.scaleY = scale;
 ball.x = vpX + ball.xpos * scale;
 ball.y = vpY + ball.ypos * scale;
 ball.visible = true;
 } else {
 ball.visible = false;
 }
 }

 function checkCollision (ballA, i) {
 for (var ballB, dx, dy, dz, dist, j = i + 1; j < numBalls; j++) {
 ballB = balls[j];
 dx = ballA.xpos – ballB.xpos;
 dy = ballA.ypos – ballB.ypos;
 dz = ballA.zpos – ballB.zpos;
 dist = Math.sqrt(dx * dx + dy * dy + dz * dz);

 if (dist < ballA.radius + ballB.radius) {
 ballA.color = "#0000ff";
 ballB.color = "#0000ff";
 }
 }
 }

 function zSort (a, b) {
 return (b.zpos – a.zpos);
 }

 function draw (ball) {
 if (ball.visible) {
 ball.draw(context);
 }
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 balls.forEach(move);
 balls.forEach(checkCollision);
 balls.sort(zSort);
 balls.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

3D BASICS

381

The important parts of this code are in bold. The balls start out all red, and as they collide, they change
color. Before long, all are blue.

Important formulas in this chapter
The important formulas in this chapter are those for 3D perspective, coordinate rotation, and distance.

Basic perspective

scale = fl / (fl + zpos);
object.scaleX = object.scaleY = scale;
object.alpha = scale; // optional
object.x = vanishingPointX + xpos * scale;
object.y = vanishingPointY + ypos * scale;

Z-sorting

//assumes an array of 3D objects with a zpos property
function zSort (a, b) {
 return (b.zpos – a.zpos);
}

objects.sort(zSort);

Coordinate rotation

x1 = xpos * cos(angleZ) – ypos * sin(angleZ);
y1 = ypos * cos(angleZ) + xpos * sin(angleZ);

x1 = xpos * cos(angleY) – zpos * sin(angleY);
z1 = zpos * cos(angleY) + xpos * sin(angleY);

y1 = ypos * cos(angleX) – zpos * sin(angleX);
z1 = zpos * cos(angleX) + ypos * sin(angleX);

3D distance

dist = Math.sqrt(dx * dx + dy * dy + dz * dz);

Summary
You now have the basics of 3D under your belt, and you’ve seen most of the basic motion code adapted
for 3D. It's surprising how much of it is the same as the 2D animation code, but with an additional z
variable. It turns out that much of these examples were rather simple.

You use a lot of what you learned here in the next chapter, where you actually begin to sculpt 3D forms
with points and lines.

383

Chapter 16

3D Lines and Fills

What we’ll cover in this chapter:

 Creating points and lines

 Making shapes

 Creating 3D fills

 Modeling 3D solids

 Moving 3D solids

The last chapter introduced 3D, but the objects were only positioned in 3D space by calculating their size
and screen position—the objects themselves were actually 2D. If you were to move your viewpoint position
in this space, the object would always seem to turn and face you. However, that object is not turning. It
only appears to turn because, as a 2D object, it's the only view you have of it.

In this chapter, we construct 3D models that are rendered using the canvas drawing API. In particular, we
look at how to create and use 3D points, lines, fills, and solids. By the end of this chapter, you’ll be able to
create a variety of shapes, move them, and rotate them, all in 3D.

Creating points and lines
Since a point, by definition, is invisible because it has no dimension, it doesn't make sense to create points
in 3D without making lines in 3D to connect them. But to start with, you continue to use an instance of the
Ball3d class—with a small radius—as a point so you can see where it is. From there, you draw lines to
connect the balls. You already did similar things, but now the points have perspective applied to them, to
put them in a 3D space.

CHAPTER 16

384

In the first example, we make the points black and with a diameter of 10 pixels. We create a few of these
points, rotate them based on the mouse position, and then draw lines between them. The code is almost
identical to the example 13-rotate-xy.html from the previous chapter. The difference is that we add
some drawing code to the move function, and remove the sortZ function—because the depth of the
points does not matter when drawing a wire-frame model. Here’s the code for document 01-lines-3d-
1.html, and is shown in Figure 16-1:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Lines 3d 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball3d.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 balls = [],
 numBalls = 15,
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2,
 angleX, angleY; //referenced in drawFrame and move

 for (var ball, i = 0; i < numBalls; i++) {
 ball = new Ball3d(5, "#000000");
 ball.xpos = Math.random() * 200 – 100;
 ball.ypos = Math.random() * 200 – 100;
 ball.zpos = Math.random() * 200 – 100;
 balls.push(ball);
 }

 function rotateX (ball, angle) {
 var cos = Math.cos(angle),
 sin = Math.sin(angle),
 y1 = ball.ypos * cos - ball.zpos * sin,
 z1 = ball.zpos * cos + ball.ypos * sin;

 ball.ypos = y1;
 ball.zpos = z1;
 }

 function rotateY (ball, angle) {
 var cos = Math.cos(angle),
 sin = Math.sin(angle),
 x1 = ball.xpos * cos - ball.zpos * sin,

3D LINES AND FILLS

385

 z1 = ball.zpos * cos + ball.xpos * sin;

 ball.xpos = x1;
 ball.zpos = z1;
 }

 function setPerspective (ball) {
 if (ball.zpos > -fl) {
 var scale = fl / (fl + ball.zpos);
 ball.scaleX = ball.scaleY = scale;
 ball.x = vpX + ball.xpos * scale;
 ball.y = vpY + ball.ypos * scale;
 ball.visible = true;
 } else {
 ball.visible = false;
 }
 }

 function move (ball, i) {
 rotateX(ball, angleX);
 rotateY(ball, angleY);
 setPerspective(ball);

 //don't draw line to first ball
 if (i !== 0) {
 context.lineTo(balls[i].x, balls[i].y);
 }
 }

 function draw (ball) {
 if (ball.visible) {
 ball.draw(context);
 }
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 angleX = (mouse.y - vpY) * 0.001;
 angleY = (mouse.x - vpX) * 0.001;

 context.beginPath();
 //line starts at first ball
 context.moveTo(balls[0].x, balls[0].y);
 balls.forEach(move);
 context.stroke();
 balls.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

CHAPTER 16

386

Figure 16-1. 3D points and lines

When you really model 3D solids, you want to remove all the black dots. The simple solution is to set the
radius of each Ball3d instance to 0, like so:

var ball = new Ball3d(0);

You can see the results of this in Figure 16-2.

Figure 16-2. 3D lines with invisible points

But if you look at the Ball3d class definition, you see that parts of the code are now superfluous. The
properties scaleX, scaleY, and visible are irrelevant for an invisible point, because there’s nothing
there to see or scale. In fact, the entire class is primarily a convenient place to store drawing commands.
Because a 3D point needs to keep track of only a few properties, we can create another, simpler, class to
contain the values we need. Additionally, the perspective and coordinate rotation functions have been

3D LINES AND FILLS

387

moved into this new class, so we can keep our main document clean. Here's the Point3d class we use
throughout this chapter and the next (file point3d.js):

function Point3d (x, y, z) {
 this.x = (x === undefined) ? 0 : x;
 this.y = (y === undefined) ? 0 : y;
 this.z = (z === undefined) ? 0 : z;
 this.fl = 250; //focal length
 this.vpX = 0; //vanishing point
 this.vpY = 0;
 this.cX = 0; //center
 this.cY = 0;
 this.cZ = 0;
}

Point3d.prototype.setVanishingPoint = function (vpX, vpY) {
 this.vpX = vpX;
 this.vpY = vpY;
};

Point3d.prototype.setCenter = function (cX, cY, cZ) {
 this.cX = cX;
 this.cY = cY;
 this.cZ = cZ;
};

Point3d.prototype.rotateX = function (angleX) {
 var cosX = Math.cos(angleX),
 sinX = Math.sin(angleX),
 y1 = this.y * cosX - this.z * sinX,
 z1 = this.z * cosX + this.y * sinX;

 this.y = y1;
 this.z = z1;
};

Point3d.prototype.rotateY = function (angleY) {
 var cosY = Math.cos(angleY),
 sinY = Math.sin(angleY),
 x1 = this.x * cosY - this.z * sinY,
 z1 = this.z * cosY + this.x * sinY;

 this.x = x1;
 this.z = z1;
};

Point3d.prototype.rotateZ = function (angleZ) {
 var cosZ = Math.cos(angleZ),
 sinZ = Math.sin(angleZ),
 x1 = this.x * cosZ - this.y * sinZ,
 y1 = this.y * cosZ + this.x * sinZ;

 this.x = x1;

CHAPTER 16

388

 this.y = y1;
};

Point3d.prototype.getScreenX = function () {
 var scale = this.fl / (this.fl + this.z + this.cZ);
 return this.vpX + (this.cX + this.x) * scale;
};

Point3d.prototype.getScreenY = function () {
 var scale = this.fl / (this.fl + this.z + this.cZ);
 return this.vpY + (this.cY + this.y) * scale;
};

To create a 3D point, you initialize the Point3d class by specifying its x, y, and z positions in 3D space.
The class also contains properties for its focal length, its vanishing point, and its center. You can rotate the
point around its center on any axis using the three rotate methods. The class also has methods to perform
all the perspective calculations for you. When you position and rotate the point, call getScreenX and
getScreenY to return the coordinate of the point on the canvas element with all the perspective
calculations applied. Ready-built classes like this have been kept to a minimum in this book, but this one
helps you understand the examples much easier over the next couple of chapters. Refactor the prior
rotating lines example using the new Point3d class and it becomes simple, as seen in 02-lines-3d-
2.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Lines 3d 2</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="point3d.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 points = [],
 numPoints = 50,
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2,
 angleX, angleY; //referenced in drawFrame and move

 for (var point, i = 0; i < numPoints; i++) {
 point = new Point3d(Math.random() * 200 – 100,
 Math.random() * 200 – 100,
 Math.random() * 200 – 100);
 point.setVanishingPoint(vpX, vpY);
 points.push(point);

3D LINES AND FILLS

389

 }

 function move (point) {
 point.rotateX(angleX);
 point.rotateY(angleY);
 }

 function draw (point, i) {
 //ignore first point
 if (i !== 0) {
 context.lineTo(point.getScreenX(), point.getScreenY());
 }
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 angleX = (mouse.y - vpY) * 0.001;
 angleY = (mouse.x - vpX) * 0.001;

 points.forEach(move);

 context.beginPath();
 //line starts at first point
 context.moveTo(points[0].getScreenX(), points[0].getScreenY());
 points.forEach(draw);
 context.stroke();
 }());
 };
 </script>
 </body>
</html>

The main changes are in bold and you should be able to follow them pretty easily. Just remember to
include the correct path to new point3d.js file in your document.

Making shapes
Random lines look nice for demonstrations, but we can impose a bit of order on that mess. All you need to
do is get rid of the initial loop that created random x, y, and z values for the points and replace them with
specific, predetermined values. For example, let’s make a square. Figure 16-3 shows the square you draw
and the 3D locations of its four corners.

CHAPTER 16

390

x : 100
y : 100
z : 100

x : –100
y : 100
z : 100

x : –100
y : –100

z : 100

x : 100
y : –100
z : 100

Figure 16-3. Coordinates of a square in 3D space

The z values are all the same because a square lies on a plane. The easiest way to keep the square on
the plane is to give all of its points the same measurement on one axis (here we chose the z-axis) and
define the square on the other two (x and y axes).

Here’s the code that replaces the loop that created random points:

points[0] = new Point3d(-100, -100, 100);
points[1] = new Point3d(100, -100, 100);
points[2] = new Point3d(100, 100, 100);
points[3] = new Point3d(-100, 100, 100);

You then have to manually set the vanishing point for each point, which can be done by iterating over the
points array:

points.forEach(function (point) {
 point.setVanishingPoint(vpX, vpY);
});

The rest of the code should work fine, but make one more addition: a line to connect the last point with the
first, to close the shape. That's done with a call to context.closePath in the animation loop after the
other lines have been drawn. Here’s the full code as found in 03-square-3d.html (Figure 16-4 shows the
result):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Square 3d</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>

3D LINES AND FILLS

391

 <script src="utils.js"></script>
 <script src="point3d.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 points = [],
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2,
 angleX, angleY; //referenced in drawFrame and move

 //create 4 points
 points[0] = new Point3d(-100, -100, 100);
 points[1] = new Point3d(100, -100, 100);
 points[2] = new Point3d(100, 100, 100);
 points[3] = new Point3d(-100, 100, 100);

 points.forEach(function (point) {
 point.setVanishingPoint(vpX, vpY);
 });

 function move (point) {
 point.rotateX(angleX);
 point.rotateY(angleY);
 }

 function draw (point, i) {
 if (i !== 0) {
 context.lineTo(point.getScreenX(), point.getScreenY());
 }
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 angleX = (mouse.y - vpY) * 0.0005;
 angleY = (mouse.x - vpX) * 0.0005;

 points.forEach(move);

 context.beginPath();
 context.moveTo(points[0].getScreenX(), points[0].getScreenY());
 points.forEach(draw);
 context.closePath();
 context.stroke();
 }());
 };
 </script>
 </body>
</html>

CHAPTER 16

392

Figure 16-4. 3D spinning square

Look at that, a spinning square! You should be able to create just about any flat shape now. You might find
it easier to create shapes by first plotting the points out on a grid before you translate the positions to code
(as shown in Figure 16-5).

0 1

23

–150, –250 150, –250

150, –150–50, –150

–50, –50

–50, 50

–50, 150 150, 150

150, 250–150, 250

50, 50

0, 0

4 5

67

8 9

1011

50, –50

Figure 16-5. Using a grid to plot out the points for the letter E

Using this sketch as a reference, create the points like so:

3D LINES AND FILLS

393

points[0] = new Point3d(-150, -250, 100);
points[1] = new Point3d(150, -250, 100);
points[2] = new Point3d(150, -150, 100);
points[3] = new Point3d(-50, -150, 100);
points[4] = new Point3d(-50, -50, 100);
points[5] = new Point3d(50, -50, 100);
points[6] = new Point3d(50, 50, 100);
points[7] = new Point3d(-50, 50, 100);
points[8] = new Point3d(-50, 150, 100);
points[9] = new Point3d(150, 150, 100);
points[10] = new Point3d(150, 250, 100);
points[11] = new Point3d(-150, 250, 100);

Now you have a spinning letter E as seen in 04-spinning-e.html and in Figure 16-6.

Figure 16-6. 3D spinning letter E

When you start playing around with different shapes, you may notice that if some of the points get too
close, they do that inversion bug you saw in the first 3D examples in the last chapter. Your first thought
might be to increase the z value of all the points, but that would make the effect worse. For example, say
we made z 500. As it rotated, z moves from 500 to –500, putting some of the points even farther behind
the viewpoint and making a real mess of things. Instead, use the setCenter method to push the whole set
of points out on the z axis, like so:

points.forEach(function (point) {
 point.setVanishingPoint(vpX, vpY);
 point.setCenter(0, 0, 200);
});

If you look back at the Point3d class, you see this equation being used to calculate the scale:

var scale = this.fl / (this.fl + this.z + this.cZ);

So when we set the center of the point, it pushes the entire system, including the rotation of the system,
out 200 pixels. The value for z remains the same, but because perspective is calculated on higher values,
everything is in front of the viewer. Use other values and see how it works. A little later, we play with
moving the shape around on the other axes.

CHAPTER 16

394

Creating 3D fills
As you might imagine, a large part of the work for fills has already been done. You already created the
points for a shape and connected them from one end to the other with a line. All you need to do is set the
context.fillStyle and add context.fill to the drawing code. The code in the 05-filled-e.html
file does just that (see Figure 16-7 for the results). Here’s the relevant section of drawFrame code with the
changes in bold:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 angleX = (mouse.y - vpY) * 0.0005;
 angleY = (mouse.x - vpX) * 0.0005;

 points.forEach(move);

 context.fillStyle = "#ff0000";
 context.beginPath();
 context.moveTo(points[0].getScreenX(), points[0].getScreenY());
 points.forEach(draw);
 context.closePath();
 context.stroke();
 context.fill();
}());

Figure 16-7. First 3D fills

It’s a good idea to understand how traditional 3D programs model shapes and solids. In the previous
examples, both the square and the letter E are polygons. A polygon is a closed shape made of at least
three vertices. Thus, a triangle is the simplest polygon. In many 3D modeling and rendering programs—
even those that use patches, meshes, NURBS, and complex polygons—all 3D forms are finally reduced to
a set of triangles just prior to being rendered.

3D LINES AND FILLS

395

Using triangles
There are a number of advantages to using triangles. With a triangle, no matter where you place its three
vertices, you can be sure that all the points of the polygon are always on the same plane, with the face of
the triangle pointing in a single direction. This direction, or surface normal, is perpendicular to the face of
the triangle and is shown in Figure 16-8. If you move the vertices using another type of polygon, it's
possible that the points could wind up on multiple planes and distort the shape. Using the previous
example, take some of the points that make up the letter E, and randomly change their z position.
Although you might get some interesting results, they can also quickly become unexpected and
unpredictable.

Normal

Vertex 2

Vertex 3

Vertex 1

Figure 16-8. The surface normal of a 3D triangle

Another advantage for triangles, is that any complex polygon can be drawn by only using triangles.
Consider Figure 16-9, for example.

Figure 16-9. More complex 3D shape

CHAPTER 16

396

This type of closed shape would be difficult to create using a single polygon. You'd find yourself in a
situation where every polygon you create would have a different number of points and require special
handling to move the pen around. On the other hand, by combining triangles, you can model every shape
in a consistent, and efficient, manner—no special handling required. In Figure 16-10 you see how the
same closed shape can be broken down into smalled polygons by using triangles..

Figure 16-10. The same shape as in Figure 16-9, rendered with triangles

You can then set up a function that takes three points and renders a single triangle. From there, you just
need a list of points and then a list of triangles. One loop goes through the list of points, positions them,
and applies perspective. Another loop goes through the triangle list and renders each one.

Using triangles enables further optimizations when setting up the geometry as well. Triangle fans and
triangle strips are common ways that 3D geometry is stored, because they allow for efficient traversal of all
the vertices, while eliminating redundant points. Yet another benefit to using triangles is that we can use
trigonometry to manipulate them using well-known calculations, as covered throughout this book.

This isn’t to say that you must use a triangle-only approach. You can make a function that dynamically
renders a polygon of any number of sides. But to keep things simple and flexible here, let’s go with the
triangles.

We can try it out using the letter A example. First, you need to define all of your points and triangles. As
shown in Figure 16-11, we laid out the shape and numbered all of its points and each of its triangles.

3D LINES AND FILLS

397

1

8

10 9

6

9 2

5
3

45
8

7

7 6 3

4

2

10

0
0 1

Figure 16-11. The points and polygons that make up this shape

When you graph all the points, you get the following values:

points[0] = new Point3d(-50, -250, 100);
points[1] = new Point3d(50, -250, 100);
points[2] = new Point3d(200, 250, 100);
points[3] = new Point3d(100, 250, 100);
points[4] = new Point3d(50, 100, 100);
points[5] = new Point3d(-50, 100, 100);
points[6] = new Point3d(-100, 250, 100);
points[7] = new Point3d(-200, 250, 100);
points[8] = new Point3d(0, -150, 100);
points[9] = new Point3d(50, 0, 100);
points[10] = new Point3d(-50, 0, 100);

Next, you define the triangles. Each triangle is simply a list of three points, and we'll call them a, b, and c.
Make a Triangle class to keep track of the points for each triangle and give it a draw method so it knows
how to render itself to the canvas element. It's listed here, and you see how to use it in a moment (file
triangle.js):

function Triangle (a, b, c, color) {
 this.pointA = a;
 this.pointB = b;
 this.pointC = c;
 this.color = (color === undefined) ? "#ff0000" : utils.parseColor(color);
 this.lineWidth = 1;
 this.alpha = 1;
}

CHAPTER 16

398

Triangle.prototype.draw = function (context) {
 context.save();
 context.lineWidth = this.lineWidth;
 context.fillStyle = context.strokeStyle = utils.colorToRGB(this.color, this.alpha);
 context.beginPath();
 context.moveTo(this.pointA.getScreenX(), this.pointA.getScreenY());
 context.lineTo(this.pointB.getScreenX(), this.pointB.getScreenY());
 context.lineTo(this.pointC.getScreenX(), this.pointC.getScreenY());
 context.closePath();
 context.fill();
 if (this.lineWidth > 0) {
 context.stroke();
 }
 context.restore();
};

We need another array to hold the list of triangles. So at the top of the script, define the array:

var triangles = [];

Then, after defining all the points, you create the triangles using three points and a color:

triangles[0] = new Triangle(points[0], points[1], points[8], "#ffcccc");
triangles[1] = new Triangle(points[1], points[9], points[8], "#ffcccc");
triangles[2] = new Triangle(points[1], points[2], points[9], "#ffcccc");
triangles[3] = new Triangle(points[2], points[4], points[9], "#ffcccc");
triangles[4] = new Triangle(points[2], points[3], points[4], "#ffcccc");
triangles[5] = new Triangle(points[4], points[5], points[9], "#ffcccc");
triangles[6] = new Triangle(points[9], points[5], points[10], "#ffcccc");
triangles[7] = new Triangle(points[5], points[6], points[7], "#ffcccc");
triangles[8] = new Triangle(points[5], points[7], points[10], "#ffcccc");
triangles[9] = new Triangle(points[0], points[10], points[7], "#ffcccc");
triangles[10] = new Triangle(points[0], points[8], points[10], "#ffcccc");

We order the points of each triangle to go in a clockwise direction. That isn’t important at this stage, but it
becomes important in the next chapter, so it’s a good habit to get into.

If you think that plotting all these points and triangles by hand is tedious, that’s because
it is tedious. And it’s going to get worse when you model solid forms. That’s why most
3D programs have visual modeling front ends to them, which give you tools to create
forms and extract all the points and polygons for you. Although creating a 3D modeling
program is beyond the scope of this book, a good strategy might be to parse an open 3D
model format, like COLLADA, and store the vertex positions in a format like JSON. You
can then load this file into your document and construct the model.

Now, your rendering loop looks like the following (don’t worry, you'll see the complete file in a bit):

3D LINES AND FILLS

399

function draw (triangle) {
 triangle.draw(context);
}

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 angleX = (mouse.y - vpY) * 0.0005;
 angleY = (mouse.x - vpX) * 0.0005;

 points.forEach(move);
 triangles.forEach(draw);
}());

Here, all the triangles are iterated over and passed to the draw function, which in turn calls the draw
method of each triangle. That’s all there is to it! The triangle begins a fill based on its defined color, moves
to the position of the first point, draws its shape, and ends the fill. You can see the results of this example
in Figure 16-12.

Figure 16-12. The A shape

And, here’s the entire code listing for document 06-triangles.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Triangles</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="point3d.js"></script>
 <script src="triangle.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 points = [],
 triangles = [],

CHAPTER 16

400

 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2,
 angleX, angleY; //referenced in drawFrame and move

 //the letter 'A', using 11 points
 points[0] = new Point3d(-50, -250, 100);
 points[1] = new Point3d(50, -250, 100);
 points[2] = new Point3d(200, 250, 100);
 points[3] = new Point3d(100, 250, 100);
 points[4] = new Point3d(50, 100, 100);
 points[5] = new Point3d(-50, 100, 100);
 points[6] = new Point3d(-100, 250, 100);
 points[7] = new Point3d(-200, 250, 100);
 points[8] = new Point3d(0, -150, 100);
 points[9] = new Point3d(50, 0, 100);
 points[10] = new Point3d(-50, 0, 100);

 points.forEach(function (point) {
 point.setVanishingPoint(vpX, vpY);
 point.setCenter(0, 0, 200);
 });

 //create 11 triangle objects from our points
 triangles[0] = new Triangle(points[0], points[1], points[8], "#ffcccc");
 triangles[1] = new Triangle(points[1], points[9], points[8], "#ffcccc");
 triangles[2] = new Triangle(points[1], points[2], points[9], "#ffcccc");
 triangles[3] = new Triangle(points[2], points[4], points[9], "#ffcccc");
 triangles[4] = new Triangle(points[2], points[3], points[4], "#ffcccc");
 triangles[5] = new Triangle(points[4], points[5], points[9], "#ffcccc");
 triangles[6] = new Triangle(points[9], points[5], points[10], "#ffcccc");
 triangles[7] = new Triangle(points[5], points[6], points[7], "#ffcccc");
 triangles[8] = new Triangle(points[5], points[7], points[10], "#ffcccc");
 triangles[9] = new Triangle(points[0], points[10], points[7], "#ffcccc");
 triangles[10] = new Triangle(points[0], points[8], points[10], "#ffcccc");

 function move (point) {
 point.rotateX(angleX);
 point.rotateY(angleY);
 }

 function draw (triangle) {
 triangle.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 angleX = (mouse.y - vpY) * 0.0005;
 angleY = (mouse.x - vpX) * 0.0005;

 points.forEach(move);
 triangles.forEach(draw);

3D LINES AND FILLS

401

 }());
 };
 </script>
 </body>
</html>

Modeling 3D solids
In the computing world, the first example in any book or tutorial is almost always “Hello, World!”, a program
that in one way or another prints the words to the screen. When drawing your first 3D solid, the equivalent
seems to be a spinning cube, so let's start with that.

Modeling a spinning cube
To model a cube, you need eight points to define its eight corners. These are shown in Figure 16-13.

0

4 5

6

1

7

3 2

Figure 16-13. The points of a 3D cube

The position of the points are defined like this for our code:

//front four corners
points[0] = new Point3d(-100, -100, -100);
points[1] = new Point3d(100, -100, -100);
points[2] = new Point3d(100, 100, -100);
points[3] = new Point3d(-100, 100, -100);

//back four corners
points[4] = new Point3d(-100, -100, 100);
points[5] = new Point3d(100, -100, 100);

CHAPTER 16

402

points[6] = new Point3d(100, 100, 100);
points[7] = new Point3d(-100, 100, 100);

Then, you need to define the triangles. Each face of the cube consists of two triangles, so there are 12
triangles altogether—two each for the six faces. Again, we list the points for each triangle in a clockwise
direction, as seen from the outer face of the triangle. It gets a little tricky, but rotate the cube in your mind
so that the triangle you’re defining is facing you, and then list the points in clockwise order from that
viewpoint. For example, the front face is easy, and Figure 16-14 shows the two triangles. While continuing
to rotate the cube in your mind, you can see the top face in Figure 16-15, and Figure 16-16 shows the
back.

0 1

0, 1, 2

0, 2, 3

3 2

Figure 16-14. The front face of the cube

4 5

0, 4, 5

0, 5, 1

0 1

Figure 16-15. The top face of the cube

3D LINES AND FILLS

403

7 6

4, 7, 6

4, 6, 5

4 5

Figure 16-16. The back face of the cube

Moving to each cube face, you come up with the following triangle definitions:

//front
triangles[0] = new Triangle(points[0], points[1], points[2], "#6666cc");
triangles[1] = new Triangle(points[0], points[2], points[3], "#6666cc");

//top
triangles[2] = new Triangle(points[0], points[5], points[1], "#66cc66");
triangles[3] = new Triangle(points[0], points[4], points[5], "#66cc66");

//back
triangles[4] = new Triangle(points[4], points[6], points[5], "#cc6666");
triangles[5] = new Triangle(points[4], points[7], points[6], "#cc6666");

//bottom
triangles[6] = new Triangle(points[3], points[2], points[6], "#cc66cc");
triangles[7] = new Triangle(points[3], points[6], points[7], "#cc66cc");

//right
triangles[8] = new Triangle(points[1], points[5], points[6], "#66cccc");
triangles[9] = new Triangle(points[1], points[6], points[2], "#66cccc");

//left
triangles[10] = new Triangle(points[4], points[0], points[3], "#cccc66");
triangles[11] = new Triangle(points[4], points[3], points[7], "#cccc66");

Each face has a different color, because the two triangles that make up the face are the same color.
Again, this clockwise orientation doesn’t matter right now, but in the next chapter, you use this for backface
culling. This term refers to a way of determining which surfaces are facing you and which are facing away.
You see why this is important in a moment.

The 07-cube.html example is the same as 06-triangles.html, with these new point and triangle
definitions at the top of the script.

Run this in your browser, and … it’s all messed up! You can see some of the back faces, some of the time.
Other faces seem invisible all the time. What’s going on? Well, the faces on the back of the cube (the back
faces) are always being drawn. And the triangles are being drawn in the same order, based on their

CHAPTER 16

404

position in the triangles array. So the faces at the bottom of the list always draw over the faces at the
top of the list, and you get bizarre, unpredictable results like this. You need to cull (get rid of) those back
faces, because you don’t need to render them.

Backface culling is covered in detail in the next chapter, and you also learn how to apply some basic
lighting on each surface, based on its angle. But as a temporary fix for the rest of this chapter, in the
definition of the Triangle class, set the value of the alpha property to 0.5:

function Triangle (a, b, c, color) {
 this.pointA = a;
 this.pointB = b;
 this.pointC = c;
 this.color = (color === undefined) ? "#ff0000" : utils.parseColor(color);
 this.lineWidth = 1;
 this.alpha = 0.5;
}

Now you can see through any side of the cube, and makes the whole solid look like it’s made from colored
glass. Again, this is a temporary workaround until we get to backface culling.

Figure 16-17 shows the finished 3D cube.

Figure 16-17. The resulting 3D cube

Modeling other shapes
Now that you’ve mastered the spinning cube, you can model all kinds of shapes. Just draw them out on a
grid, mark up the points and triangles, and put them into the arrays. It often helps to draw several views of
the object, rotated so you can see each face and what points make up the triangles. This section offers a
few to get you started.

Pyramid

Here’s the code for a 3D pyramid (which you can also find in 08-pyramid.html), starting with the points:

points[0] = new Point3d(0, -100, 0);
points[1] = new Point3d(100, 100, -100);
points[2] = new Point3d(-100, 100, -100);
points[3] = new Point3d(-100, 100, 100);
points[4] = new Point3d(100, 100, 100);

3D LINES AND FILLS

405

And here’s the code for the triangles:

triangles[0] = new Triangle(points[0], points[1], points[2], "#6666cc");
triangles[1] = new Triangle(points[0], points[2], points[3], "#66cc66");
triangles[2] = new Triangle(points[0], points[3], points[4], "#cc6666");
triangles[3] = new Triangle(points[0], points[4], points[1], "#66cccc");
triangles[4] = new Triangle(points[1], points[3], points[2], "#cc66cc");
triangles[5] = new Triangle(points[1], points[4], points[3], "#cc66cc");

Figure 16-18 shows the result.

Figure 16-18. A 3D pyramid

Extruded letter A

In 09-extruded-a.html, we extrude—pull the shape out to give it depth—the earlier letter A example.
This means copying the first 11 points, moving one set on the z-axis to –50 and the other set to +50,
creating triangles for the second set (making sure they are still going clockwise as seen from the back),
and finally making triangles to join the two sides. It's tedious, but looks nice when it's done (you can see
the result in Figure 16-19).

//first set
points[0] = new Point3d(-50, -250, -50);
points[1] = new Point3d(50, -250, -50);
points[2] = new Point3d(200, 250, -50);
points[3] = new Point3d(100, 250, -50);
points[4] = new Point3d(50, 100, -50);
points[5] = new Point3d(-50, 100, -50);
points[6] = new Point3d(-100, 250, -50);
points[7] = new Point3d(-200, 250, -50);
points[8] = new Point3d(0, -150, -50);
points[9] = new Point3d(50, 0, -50);
points[10] = new Point3d(-50, 0, -50);

//second set
points[11] = new Point3d(-50, -250, 50);
points[12] = new Point3d(50, -250, 50);
points[13] = new Point3d(200, 250, 50);
points[14] = new Point3d(100, 250, 50);
points[15] = new Point3d(50, 100, 50);
points[16] = new Point3d(-50, 100, 50);

CHAPTER 16

406

points[17] = new Point3d(-100, 250, 50);
points[18] = new Point3d(-200, 250, 50);
points[19] = new Point3d(0, -150, 50);
points[20] = new Point3d(50, 0, 50);
points[21] = new Point3d(-50, 0, 50);

triangles[0] = new Triangle(points[0], points[1], points[8], "#6666cc");
triangles[1] = new Triangle(points[1], points[9], points[8], "#6666cc");
triangles[2] = new Triangle(points[1], points[2], points[9], "#6666cc");
triangles[3] = new Triangle(points[2], points[4], points[9], "#6666cc");
triangles[4] = new Triangle(points[2], points[3], points[4], "#6666cc");
triangles[5] = new Triangle(points[4], points[5], points[9], "#6666cc");
triangles[6] = new Triangle(points[9], points[5], points[10], "#6666cc");
triangles[7] = new Triangle(points[5], points[6], points[7], "#6666cc")
triangles[8] = new Triangle(points[5], points[7], points[10], "#6666cc");
triangles[9] = new Triangle(points[0], points[10], points[7], "#6666cc");
triangles[10] = new Triangle(points[0], points[8], points[10], "#6666cc");
triangles[11] = new Triangle(points[11], points[19], points[12], "#cc6666");
triangles[12] = new Triangle(points[12], points[19], points[20], "#cc6666");
triangles[13] = new Triangle(points[12], points[20], points[13], "#cc6666");
triangles[14] = new Triangle(points[13], points[20], points[15], "#cc6666");
triangles[15] = new Triangle(points[13], points[15], points[14], "#cc6666");
triangles[16] = new Triangle(points[15], points[20], points[16], "#cc6666");
triangles[17] = new Triangle(points[20], points[21], points[16], "#cc6666");
triangles[18] = new Triangle(points[16], points[18], points[17], "#cc6666");
triangles[19] = new Triangle(points[16], points[21], points[18], "#cc6666");
triangles[20] = new Triangle(points[11], points[18], points[21], "#cc6666");
triangles[21] = new Triangle(points[11], points[21], points[19], "#cc6666");
triangles[22] = new Triangle(points[0], points[11], points[1], "#cccc66");
triangles[23] = new Triangle(points[11], points[12], points[1], "#cccc66");
triangles[24] = new Triangle(points[1], points[12], points[2], "#cccc66");
triangles[25] = new Triangle(points[12], points[13], points[2], "#cccc66");
triangles[26] = new Triangle(points[3], points[2], points[14], "#cccc66");
triangles[27] = new Triangle(points[2], points[13], points[14], "#cccc66");
triangles[28] = new Triangle(points[4], points[3], points[15], "#cccc66");
triangles[29] = new Triangle(points[3], points[14], points[15], "#cccc66");
triangles[30] = new Triangle(points[5], points[4], points[16], "#cccc66");
triangles[31] = new Triangle(points[4], points[15], points[16], "#cccc66");
triangles[32] = new Triangle(points[6], points[5], points[17], "#cccc66");
triangles[33] = new Triangle(points[5], points[16], points[17], "#cccc66");
triangles[34] = new Triangle(points[7], points[6], points[18], "#cccc66");
triangles[35] = new Triangle(points[6], points[17], points[18], "#cccc66");
triangles[36] = new Triangle(points[0], points[7], points[11], "#cccc66");
triangles[37] = new Triangle(points[7], points[18], points[11], "#cccc66");
triangles[38] = new Triangle(points[8], points[9], points[19], "#cccc66");
triangles[39] = new Triangle(points[9], points[20], points[19], "#cccc66");
triangles[40] = new Triangle(points[9], points[10], points[20], "#cccc66");
triangles[41] = new Triangle(points[10], points[21], points[20], "#cccc66");
triangles[42] = new Triangle(points[10], points[8], points[21], "#cccc66");
triangles[43] = new Triangle(points[8], points[19], points[21], "#cccc66");

3D LINES AND FILLS

407

Figure 16-19. An extruded letter A

As you can see, triangles build up quickly when you create 3D models. The original, flat, A had 11
triangles. Extruding it somehow quadrupled that! This code still runs pretty smoothly, but you aren’t going
to get any massive 3D worlds with thousands of polygons by drawing them out on the canvas element this
way. Still, you can do some pretty cool things. And with web browsers improving in performance with each
release, and new technologies like WebGL on the horizon, who knows what the future holds?

Cylinder

Here’s one more shape example, and this time we'll create points and triangles with some math. The only
thing we change in this example, 10-cylinder.html, is at the top of the script. Instead of defining points
and triangles by hand, we create an algorithm to do it for us and make a cylinder. Here’s that portion of the
code:

var points = [],
 numFaces = 20;

for (var angle, xpos, ypos, i = 0, idx = 0; i < numFaces; i++) {
 angle = Math.PI * 2 / numFaces * i;
 xpos = Math.cos(angle) * 200;
 ypos = Math.sin(angle) * 200;
 points[idx] = new Point3d(xpos, ypos, -100);
 points[idx+1] = new Point3d(xpos, ypos, 100);
 idx += 2;
}

points.forEach(function (point) {
 point.setVanishingPoint(vpX, vpY);
 point.setCenter(0, 0, 200);
});

for (i = 0, idx = 0; i < numFaces - 1; i++) {
 triangles[idx] = new Triangle(points[idx], points[idx+3], points[idx+1], "#6666cc");
 triangles[idx+1] = new Triangle(points[idx], points[idx+2], points[idx+3], "#6666cc");
 idx += 2;
}

CHAPTER 16

408

triangles[idx] = new Triangle(points[idx], points[1], points[idx+1], "#6666cc");
triangles[idx+1] = new Triangle(points[idx], points[0], points[1], "#6666cc");

This probably isn’t the most straightforward code, so let’s step through it with some explanation and maybe
a diagram or two.

You loop around in a full circle and create points at certain intervals. For each iteration you calculate an
angle, which is the full circle, divided by the number of faces, times the particular segment you’re working
on.

With that angle (and some trigonometry you should be well used to by now), determine the x, y position for
the point on the circle. You then make two points, one with a z of -100 and one with a z of +100. When this
loop is done, you have two circles of points, one close to you and one a bit farther away. Now you need to
connect them with triangles.

Again, you iterate over each face, this time creating two triangles. Seen from the side, the first face looks
like Figure 16-20.

This makes the two triangles:

0, 3, 1
0, 2, 3

0 2

31

Figure 16-20. The first face of the cylinder

Because the index (idx) variable is initialized to 0, you can also define these like so:

idx, idx + 3, idx + 1
idx, idx + 2, idx + 3

This is exactly how you define the two triangles. You then increase idx by 2 to handle the next face with
points 2, 3, 4, and 5.

You continue iterating up to the second-to-last face, and then connect the last one back to the first two
points, 0 and 1, as shown in Figure 16-21.

3D LINES AND FILLS

409

index 0

1index + 1

Figure 16-21. The last face of the cylinder

These wind up as follows:

idx, 1, idx + 1
idx, 0, 1

The result is shown in Figure 16-22. If you want to make the construction of this shape a little clearer,
increase the lineWidth property of each Triangle object.

Figure 16-22. The resulting 3D cylinder

Moving 3D solids
Moving a 3D solid is easy now that you have the Point3d class, just change its center with the setCenter
method. You’ve already moved a shape on the z-axis, and it's the same for positioning on the x and y axis.
But let’s take a quick look at what happens when you change those values. It’s all in the getScreenX and
getScreenY methods of the Point3d class:

Point3d.prototype.getScreenX = function () {
 var scale = this.fl / (this.fl + this.z + this.cZ);

CHAPTER 16

410

 return this.vpX + (this.cX + this.x) * scale;
};

Point3d.prototype.getScreenY = function () {
 var scale = this.fl / (this.fl + this.z + this.cZ);
 return this.vpY + (this.cY + this.y) * scale;
};

The center z value (this.cZ) is added to the z position (this.z) when the scale is calculated, effectively
pushing the point out into the distance without altering the z position itself.

The same thing happens with this.cX and this.cY. They are added to the x and y positions, and then
the scale is applied. This pushes the point off in one of those directions, without permanently altering its
position. Because we are not changing any of these values, the point—and thus the larger shape that it is
part of—continues to rotate around its own center, rather than orbiting around the center of the 3D
coordinate space for our scene.

Let’s see this in action. Go back to the 07-cube.html example, and add two variables at the top of the
script:

var offsetX = 0,
 offsetY = 0;

Now add a keydown event handler to change the offset using the arrow keys:

window.addEventListener('keydown', function (event) {
 if (event.keyCode === 37) { //left
 offsetX = -5;
 } else if (event.keyCode === 39) { //right
 offsetX = 5;
 } else if (event.keyCode === 38) { //up
 offsetY = -5;
 } else if (event.keyCode === 40) { //down
 offsetY = 5;
 }

 points.forEach(function (point) {
 point.x += offsetX;
 point.y += offsetY;
 });
}, false);

This loops through each point and adds or subtracts 5 from its value (you can find the complete file in 11-
move-cube-1.html). Because the actual positions of all the points are changing, the model now orbits
around the center of the 3D space. This might or might not be what you want it to do. If you want to move
the whole model, and still have it rotate around its own center, you need to use the point's setCenter
method. Change the event handler code we just added to the following:

window.addEventListener('keydown', function (event) {
 if (event.keyCode === 37) { //left
 offsetX -= 5;
 } else if (event.keyCode === 39) { //right
 offsetX += 5;

3D LINES AND FILLS

411

 } else if (event.keyCode === 38) { //up
 offsetY -= 5;
 } else if (event.keyCode === 40) { //down
 offsetY += 5;
 }

 points.forEach(function (point) {
 point.setCenter(offsetX, offsetY, 200);
 });
}, false);

This example can be found in document 12-move-cube-2.html. Now the entire cube moves as a whole
and continues to rotate around its center, but it does not orbit around the center of the scene's 3D
coordinate space.

Summary
With what you learned in this chapter, you should be on your way to modeling your own 3D shapes on and
manipulating them in 3D space.

This chapter concentrated on creating 3D geometry and how to draw the lines and color fills. In the next
chapter, you explore how to create more solid-looking solids. All that material builds on the foundation of
points, lines, and fills that you covered here. So, when you’re ready, let’s move on!

413

Chapter 17

Backface Culling and 3D Lighting

What we’ll cover in this chapter:

 Backface culling

 Enhanced depth sorting

 3D lighting

In the previous chapter, we looked at the basics of modeling 3D solids: how to create the points, lines, and
polygons that make up a form, and how to give each polygon a color. But if you recall, that color was left at
50% transparency, so you could see right through it. Although we created some complex 3D shapes, the
models still lack a lot in terms of realism.

In this chapter, we fix that by learning about backface culling (not drawing the polygons facing away from
you), enhanced depth sorting (we covered this a bit in Chapter 15, but we take a new look at it in terms of
polygons), and 3D lighting.

You should be amazed at the results on your 3D models once these three techniques are applied. After
the first two, you will be able to create 3D solids that look solid. And with 3D lighting, they really come
alive.

In the examples presented here, we build on the rotating, extruded, 3D letter A that was created in the
previous chapter. This serves as a sufficiently complex model that makes it obvious if you do something
wrong, and looks pretty good when you do everything right! The foundation of this chapter was provided by
the techniques described by Todd Yard in Chapter 10 of Macromedia Flash MX Studio (friends of ED,
2002).

CHAPTER 17

414

Backface culling
Backface culling was mentioned a couple of times in the previous chapter, and now you find out what it is
all about and exactly how it works.

Remember that in the earlier models, you made all the color fills semitransparent. The reason for this was
that you were always drawing every polygon, and you had no control over what order they were drawn in.
So a polygon on the back of the model might get drawn on top of one on the front of the model, creating
some odd looking results. Giving every face an alpha value of 50% made them all relatively equal and let
us put off this discussion while you concentrated on your modeling techniques. Now, you are going to deal
with it.

In principle, backface culling is simple. You draw the polygons that are facing you, and you don’t draw the
ones that are facing away from you. The tricky part is determining which are which.

You were constantly reminded to define the points of each polygon in a clockwise direction. Even though
that is unnecessary for the examples so far, you now see why this is so important, and why it is good to
get into the habit from the start.

It’s an interesting observation that if the points of a polygon are arranged in a clockwise fashion when the
triangle is facing you, they are counterclockwise when the polygon is facing away from you. You can see
this demonstrated in Figure 17-1, which has a triangle facing you. (A note on terminology in this book: For
the most part, “polygon” is used as a general term, and “triangle” for a specific triangular polygon under
discussion.)

A

C B

Figure 17-1. A triangle facing you has points in a clockwise direction.

In Figure 17-2, the triangle has been rotated so it is facing in the opposite direction.

A

C
B

Figure 17-2. A triangle facing away from you has points in a counterclockwise direction.

BACKFACE CULLING AND 3D LIGHTING

415

Now you see that points go around in a counterclockwise direction.

But what does it mean when a polygon is “facing you”? It means that the exterior side of the polygon is
facing you. Although it’s not obvious when we look at a single triangle, remember that we're talking about
solids in 3D space. In that case, each polygon has one exterior side and one interior side.

There are times when you want to draw the opposite side of the triangle. For example, if the viewport is
located inside a cube and looking out, you want to see the interior sides—the walls, ceiling, and floor. But
for the examples here, looking at a model, you want to view the exterior sides of the geometry that it's
made of.

When determining if a polygon is clockwise or counterclockwise, we refer to the screen positions of the
points—not the 3D x, y, and z positions, but the getScreenX(), getScreenY() position that is the location
on the canvas determined by applying perspective.

You can reverse the setup and make a system where counterclockwise polygons face you, and clockwise
ones faced away. Either way works as long as you are consistent.

So again, we return to the question: How do you determine whether three points are arranged in a
clockwise or counterclockwise direction? It’s such an easy thing for your eyes to pick out, but when it
comes to writing it down in code, the problem suddenly seems like an abstract concept.

What you do is add a method to the Triangle class, called isBackface. This evaluates the three points
that make up the triangle, and returns true if they are counterclockwise and false if they are clockwise.
Here is the updated Triangle class with the new method (file triangle.js). Notice that alpha is set to
1, since we are drawing opaque shapes in this chapter:

function Triangle (a, b, c, color) {
 this.pointA = a;
 this.pointB = b;
 this.pointC = c;
 this.color = (color === undefined) ? "#ff0000" : utils.parseColor(color);
 this.lineWidth = 1;
 this.alpha = 1;
}

Triangle.prototype.draw = function (context) {
 if (this.isBackface()) {
 return;
 }

 context.save();
 context.lineWidth = this.lineWidth;
 context.fillStyle = context.strokeStyle = utils.colorToRGB(this.color, this.alpha);
 context.beginPath();
 context.moveTo(this.pointA.getScreenX(), this.pointA.getScreenY());
 context.lineTo(this.pointB.getScreenX(), this.pointB.getScreenY());
 context.lineTo(this.pointC.getScreenX(), this.pointC.getScreenY());
 context.closePath();
 context.fill();
 if (this.lineWidth > 0) {
 context.stroke();

CHAPTER 17

416

 }
 context.restore();
};

Triangle.prototype.isBackface = function () {
 var cax = this.pointC.getScreenX() - this.pointA.getScreenX(),
 cay = this.pointC.getScreenY() - this.pointA.getScreenY(),
 bcx = this.pointB.getScreenX() - this.pointC.getScreenX(),
 bcy = this.pointB.getScreenY() - this.pointC.getScreenY();
 return (cax * bcy > cay * bcx);
};

For a quick explanation, the isBackface function calculates the lengths of two sides of the triangle, and
with some multiplication and comparison involving the triangle's normal vector relative to the camera, is
able to tell which direction they are going.

So, how do you use this method? Well, you don’t really need to think about it; the function is called only
from within the Triangle.draw method. If it returns true, it is a back-face triangle and should not be
drawn, so the draw method stops there and returns. If isBackface returns false, the triangle is facing
forward and is rendered as usual using the canvas drawing API.

Now, you can run 01-extruded-a.html, or any other 3D model you created, and you see that things look
quite a bit different. As you rotate the shape around, you see that as soon as a particular face is facing the
other way, it is no longer drawn. Things aren’t perfect yet, because there are still parts that are farther
away drawing on top of parts that are closer, but we're getting there. If the term “z-sorting,” or “depth
sorting,” just came to mind, you're right on track—and that’s what’s coming up next.

Right now you should be looking at something similar to what appears in Figure 17-3.

Figure 17-3. Backface culling in action

BACKFACE CULLING AND 3D LIGHTING

417

Enhanced depth sorting
Depth sorting, or z-sorting, is something we discussed in Chapter 15, when you applied perspective to the
shapes. In that case, you sorted the array of objects (which had 3D properties) by their zpos property.

But now, you are not dealing with multiple objects. Whenever a particular polygon is drawn, it is drawn on
top of any that have been drawn earlier. Rather than swapping an object's depth, you need to determine
the order that each polygon is drawn. Specifically, you want to draw the ones that are farthest away first;
then you draw the rest, working your way forward, so that the closest polygons are drawn last, covering
anything they might be in front of.

So how do you do that? Well, you have all the polygons in an array called triangles. When you draw the
shape, you iterate through this array drawing each triangle from first element through the end. You must
sort this array so that the triangle that is farthest away is in element zero, and the one closest to the viewer
is in the last element of the array.

This is similar to what we did when sorting the array of objects, but here, the triangles are just a collection
of three Point3d objects. They don’t have a single property that describes the overall depth of the triangle.
However, it is easy enough to create such a property. It turns out that the value that works best is the
minimum z value of the three points within a triangle. In other words, if a triangle had three points with
depths 200, 250, and 300, we should say this triangle is at a z position of 200.

We can use the Math.min function to determine the minimum z value of all three points. We do this within
a new getDepth method that we add to our Triangle class. Here’s that function to add to the file
triangle.js:

Triangle.prototype.getDepth = function () {
 return Math.min(this.pointA.z, this.pointB.z, this.pointC.z);
};

Now you can sort the array of triangle objects and know which to draw first and which to draw last. Again,
you want to sort it in descending order so that the one with the highest depth (farthest away) is first. You
calculate this in the drawFrame animation loop, before you draw any of the triangles. Here's the updated
section of our example in 02-extruded-a-depth.html:

function depth (a, b) {
 return (b.getDepth() - a.getDepth());
}

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 angleX = (mouse.y - vpY) * 0.0005;
 angleY = (mouse.x - vpX) * 0.0005;

 points.forEach(move);
 triangles.sort(depth);
 triangles.forEach(draw);
}());

CHAPTER 17

418

When you run this exercise in your browser, you should have a perfectly rendered solid, as shown in
Figure 17-4. You've made real progress here, and the next step boosts this example over the top in terms
of realism!

Figure 17-4. Sorting the depths puts it all right!

3D lighting
Although the previous example does a nice job with the render accuracy, it still lacks a bit of realism—it’s a
bit flat. You already know where we’re heading with this, so let’s add some 3D lighting.

Like backface culling, the specifics behind 3D lighting can get complex and math intensive. We don’t want
to get into a detailed discussion of all the finer points, but there's plenty of information on the web about
the equations. What you have here are the basics, along with some functions you can use and adapt as
needed.

First, you need a light source. The simplest light source has two properties: location and brightness. In
more complex 3D systems, it might point in a certain direction, have a color of its own, have falloff rates,
conical areas, and so on. But all that is beyond the scope of what you are doing here.

Let’s start out by making a Light class to hold the two properties we just mentioned: location and
brightness. Save this code as file light.js:

function Light (x, y, z, brightness) {
 this.x = (x === undefined) ? -100 : x;
 this.y = (y === undefined) ? -100 : y;
 this.z = (z === undefined) ? -100 : z;
 this.brightness = (brightness === undefined) ? 1 : brightness;
}

Light.prototype.setBrightness = function (b) {
 this.brightness = Math.min(Math.max(b, 0), 1);
};

Now, at the top of your script, you can create a new default light like so:

var light = new Light();

BACKFACE CULLING AND 3D LIGHTING

419

Or, you can create a light with a particular position and location like this:

var light = new Light(100, 200, 300, 0.5);

Two things are important here. The distance between the object and light position has no affect on how
brightly the object is lit. The coordinates of the light are used only to calculate the angle that the light ray
bounces off the object and into the viewpoint for us to see it. Because the strength of the light you are
creating does not fall off with distance, changing the x, y, and z to -1,000,000 or down to -1 makes no
difference to the object brightness. Only the brightness property changes that characteristic of the light.
You can certainly add this functionality, altering the brightness value based on the distance from the light
to the area it is hitting, but that exercise is left to you.

Also, brightness must be a number from 0.0 to 1.0. If you go outside of that range, you can wind up with
some odd results from the forthcoming calculations. This is something you can play around with, but for
more realistic lighting effects, you want to stay within this range. For this reason, the brightness property
is adjusted using the method setBrightness. This enables us to validate the number that is passed in, to
make sure it falls within the specified range; this is known as clamping the light.

Now, the light source changes the brightness of the color of a triangle, based on the angle of the light that
is falling on that polygon. If the polygon is facing directly at the light, it displays the full value of its color. As
it turns away from the light, it gets darker and darker. Finally, when it is facing in the opposite direction of
the light source, it is completely in shadow and colored black.

Because Triangle objects keep track of their own color and know how to draw themselves, each triangle
also needs access to this light to perform calculations in its drawing function. So, in the Triangle
constructor, give it a light property:

function Triangle (a, b, c, color) {
 this.pointA = a;
 this.pointB = b;
 this.pointC = c;
 this.color = (color === undefined) ? "#ff0000" : utils.parseColor(color);
 this.lineWidth = 1;
 this.alpha = 1;
 this.light = null;
}

Then in the main script, assign each triangle a reference to the light object that we created:

triangles.forEach(function (triangle) {
 triangle.light = light;
});

Now, each Triangle object requires a way to look at its base color and the angle and brightness of the
light, and return an adjusted color. Here is that method:

Triangle.prototype.getAdjustedColor = function () {
 var color = utils.parseColor(this.color, true),

CHAPTER 17

420

 red = color >> 16,
 green = color >> 8 & 0xff,
 blue = color & 0xff,
 lightFactor = this.getLightFactor();

 red *= lightFactor;
 green *= lightFactor;
 blue *= lightFactor;
 return utils.parseColor(red << 16 | green << 8 | blue);
};

This method first splits the triangle’s base color into red, green, and blue components (see Chapter 4). The
command utils.parseColor(this.color, true) converts the color from a string format to a number.
There is a call to getLightFactor, which we'll look at next, but for now, it returns a number from 0.0 to
1.0. This is the amount to alter the color of that particular triangle, 1.0 being full brightness, and 0.0 being
black.

Each of the component colors is then multiplied by that light factor, and they are joined back into a single
color value—using utils.parseColor to convert it back to a string—and is returned as the adjusted
color. This is the color of the triangle, based on its lighting.

Now, how do you come up with this lightFactor method? Let’s look:

Triangle.prototype.getLightFactor = function () {
 var ab = {
 x: this.pointA.x – this.pointB.x,
 y: this.pointA.y – this.pointB.y,
 z: this.pointA.z – this.pointB.z
 };
 var bc = {
 x: this.pointB.x – this.pointC.x,
 y: this.pointB.y – this.pointC.y,
 z: this.pointB.z – this.pointC.z
 };
 var norm = {
 x: (ab.y * bc.z) - (ab.z * bc.y),
 y:-((ab.x * bc.z) - (ab.z * bc.x)),
 z: (ab.x * bc.y) - (ab.y * bc.x)
 };
 var dotProd = norm.x * this.light.x +
 norm.y * this.light.y +
 norm.z * this.light.z;
 var normMag = Math.sqrt(norm.x * norm.x +
 norm.y * norm.y +
 norm.z * norm.z);
 var lightMag = Math.sqrt(this.light.x * this.light.x +
 this.light.y * this.light.y +
 this.light.z * this.light.z);
 return (Math.acos(dotProd / (normMag * lightMag)) / Math.PI) * this.light.brightness;
};

Now that is quite a function to take in. To fully understand all that’s going on here, you need a
good grasp of advanced vector math, but we'll walk through the basics of it.

BACKFACE CULLING AND 3D LIGHTING

421

First, you need to find the normal of the triangle. This is a vector that is perpendicular to the
surface of the triangle, depicted in Figure 17-5 and mentioned briefly in the last chapter.
Imagine you had a triangular piece of wood and you put a nail through the back of it so it stuck
out directly through the face. The nail represents the normal of that surface. If you study anything
about 3D rendering and lighting, you see all kinds of references to surface normals.

normal

A

C

B

Figure 17-5. The normal is perpendicular to the surface of the triangle.

You can find the normal of a surface by taking two vectors that make up that surface plane and calculating
their cross product. A cross product of two vectors is a new vector, which is perpendicular to those two.
The two vectors you use are the lines between points A and B, and points B and C. Each vector is held in
an object with x, y, and z properties.

var ab = {
 x: this.pointA.x – this.pointB.x,
 y: this.pointA.y – this.pointB.y,
 z: this.pointA.z – this.pointB.z
};

var bc = {
 x: this.pointB.x – this.pointC.x,
 y: this.pointB.y – this.pointC.y,
 z: this.pointB.z – this.pointC.z
};

Then you calculate the normal, which is another vector, and you call this object norm. The following
code computes the cross product of the vectors ab and bc, using a standard formula from linear
algebra:

var norm = {
 x: (ab.y * bc.z) - (ab.z * bc.y),
 y: -((ab.x * bc.z) - (ab.z * bc.x)),
 z: (ab.x * bc.y) - (ab.y * bc.x)
};

Now you need to know how closely that normal aligns with the angle of the light. Another bit of vector math
is the dot product, which is the difference between two vectors. You have the vector of the normal, and the
vector of the light. The following calculates that dot product:

var dotProd = norm.x * this.light.x +

CHAPTER 17

422

 norm.y * this.light.y +
 norm.z * this.light.z;

As you can see, dot products are a bit simpler than cross products!

Next, you calculate the magnitude of the normal and the magnitude of the light, which you might recognize
as the 3D version of the Pythagorean Theorem:

var normMag = Math.sqrt(norm.x * norm.x +
 norm.y * norm.y +
 norm.z * norm.z);
var lightMag = Math.sqrt(this.light.x * this.light.x +
 this.light.y * this.light.y +
 this.light.z * this.light.z);

This lightMag variable is calculated every time a triangle is rendered, which allows for a moving light
source. If you know that the light source is going to be fixed, you can create this variable at the beginning
of the code and calculate it one time as soon as the light is created or assigned to the triangle.
Alternatively, you can add a lightMag property to the Light class. This can be calculated any time its x,
y, or z properties changed.

Finally, you take all these pieces you just calculated, and put them into the magic formula:

return (Math.acos(dotProd / (normMag * lightMag)) / Math.PI) * this.light.brightness;

Basically, dotProd is one measurement and (normMag * lightMag) is another. Dividing these two gives
you a ratio. Recall from our discussion in Chapter 3 that the cosine of an angle gives you a ratio, and the
arccosine of a ratio gives you an angle. So using Math.acos here on this ratio of measurements gives you
an angle. This is essentially the angle at which the light is striking the surface of the polygon. It is in the
range of 0 to Math.PI radians (0 to 180 degrees), meaning it’s either hitting head on or completely from
behind.

Dividing this angle by Math.PI gives you a percentage, and multiplying that by the percentage of
brightness gives you your final light factor, which you use to alter the base color.

All this was just to get a new color for the surface! Implementing it in your existing code is pretty easy—you
add it to the draw method of the Triangle class. Instead of using the base color, use the adjusted color,
like so:

context.fillStyle = context.strokeStyle = this.getAdjustedColor();

To wrap things up, here is the complete and final code for triangle.js and the document 03-extruded-
a-light.html.

First, here’s the Triangle class:

function Triangle (a, b, c, color) {
 this.pointA = a;
 this.pointB = b;
 this.pointC = c;
 this.color = (color === undefined) ? "#ff0000" : utils.parseColor(color);
 this.lineWidth = 1;
 this.alpha = 1;

BACKFACE CULLING AND 3D LIGHTING

423

 this.light = null;
}

Triangle.prototype.draw = function (context) {
 if (this.isBackface()) {
 return;
 }

 context.save();
 context.lineWidth = this.lineWidth;
 context.fillStyle = context.strokeStyle = this.getAdjustedColor();
 context.beginPath();
 context.moveTo(this.pointA.getScreenX(), this.pointA.getScreenY());
 context.lineTo(this.pointB.getScreenX(), this.pointB.getScreenY());
 context.lineTo(this.pointC.getScreenX(), this.pointC.getScreenY());
 context.closePath();
 context.fill();
 if (this.lineWidth > 0) {
 context.stroke();
 }
 context.restore();
};

Triangle.prototype.isBackface = function () {
 var cax = this.pointC.getScreenX() - this.pointA.getScreenX(),
 cay = this.pointC.getScreenY() - this.pointA.getScreenY(),
 bcx = this.pointB.getScreenX() - this.pointC.getScreenX(),
 bcy = this.pointB.getScreenY() - this.pointC.getScreenY();
 return (cax * bcy > cay * bcx);
};

Triangle.prototype.getDepth = function () {
 return Math.min(this.pointA.z, this.pointB.z, this.pointC.z);
};

Triangle.prototype.getAdjustedColor = function () {
 var color = utils.parseColor(this.color, true),
 red = color >> 16,
 green = color >> 8 & 0xff,
 blue = color & 0xff,
 lightFactor = this.getLightFactor();
 red *= lightFactor;
 green *= lightFactor;
 blue *= lightFactor;
 return utils.parseColor(red << 16 | green << 8 | blue);
};

Triangle.prototype.getLightFactor = function () {
 var ab = {
 x: this.pointA.x – this.pointB.x,
 y: this.pointA.y – this.pointB.y,
 z: this.pointA.z – this.pointB.z
 };

CHAPTER 17

424

 var bc = {
 x: this.pointB.x – this.pointC.x,
 y: this.pointB.y – this.pointC.y,
 z: this.pointB.z – this.pointC.z
 };
 var norm = {
 x: (ab.y * bc.z) - (ab.z * bc.y),
 y:-((ab.x * bc.z) - (ab.z * bc.x)),
 z: (ab.x * bc.y) - (ab.y * bc.x)
 };
 var dotProd = norm.x * this.light.x +
 norm.y * this.light.y +
 norm.z * this.light.z;
 var normMag = Math.sqrt(norm.x * norm.x +
 norm.y * norm.y +
 norm.z * norm.z);
 var lightMag = Math.sqrt(this.light.x * this.light.x +
 this.light.y * this.light.y +
 this.light.z * this.light.z);
 return (Math.acos(dotProd / (normMag * lightMag)) / Math.PI) *
 this.light.brightness;
};

And here's the code for example 03-extruded-a-light.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Extruded A Light</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="point3d.js"></script>
 <script src="triangle.js"></script>
 <script src="light.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 mouse = utils.captureMouse(canvas),
 light = new Light(),
 points = [],
 triangles = [],
 fl = 250,
 vpX = canvas.width / 2,
 vpY = canvas.height / 2,
 angleX, angleY; //referenced in drawFrame and move

 //first set
 points[0] = new Point3d(-50, -250, -50);
 points[1] = new Point3d(50, -250, -50);

BACKFACE CULLING AND 3D LIGHTING

425

 points[2] = new Point3d(200, 250, -50);
 points[3] = new Point3d(100, 250, -50);
 points[4] = new Point3d(50, 100, -50);
 points[5] = new Point3d(-50, 100, -50);
 points[6] = new Point3d(-100, 250, -50);
 points[7] = new Point3d(-200, 250, -50);
 points[8] = new Point3d(0, -150, -50);
 points[9] = new Point3d(50, 0, -50);
 points[10] = new Point3d(-50, 0, -50);

 //second set
 points[11] = new Point3d(-50, -250, 50);
 points[12] = new Point3d(50, -250, 50);
 points[13] = new Point3d(200, 250, 50);
 points[14] = new Point3d(100, 250, 50);
 points[15] = new Point3d(50, 100, 50);
 points[16] = new Point3d(-50, 100, 50);
 points[17] = new Point3d(-100, 250, 50);
 points[18] = new Point3d(-200, 250, 50);
 points[19] = new Point3d(0, -150, 50);
 points[20] = new Point3d(50, 0, 50);
 points[21] = new Point3d(-50, 0, 50);

 points.forEach(function (point) {
 point.setVanishingPoint(vpX, vpY);
 point.setCenter(0, 0, 200);
 });

 triangles[0] = new Triangle(points[0], points[1], points[8], "#cccccc");
 triangles[1] = new Triangle(points[1], points[9], points[8], "#cccccc");
 triangles[2] = new Triangle(points[1], points[2], points[9], "#cccccc");
 triangles[3] = new Triangle(points[2], points[4], points[9], "#cccccc");
 triangles[4] = new Triangle(points[2], points[3], points[4], "#cccccc");
 triangles[5] = new Triangle(points[4], points[5], points[9], "#cccccc");
 triangles[6] = new Triangle(points[9], points[5], points[10], "#cccccc");
 triangles[7] = new Triangle(points[5], points[6], points[7], "#cccccc");
 triangles[8] = new Triangle(points[5], points[7], points[10], "#cccccc");
 triangles[9] = new Triangle(points[0], points[10], points[7], "#cccccc");
 triangles[10] = new Triangle(points[0], points[8], points[10], "#cccccc");
 triangles[11] = new Triangle(points[11], points[19], points[12], "#cccccc");
 triangles[12] = new Triangle(points[12], points[19], points[20], "#cccccc");
 triangles[13] = new Triangle(points[12], points[20], points[13], "#cccccc");
 triangles[14] = new Triangle(points[13], points[20], points[15], "#cccccc");
 triangles[15] = new Triangle(points[13], points[15], points[14], "#cccccc");
 triangles[16] = new Triangle(points[15], points[20], points[16], "#cccccc");
 triangles[17] = new Triangle(points[20], points[21], points[16], "#cccccc");
 triangles[18] = new Triangle(points[16], points[18], points[17], "#cccccc");
 triangles[19] = new Triangle(points[16], points[21], points[18], "#cccccc");
 triangles[20] = new Triangle(points[11], points[18], points[21], "#cccccc");
 triangles[21] = new Triangle(points[11], points[21], points[19], "#cccccc");
 triangles[22] = new Triangle(points[0], points[11], points[1], "#cccccc");
 triangles[23] = new Triangle(points[11], points[12], points[1], "#cccccc");
 triangles[24] = new Triangle(points[1], points[12], points[2], "#cccccc");
 triangles[25] = new Triangle(points[12], points[13], points[2], "#cccccc");

CHAPTER 17

426

 triangles[26] = new Triangle(points[3], points[2], points[14], "#cccccc");
 triangles[27] = new Triangle(points[2], points[13], points[14], "#cccccc");
 triangles[28] = new Triangle(points[4], points[3], points[15], "#cccccc");
 triangles[29] = new Triangle(points[3], points[14], points[15], "#cccccc");
 triangles[30] = new Triangle(points[5], points[4], points[16], "#cccccc");
 triangles[31] = new Triangle(points[4], points[15], points[16], "#cccccc");
 triangles[32] = new Triangle(points[6], points[5], points[17], "#cccccc");
 triangles[33] = new Triangle(points[5], points[16], points[17], "#cccccc");
 triangles[34] = new Triangle(points[7], points[6], points[18], "#cccccc");
 triangles[35] = new Triangle(points[6], points[17], points[18], "#cccccc");
 triangles[36] = new Triangle(points[0], points[7], points[11], "#cccccc");
 triangles[37] = new Triangle(points[7], points[18], points[11], "#cccccc");
 triangles[38] = new Triangle(points[8], points[9], points[19], "#cccccc");
 triangles[39] = new Triangle(points[9], points[20], points[19], "#cccccc");
 triangles[40] = new Triangle(points[9], points[10], points[20], "#cccccc");
 triangles[41] = new Triangle(points[10], points[21], points[20], "#cccccc");
 triangles[42] = new Triangle(points[10], points[8], points[21], "#cccccc");
 triangles[43] = new Triangle(points[8], points[19], points[21], "#cccccc");

 triangles.forEach(function (triangle) {
 triangle.light = light;
 });

 function move (point) {
 point.rotateX(angleX);
 point.rotateY(angleY);
 }

 function depth (a, b) {
 return (b.getDepth() - a.getDepth());
 }

 function draw (triangle) {
 triangle.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 angleX = (mouse.y - vpY) * 0.0005;
 angleY = (mouse.x - vpX) * 0.0005;

 points.forEach(move);
 triangles.sort(depth);
 triangles.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

BACKFACE CULLING AND 3D LIGHTING

427

As you can see, there are only minor changes to the main document, because most of the work happens
in Triangle class. However, all the triangles are now the same color, which shows off the lighting effect
much better (see Figure 17-6).

Figure 17-6. 3D solid with backface culling, depth sorting, and 3D lighting

Summary
That was a lot to cover in just a few pages! But the results are incredible and you now have the tools to
make some stunning 3D animations. There are a lot of variations you can throw in here; for instance, in the
last example, the light is stationary and the object moves. Try moving the light around instead. (It’s just a
matter of altering its x, y, and/or z positions.)

That about wraps up our main discussion of 3D. In the next chapter, you look at matrix math, which is
often used as an alternative to some of the scaling and rotation methods you used so far, and thus is
something you often see in 3D programming.

Part V

Additional Techniques

431

Chapter 18

Matrix Math

What we’ll cover in this chapter:

 Matrix basics

 Matrix operations

 Canvas transforms

Although this chapter does not introduce any new types of motion or methods of rendering graphics, it
does introduce matrices, which provide an alternative way of applying visual transformations, something
we've done throughout the book.

Matrices are used quite often in 3D systems for rotating, scaling, and translating (moving) 3D points. They
are also used quite a bit in various 2D graphics transformations. In this chapter, you see how to create a
system of matrices to manipulate objects and look at several methods built into the canvas that are used to
work with matrices.

Matrix basics
A matrix, by simplest definition, is a grid of numbers. It can have one or more horizontal rows and one or
more vertical columns. Figure 18-1 shows some matrices.

CHAPTER 18

432

1 2 3 1 2 3

4 5 6

7

1

4

78 9

Figure 18-1. A 3 × 3 matrix, a 1 × 3 matrix, and a 3 × 1 matrix; each uses the rows by columns notation.

Any particular matrix is usually represented by a variable, such as M. To refer to a specific cell in a matrix,
you use the variable name with the row and column number in subscript. For example, if the 3 × 3 matrix
in Figure 18-1 is denoted as M, then using the rows by colums notation, M2,3 is equal to 6, as it refers to the
second row, third column. Matrix indices start at 1, which is different than the notation for JavaScript
arrays, which start at 0.

The cells of a matrix can contain not only numbers, but also formulas and variables. If you’ve ever used a
spreadsheet, it is basically one big matrix. You can have one cell hold the sum of a column, and another
cell multiply that sum by some number that’s held in another cell, and so on. So, you see that matrices can
be rather useful.

Matrix operations
A spreadsheet is kind of a free-form matrix, but the matrices we use are a lot more structured and have all
kinds of rules for what we can do with them and how to do those things.

There are usually two ways to teach matrix math. The first approach describes how to do the operations in
detail, using matrices full of seemingly random numbers. You learn the rules, but you have no idea why
you are doing certain things or what the result means. It’s like playing a game where you arrange the
numbers in a pretty pattern.

The second approach is to describe the contents of the matrices in detail and skim over the operation.
Using vague instructions such as “and then you just multiply these two matrices together and get this …”,
leaving the reader with no idea how this multiplication is done.

In this chapter, we walk the line between these two methods. We start by looking at matrices that contain
meaningful values, and then we see how to manipulate them.

Matrix addition
One of the more common uses of matrices is manipulating 3D points, which contain a value for its x, y,
and z positions. We can easily view this as a 1 × 3 matrix, like so:

x y z

To move this point in space—also called translating the point—you need to know how far to move it on
each axis. You can put this in a translation matrix, which is another 1 × 3 matrix that looks something like
this:

TRIGONOMETRY FOR ANIMATION

433

dx dy dz

Here, dx, dy, and dz are the distances to move on each axis. Now you need to apply the transformation
matrix to the point matrix; this is done with matrix addition. You just add each corresponding cell together
to make a new matrix containing the sum of each cell. To add two matrices, they need to be the same
size. So for translation, you do this:

x y z + dx dy dz = (x + dx) (y + dy) (z + dz)

The resulting matrix can be called x1, y1, z1, and it contains the new position of the point after it has been translated.
So, if you had a point at 100, 50, 75 on x, y, z, and then wanted to move it -10, 20, -35, here’s how that would look:

100 50 75 + -10 20 -35 = (100 - 10) (50 + 20) (75 - 35)

Thus, when you perform the addition, you get 90, 70, 40 as the point’s new position. You probably already
noticed the correlation to velocity, where the velocity on each axis is added to the position on that axis. It's
the same here, but we’re just looking at it a bit differently.

If you had a larger matrix, you would still use the same process, matching up the cells. We won’t be
dealing with matrix addition for anything larger than 1 × 3 matrices here, but here's an abstract example:

a b c j k l (a + j) (b + k) (c + l)
d e f + m n o = (d + m) (e + n) (f + o)
g h i p q r (g + p) (h + q) (i + r)

That’s all you need to know about matrix addition. After we cover matrix multiplication, you see how to put
together some actual functions to use in a matrix-based 3D engine.

Matrix multiplication
A more common way of calculating 3D transformations is using matrix multiplication, which is usually used
for scaling and rotating. We won’t actually use 3D scaling in this book, as the examples cover using either
points, which can’t be scaled, or a drawn shape, which does not have any 3D “thickness” and is therefore
scaled only in two dimensions. Of course, you can build a more complex engine that can scale an entire
3D solid, but you’d then need to write additional functions that would alter the 3D points of the soild to the
new size. That’s beyond the scope of what we’re doing here, but because scaling is a simple and clear
demonstration of matrix multiplication, we’ll run through an example.

Scaling with a matrix

First, you need to know an object’s existing width, height, and depth—in other words, its measurement of
size on each of the three axes. This creates a 1 × 3 matrix:

w h d

Here, w, h, and d stand for width, height, and depth. Next, you need a scaling matrix like the following:

sx 0 0
 0 sy 0
 0 0 sz

CHAPTER 18

434

In this matrix, sx, sy, and sz are the percentages to scale on that particular axis. These would be in terms
of a fraction or decimal, so that 1.0 is 100%, 2.0 is 200%, 0.5 is 50%, etc. You’ll see why the matrix is laid
out this way in a minute.

One thing you need to know about matrix multiplication is that in order to multiply two matrices, the first
matrix must have the same number of columns as the second one has rows. The first one can have any
number of rows, and the second can have any number of columns, as long as these criteria have been
met. In this case, you are fine, as the first matrix has three columns (w, h, d), and the scaling matrix has
three rows.

So, how do you multiply these things? Let's just go ahead and do it and see if you can see the pattern:

 sx 0 0
w h d * 0 sy 0
 0 0 sz

This produces the following matrix as a result:

(w * sx + h * 0 + d * 0) (w * 0 + h * sy + d * 0) (w * 0 + h * 0 + d * sz)

When you get rid of all the zeros, it ends up as this:

(w * sx) (h * sy) (d * sz)

This is logical, as you are multiplying the width (x-axis measurement) by the x scaling factor, the height by
the y scaling factor, and the depth by the z scaling factor. But, what exactly did we do there? All those
zeros kind of clutter things up, so let’s abstract it a bit to make the pattern clearer.

 a b c
u v w * d e f
 g h i

Now you can see the pattern emerge in this result:

(u * a + v * d + w * g) (u * b + v * e + w * h) (u * c + v * f + w * i)

You can see that you move across the first row of the first matrix (u, v, w) and multiply by each first
element in each row of the second (a, d, g). Adding those together gives you the first element for the first
row of the resulting matrix. Doing the same with the second column of the second matrix (b, e, h) gives
you the second column result.

If you have more than one row in the first matrix, you repeat the actions with that second row, which gives
you the second row of the result:

u v w a b c
x y z * d e f
 g h i

This returns a 2 × 3 matrix:

(u * a + v * d + w * g) (u * b + v * e + w * h) (u * c + v * f + w * i)
(x * a + y * d + z * g) (x * b + y * e + z * h) (x * c + y * f + z * i)

TRIGONOMETRY FOR ANIMATION

435

The size of the resulting matrix is the number of rows in the first matrix by the number of columns in the
second matrix.

Now let’s see some matrix multiplication for something that you can actually use: coordinate rotation.
Hopefully this scaling example will make it more clear what we’re doing.

Coordinate rotation with a matrix

First, we'll use the 3D point matrix:

x y z

This holds the coordinates of the point you want to rotate. Now you need a rotation matrix, which, as you
know, can rotate on any one of three axes. You’ll create each of these types of rotation as separate
matrices. Let’s start with an x-axis rotation matrix:

1 0 0
0 cos sin
0 -sin cos

This matrix contains some sines and cosines, but sines and cosines of what? Well, it’s the sine or cosine
of whatever angle you’re rotating by. If you’re rotating that point by 45 degrees, it would be the sine and
cosine of 45 degrees. (Of course in code, you’d use radians.)

Now, let’s perform matrix multiplication with this and a 3D point matrix and see the results.

 1 0 0
x y z * 0 cos sin
 0 -sin cos

For that, you get:

(x * 1 + y * 0 + z * 0) (x * 0 + y * cos – z * sin) (x * 0 + y * sin + z * cos)

Cleaning that up gives you:

(x) (y * cos – z * sin) (z * cos + y * sin)

We can write this in JavaScript as:

x = x;
y = y * Math.cos(rotation) – z * Math.sin(rotation);
z = z * Math.cos(rotation) + y * Math.sin(rotation);

If you look back to the section about 3D coordinate rotation in Chapter 15, you can see this is exactly how
to accomplish x-axis rotation. This isn’t a big surprise, as matrix math is just a different way of organizing
various formulas and equations.

From here, you can easily create a matrix for y-axis rotation:

 cos 0 sin
 0 1 0
-sin 0 cos

CHAPTER 18

436

Finally, here is one for rotation on the z-axis:

 cos sin 0
-sin cos 0
 0 0 1

It's good practice to go ahead and multiply each of these by an x, y, z matrix and verify that you get the
same formulas you used for coordinate rotation on those two axes in Chapter 15.

Coding with matrices

Now you know enough of the basics to start programming with matrices. We're going to reuse and alter
the 13-rotate-xy.html example from Chapter 15, so open that up. That exercise had a rotateX and
rotateY function to perform the 3D coordinate rotation. We will change these so they work with matrices.

Start with the rotateX function. The updated code takes the ball’s x, y, z coordinates, puts them in a 1 × 3
matrix, and then creates an x rotation matrix based on the given angle. These matrices are in the form of
arrays. It then multiplies these two matrices together using the matrixMultiply function, which you also
need to create. The result of the multiplication is another array, so you have to assign those values back to
the ball’s x, y, and z coordinates. Here’s the new version of the rotateX function:

function rotateX (ball, angle) {
 var position = [ball.xpos, ball.ypos, ball.zpos],
 sin = Math.sin(angle),
 cos = Math.cos(angle),
 xRotMatrix = [];

 xRotMatrix[0] = [1, 0, 0];
 xRotMatrix[1] = [0, cos, sin];
 xRotMatrix[2] = [0, -sin, cos];

 var result = matrixMultiply(position, xRotMatrix);
 ball.xpos = result[0];
 ball.ypos = result[1];
 ball.zpos = result[2];
}

And here is the function used for matrix multiplication:

function matrixMultiply (matrixA, matrixB) {
 var result = [];
 result[0] = matrixA[0] * matrixB[0][0] +
 matrixA[1] * matrixB[1][0] +
 matrixA[2] * matrixB[2][0];
 result[1] = matrixA[0] * matrixB[0][1] +
 matrixA[1] * matrixB[1][1] +
 matrixA[2] * matrixB[2][1];
 result[2] = matrixA[0] * matrixB[0][2] +
 matrixA[1] * matrixB[1][2] +
 matrixA[2] * matrixB[2][2];
 return result;
}

TRIGONOMETRY FOR ANIMATION

437

This function is hard-coded to multiply a 1 × 3 matrix by a 3 × 3 matrix, because that’s what we need it to
do. You can make a more dynamic function that can handle any sized matrices using iteration techniques,
but let’s keep things simple here.

Finally, create the rotateY function, which, if you understand the rotateX function, should look similar.
You just create a y rotation matrix instead of an x rotation matrix.

function rotateY (ball, angle) {
 var position = [ball.xpos, ball.ypos, ball.zpos],
 sin = Math.sin(angle),
 cos = Math.cos(angle),
 yRotMatrix = [];

 yRotMatrix[0] = [cos, 0, sin];
 yRotMatrix[1] = [0, 1, 0];
 yRotMatrix[2] = [-sin, 0, cos];

 var result = matrixMultiply(position, yRotMatrix);
 ball.xpos = result[0];
 ball.ypos = result[1];
 ball.zpos = result[2];
}

Save the updated example as 01-rotate-xy.html and run it in your browser. Compare the output of this
to the version from Chapter 15 and they should look exactly the same. If you want, you can also create a
rotateZ function, but because we don’t actually need that for this example, that's left as an exercise for
you to do on your own.

Even if you don’t use matrices for 3D, you’ll still find them useful for other purposes. We cover these next.
Their use here provides a nice introduction because you can see how they relate to formulas you already
know. Also, because matrices are used extensively in other graphics environments, if your programming
life takes you elsewhere, you'll be ready!

Canvas transforms
One poweful feature of matricies is that they can be used to manipulate the canvas display. By applying a
transformation, we can rotate, scale, and translate how the shapes are drawn, altering their form, size, and
position. The canvas context uses a 3 × 3 transformation matrix set up like so:

a c dx
b d dy
u v w

This setup is known as an affine transformation, which means we are representing a 2-vector (x, y) as a 3-
vector (x, y, 1). Because we won't use u, v, w, the extra space is filled in with 0, except for the lower-right
corner that is set to 1. These remain unchanged, so you don't have to worry about them.

You can set the transformation of the canvas context by calling:

context.setTransform(a, b, c, d, dx, dy);

CHAPTER 18

438

To multiply the current canvas context transformation with a matrix, call:

context.transform(a, b, c, d, dx, dy);

If the matrix elements are all stored in an array, it can be handy to apply the entire array as arguments:

context.transform.apply(context, [a, b, c, d, dx, dy]);

If there haven't been any transformations, then it's assumed we're using an identity matrix or a null
transform. This matrix is described as:

1 0 0
0 1 0
0 0 1

Multiplying this matrix does nothing to the transformation. So, if you ever want to reset the canvas context,
set its transformation to an identity matrix, like so:

context.setTransform(1, 0, 0, 1, 0, 0);

But back to the components of a matrix, what do all these letters mean? Well, dx and dy control the
position of the canvas context by translating it on the x and y axis—remember coordinate 0, 0 is at the top-
left corner. The a, b, c, and d positions in the matrix are a little trickier because they are so dependent on
each other. If you set b and c to 0, you can use a and d to scale the object on the x and y axis. If you set a
and d to 1, you can use b and c to skew the object on the y and x axis. And, you can use a, b, c, and d
together in a way that you’ll find familiar when laid out like this:

cos -sin dx
sin cos dy
 u v w

This contains a rotation matrix. Naturally, cos and sin refer to the cosine and sine of an angle (in radians)
that you wish to rotate the canvas context by. Let’s try that one out in the next example, 02-matrix-
rotate.html, which draws a red box in the animation loop:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Matrix Rotate</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 angle = 0;

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);

TRIGONOMETRY FOR ANIMATION

439

 context.clearRect(0, 0, canvas.width, canvas.height);

 angle += 0.03;

 var cos = Math.cos(angle),
 sin = Math.sin(angle),
 dx = canvas.width / 2,
 dy = canvas.height / 2;

 context.save();
 context.fillStyle = "#ff0000";
 context.transform(cos, sin, -sin, cos, dx, dy);
 context.fillRect(-50, -50, 100, 100);
 context.restore();
 }());
 };
 </script>
 </body>
</html>

Here you have an angle variable that increases on each frame. We find the sine and cosine of that angle
and feed them to the context.transform method, in the way specified for rotation. We also apply a
translation based on the canvas width and height, centering the rectangle. Test this and you have a
spinning box.

In the drawFrame function, we wrapped the rectangle drawing code within calls to context.save and
context.restore. These methods are used to save and retrieve the canvas drawing state, which is
basically a snapshot of all the styles and transformations that have been applied. By using these, we can
traverse through multiple matrix transformations by pushing and popping to the stack. You can nest
multiple save and restores; just be mindful of which transformation you’re working on. If you ever need to
reset the canvas context, just set an identity matrix.

To demonstrate something a little more practical, we look at skewing. Skewing means stretching
something out on one axis so that one part goes one way and the other part goes the other way. Think of
italic letters and the way they slope; this is like a skew. The top part of the letters goes to the right and the
bottom part to the left. This is something that can be tricky to implement using formulas, but is easy when
applying a transformation matrix. As mentioned previously, you set a and d of the matrix to 1, and the b
value is the amount to skew on the y-axis, and c controls the skew on the x-axis. Let’s try an x skew first.
In 03-skew-x.html, we used almost the exact same setup as the last example, but since we're using the
mouse position, make sure you include our helpful utility function at the top of the script:

var mouse = utils.captureMouse(canvas);

Now change how the matrix is applied in the drawFrame function:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var skewX = (mouse.x - canvas.width / 2) * 0.01,
 dx = canvas.width / 2,
 dy = canvas.height / 2;

CHAPTER 18

440

 context.save();
 context.fillStyle = "#ff0000";
 context.transform(1, 0, skewX, 1, dx, dy);
 context.fillRect(-50, -50, 100, 100);
 context.restore();
}());

The skewX variable is relative to the mouse’s x position, and offset from the center of the canvas. The
value is multiplied by 0.01 to keep the skew in a manageable range; it is then fed to context.transform.
When you test this example, you can see the entire shape is skewed, as shown in Figure 18-2.

Figure 18-2. Rectangle skewed on the x-axis

In the example 04-skew-xy.html, we did the same thing on the y-axis:

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var skewX = (mouse.x - canvas.width / 2) * 0.01,
 skewY = (mouse.y - canvas.height / 2) * 0.01,
 dx = canvas.width / 2,
 dy = canvas.height / 2;

 context.save();
 context.fillStyle = "#ff0000";
 context.transform(1, skewY, skewX, 1, dx, dy);
 context.fillRect(-50, -50, 100, 100);
 context.restore();
}());

Figure 18-3 shows you how skewing a shape on two axes looks.

Figure 18-3. Rectangle skewed on both axes

It’s amazing to be able to do this kind of effect so easily. Skewing is used often for pseudo-3D, and as you
move your mouse around in the previous example, you can see how it appears to have some

TRIGONOMETRY FOR ANIMATION

441

perspective—as if the shape leaned over and spun around. It’s not particularly accurate 3D, but it can be
used for some convincing effects.

Summary
Matrices are powerful tools and are used in many different applications of computer graphics. They are
used extensively for computer vision filters, image manipulation (such as edge detection), sharpening, and
blur transformations. As you continue into more advanced computer graphics programming, you'll no
doubt see matrices used extensively.

We covered the basics of what matrices are, how to use and combine them, and we created some cool
effects with them in this chapter. Now that you have the concepts in your head, you’re ready to take
advantage of the power that matrices can offer, and hopefully won’t run away when you encounter them
elsewhere.

Coming up in the final chapter, we tie up a few loose ends and look at some other tips and tricks. Topics
such as random motion, random distribution, and integrating sound; these are techniques that can make
your animations really interesting.

443

Chapter 19

Tips and Tricks

What we’ll cover in this chapter:

 Brownian (random) motion

 Random distribution

 Interval- and timer-based animation

 Collisions between same-mass objects

 Integrating sound

Well, you made it to the last chapter. This chapter has been set aside for all the little things that didn't
really fit in anywhere else. Because these various topics are just random bits and pieces (albeit useful
bits), each section is a stand-alone unit.

Brownian (random) motion
One day, a botanist named Robert Brown looked at some grains of pollen in a drop of water and found that
they randomly moved around. Even though there was no current or motion in the water, those little grains
never settled down. He found the same thing happened with dust particles, so he concluded that the pollen
swam on its own. Even though he didn't know why they behaved like this and there wasn't a scientific
explanation for several decades, the phenomenon is named after him—just for noticing it!

Brownian motion is explained by the fact that there are zillions of water molecules in a drop of water and
are in constant motion, even if the water appears to be still. Some of these molecules collide with the
pollen or dust particle, and in doing so, transfer some of their momentum to it. Because even a speck of

CHAPTER 19

444

dust is a million times heavier than a single water molecule, each collision doesn’t do much. But when you
have so many millions of collisions per second, it starts to add up.

Some of the molecules might hit on one side, and some on the other. Overall, they are going to generally
average out. But over time, you see fluctuations. Where more molecules hit, say, on the left side, is
enough to start the particle moving a bit to the right. Then more might hit on the bottom, and the particle
moves upward. Again, these eventually average out, so it doesn’t usually result in much momentum in any
one direction. You get this random floating-around motion.

We can easily simulate effect in an animation. On each frame, you calculate random numbers to add to
the x and y velocity of a moving object. The random numbers should be calculated to be either positive or
negative, and usually quite small, say in a range from -0.1 to +0.1. You can do that like so:

vx += Math.random() * 0.2 – 0.1;
vy += Math.random() * 0.2 - 0.1;

Multiplying the random decimal by 0.2 gives you a number from 0.0 to 0.2, and subtracting 0.1 makes it -
0.1 to 0.1. It’s important to add some friction into this, otherwise the velocities will build up, and things zip
around unnaturally. In the example 01-brownian-1.html, we create 50 particles and have them floating
around with Brownian motion. The particles are instances of our familiar Ball class, made small and
colored black. Here is the code:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Brownian 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 dots = [],
 numDots = 50,
 friction = 0.95;

 for (var dot, i = 0; i < numDots; i++) {
 dot = new Ball(1, "#000000");
 dot.x = Math.random() * canvas.width;
 dot.y = Math.random() * canvas.height;
 dot.vx = 0;
 dot.vy = 0;
 dots.push(dot);
 }

 function draw (dot) {
 dot.vx += Math.random() * 0.2 – 0.1;

TIPS AND TRICKS

445

 dot.vy += Math.random() * 0.2 – 0.1;
 dot.x += dot.vx;
 dot.y += dot.vy;
 dot.vx *= friction;
 dot.vy *= friction;

 if (dot.x > canvas.width) {
 dot.x = 0;
 } else if (dot.x < 0) {
 dot.x = canvas.width;
 }
 if (dot.y > canvas.height) {
 dot.y = 0;
 } else if (dot.y < 0) {
 dot.y = canvas.height;
 }

 dot.draw(context);
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 dots.forEach(draw);
 }());
 };
 </script>
 </body>
</html>

Most of this setup is old news to you, so we put the relevant parts in bold. Figure 19-1 shows how running
this code appears on screen.

CHAPTER 19

446

Figure 19-1. Brownian motion without the motion

In the next example, 02-brownian-2.html, we make some adjustments to the previous exercise so we
can see the path each dot takes. At the top of the script, reduce the number of dots to 20, and add two
variables, decay and decayColor, that we use as the new canvas clearing color:

var numDots = 20,
 decay = 0.01,
 decayColor = utils.colorToRGB("#ffffff", decay);

Because the clearing color contains transparency, we use our utility function utils.colorToRGB to return
the CSS-style RGBA string: 'rgba(255,255,255,0.01)'.

Then remove our normal canvas clearing call to context.clearRect and replace it with a fill rectangle
using our color. Now the animation loop no longer erases the dot's trail on each frame, it just gradually
makes the image lighter and lighter.

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);

 context.fillStyle = decayColor;
 context.fillRect(0, 0, canvas.width, canvas.height);

 dots.forEach(draw);
}());

Run this example in your browser and you can see the path that each dot takes, as shown in Figure 19-2.
The active part of the trail is in black, whereas the remaining path decays to gray.

TIPS AND TRICKS

447

Figure 19-2. Brownian motion with trails

Brownian motion is useful any time you want something to move around as if it were floating with no
particular direction in mind, with no forces really acting on it. You can also add it to an object that has
some other motion applied to it, to give it a sense of randomness. An example is a fly or bee that’s buzzing
around. You might have it move along in some path, but adding in some random motion can make it look
much more lifelike.

Random distribution
From time to time, you might want to create several objects and place them at random positions. You
already did this many times throughout the book, but here we focus on a few different methods of doing
this, and the different results that they give you.

Square distribution
If you want the objects to randomly cover the entire canvas element, that’s simple. Choose a random
number up to the canvas’s width for x, and a random number up to the canvas's height for y. In fact, you
did just that in the previous exercises:

dot.x = Math.random() * canvas.width;
dot.y = Math.random() * canvas.height;

But if you want to clump the dots in near the center of the canvas—say 100 pixels to either side, top, or
bottom of the center—you can do something like the following, which is example 03-random-1.html:

CHAPTER 19

448

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Random 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 numDots = 50;

 while (numDots--) {
 var x = canvas.width / 2 + Math.random() * 200 – 100,
 y = canvas.height / 2 + Math.random() * 200 – 100;

 //draw circle...
 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(x, y, 2, 0, (Math.PI * 2), true);
 context.closePath();
 context.fill();
 }
 };
 </script>
 </body>
</html>

This creates a random number from -100 to +100 and adds it to the center point of the canvas, so all of the
dots are no farther than 100 pixels on either axis from the center. Figure 19-3 shows the result.

TIPS AND TRICKS

449

Figure 19-3. Randomly placed dots

Not too bad. But if you crowd them in a bit more by making more dots (300) and reducing the area to 100
by 100, you notice something odd starting to happen, which you can see in Figure 19-4. Here’s the code
for example 04-random-2.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Random 2</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 numDots = 300;

 while (numDots--) {
 var x = canvas.width / 2 + Math.random() * 100 – 50,
 y = canvas.height / 2 + Math.random() * 100 – 50;

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(x, y, 2, 0, (Math.PI * 2), true);
 context.closePath();
 context.fill();
 }
 };
 </script>
 </body>
</html>

CHAPTER 19

450

Figure 19-4. This method starts to form a square. Not so random looking anymore.

As you see, the dots are starting to form a square. Maybe that’s what you want, but if you try to make
something like an explosion or star system, a square doesn’t look too natural. So let's move on to the next
technique.

Circular distribution
Although slightly more complex than a square distribution, circular distribution really isn’t very difficult to
do. First you need to know the radius of your circle. Let’s keep it at 50, to match the last example. This is
the maximum radius that a dot can be placed from the center. For each dot, you take a random number
from zero to that number to use as the radius. Then you choose a random angle from 0 to PI * 2 radians
(360 degrees), and use a little trigonometry to find an x and y position to place the dot. Here’s the code for
this example, 05-random-3.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Random 3</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 numDots = 300,
 maxRadius = 50;

 while (numDots--) {
 var radius = Math.random() * maxRadius,
 angle = Math.random() * (Math.PI * 2),
 x = canvas.width / 2 + Math.cos(angle) * radius,
 y = canvas.height / 2 + Math.sin(angle) * radius;

TIPS AND TRICKS

451

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(x, y, 2, 0, (Math.PI * 2), true);
 context.closePath();
 context.fill();
 }
 };
 </script>
 </body>
</html>

This gives you a picture like the one in Figure 19-5.

Figure 19-5. Circular random distribution

This is more natural looking for explosions; however, you might notice that the dots seem to be more
clumped around the center of the circle. This is because an even distribution exists along the radius,
meaning there are as many dots in the center as near the edge. But because the center has less area,
they are more crowded.

We can make the dots appear more uniformly distributed throughout the circle, as you can see in example
06-random-4.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Random 4</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 numDots = 300,
 maxRadius = 50;

 while (numDots--) {
 var radius = Math.sqrt(Math.random()) * maxRadius,

CHAPTER 19

452

 angle = Math.random() * (Math.PI * 2),
 x = canvas.width / 2 + Math.cos(angle) * radius,
 y = canvas.height / 2 + Math.sin(angle) * radius;

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(x, y, 2, 0, (Math.PI * 2), true);
 context.closePath();
 context.fill();
 }
 };
 </script>
 </body>
</html>

By taking the square root of the random number—it has a bias toward 1 and away from 0—we can smooth
out the distribution. You can see the result in Figure 19-6.

Figure 19-6. A smoother circular distribution

Biased distribution
You might want to give the random dots free range over the entire canvas, but have them tend to show up
in the middle area. There would be some out on the edges, but the closer to the center you got, the more
there are. This is somewhat like the first circular example, but applied to a rectangular area.

You do this by generating multiple random numbers for each position, and then averaging them to get the
final value. For example, if the canvas element is 400 pixels wide, and you generate an x position for each
object with just one random number, then each object has an equal chance of being anywhere in that
range. But if you generate two random numbers from 0 to 400 and take the average, there’s a bit higher
chance that it will be somewhere in the middle rather than out toward the edges.

Let’s look at that in a little more depth. There is some chance that both numbers might be in a high range,
say from 300 to 400. There’s about the same chance that both might be in a low range, from 0 to 100. But
there’s a higher chance that one will be high and one low, or one middle and one high or low, or even both
in the middle. All of these possibilities average out to place most dots a bit closer to the middle.

To see it in code, as usual, we start on one dimension. Here’s the example 07-random-5.html:

TIPS AND TRICKS

453

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Random 5</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 numDots = 300;

 while (numDots--) {
 var x1 = Math.random() * canvas.width,
 x2 = Math.random() * canvas.width,
 x = (x1 + x2) / 2,
 y = canvas.height / 2 + Math.random() * 50 – 25;

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(x, y, 2, 0, (Math.PI * 2), true);
 context.closePath();
 context.fill();
 }
 };
 </script>
 </body>
</html>

Here you generate two random numbers, x1 and x2, and set the dot’s x position to the average of them.
The y position is simply randomly near the center. This example gives you something like what you see in
Figure 19-7.

Figure 19-7. Biased distribution with one iteration

The effect isn’t too pronounced here, but you can see that there is a bit more clumping in the center, and
more space at the edges. Creating more random numbers and averaging them makes it more obvious. We
can move this into a for loop to make it more versatile in the next example (08-random-6.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Random 6</title>
 <link rel="stylesheet" href="style.css">

CHAPTER 19

454

 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 numDots = 300,
 iterations = 6;

 while (numDots--) {
 for (var i = 0, xpos = 0; i < iterations; i++) {
 xpos += Math.random() * canvas.width;
 }

 var x = xpos / iterations,
 y = canvas.height / 2 + Math.random() * 50 – 25;

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(x, y, 2, 0, (Math.PI * 2), true);
 context.closePath();
 context.fill();
 }
 };
 </script>
 </body>
</html>

Here the iterations variable controls how many numbers you will average. You start with the variable
xpos equal to zero, and add each random number to it. Finally, you divide that total by the number of
iterations for the final value. Figure 19-8 shows the results.

Figure 19-8. Biased distribution with six iterations

It is now easy to do the same thing for the y-axis, and example 09-random-7.html does just that:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Random 7</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>

TIPS AND TRICKS

455

 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 numDots = 300,
 iterations = 6;

 while (numDots--) {
 for (var i = 0, xpos = 0; i < iterations; i++) {
 xpos += Math.random() * canvas.width;
 }

 for (var j = 0, ypos = 0; j < iterations; j++) {
 ypos += Math.random() * canvas.height;
 }

 var x = xpos / iterations,
 y = ypos / iterations;

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(x, y, 2, 0, (Math.PI * 2), true);
 context.closePath();
 context.fill();
 }
 };
 </script>
 </body>
</html>

This gives you a distribution like the one in Figure 19-9.

Figure 19-9. Two-dimensional biased distribution

This is the most random, explosive, star system-like distribution of them all, but it is also the most
computationally intensive to generate.

CHAPTER 19

456

Collision-based distribution
There are times when you might want objects distributed randomly within a particular shape or shapes.
Perhaps the easiest way to accomplish this is to generate a random position on the screen, and use some
collision testing to determine whether this point falls within a certain area of the screen. If the point is
outside the shape, then discard it and generate a new random screen position, which we again test. Keep
doing this process until you find a point that falls within the specified area.

In the next example, we distribute the dots randomly within two circles, which we reference using our Ball
class. We use the distance-based collision detection formula from Chapter 9 to determine whether the dot
falls within either of the two balls. And if it doesn't, keep trying until we find one. This example can be
found in 10-random-8.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Collision-Based Distribution</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 numDots = 300,
 ball0 = new Ball(),
 ball1 = new Ball(80);

 ball0.x = 100;
 ball0.y = canvas.height / 2;
 ball1.x = 300;
 ball1.y = canvas.height / 2;

 function detectCollision(x, y, ball) {
 var dx = x - ball.x,
 dy = y - ball.y,
 dist = Math.sqrt(dx * dx + dy * dy);
 return (dist < ball.radius);
 }

 while (numDots--) {
 //initialize variables
 var x = 0,
 y = 0;

 //if x, y not in ballA AND not in ballB, set new random position
 while (!detectCollision(x, y, ball0) && !detectCollision(x, y, ball1)) {
 //get random position on canvas

TIPS AND TRICKS

457

 x = Math.random() * canvas.width;
 y = Math.random() * canvas.height;
 }

 context.fillStyle = "#000000";
 context.beginPath();
 //x, y, radius, start_angle, end_angle, anti-clockwise
 context.arc(x, y, 2, 0, (Math.PI * 2), true);
 context.closePath();
 context.fill();
 }
 };
 </script>
 </body>
</html>

The distribution for this example can be seen in Figure 19-10.

Figure 19-10. Random distribution within two circles using distance-based collision detection

Here, we test whether a point falls with a circle, but the concept is the same no matter the shape (taking
into account the limitations of collision detection described in Chapter 9). You generate the random
position first, and then test whether it falls within a predefined area using the appropriate collision detection
technique. The trade-off to this method is that you are potentially generating many more positions than you
actually need. This technique is not something you want to run every animation frame, but it can be useful
at the start of your program (for example, in a game, when you set up random starting positions for
enemies).

Timer- and time-based animation
In the book examples so far, the animation is set up by placing the motion code within the drawFrame
function and using window.requestAnimationFrame to build a loop. This is the preferred method for
canvas-based animations, because web browsers can optimize this function for animation without
degrading performance in the rest of the browser. We discussed this in detail in Chapter 2.

But in the days before all the multimedia support found in today's browsers, JavaScript timers were the
only way to set up animations. This method uses intervals to control the animation playback rate, which we
look at next.

CHAPTER 19

458

After that, we discuss time-based animation, a technique that can be used with either frames or timers.

Timer-based animation
The JavaScript functions used for timer-based animations are window.setTimeout and
window.setInterval. Each takes the same two arguments: a function to execute, and a number
specifying the amount of milliseconds to wait before running that function.

function printMessage () {
 console.log("Hello, Timer!");
}

window.setTimeout(printMessage, 2000);

Here, the printMessage function is passed to the window.setTimeout and set to run in 2000
milliseconds. Once you execute this code, wait 2 seconds (1000 milliseconds is 1 second) and the
message prints to the debugging console.

window.setInterval also executes a function, but instead of calling it once, it keeps running it again and
again at the specified interval (unless you tell it to stop).

Setting up a timer-based canvas animation isn’t much different than the other examples in this book that
use window.requestAnimationFrame. You set up an interval for the frame rate and the timer runs the
animation loop. Here's a simple example (document 11-timer.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Timer</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ball = new Ball(),
 fps = 30;

 ball.y = canvas.height / 2;
 ball.vx = 5;

 function drawFrame () {
 context.clearRect(0, 0, canvas.width, canvas.height);

 ball.x += ball.vx;
 ball.draw(context);
 }

TIPS AND TRICKS

459

 window.setInterval(drawFrame, 1000/fps);
 };
 </script>
 </body>
</html>

In this example, the animation loop is set to run at 30 frames per second using a timer. But since there is
no way to accurately determine how fast the code will execute on the end user’s machine, a timer-based
animation winds up being no more accurate than a frame-based animation. You might not see a difference
in a simple example like this one, but in a more processor intensive program, you will see a difference
across computers.

If you really need accuracy, time-based animation is the way to go.

Time-based animation
Time-based animation is the method to use if the speed of objects in your animation needs to be
consistent, which might be the case in some types of games. Neither frame- nor timer-based animation
can be counted on for a specific rate of playback. A complex animation on an older, slower computer might
run at a much lower speed than it was designed for. As you see shortly, when you use a time-based
animation, you get speed you can count on, no matter the frame rate of the animation.

The first thing you need to do is change the way you think about velocity. Up to now, when you saw
something like vx = 5, the units you used were pixels per frame. In other words, the object moved 5
pixels on the x-axis each time a new frame was encountered. In a timer-based animation, it is 5 pixels per
timer interval.

For a time-based animation, you use real measurements of time, such as seconds. Because you deal with
a whole second, rather than a small fraction of one, the value needs to be much higher. If something
moves at 10 pixels per frame at 30 frames per second, that is roughly 300 pixels per second. For the next
example, we take the 05-bouncing-2.html exercise from Chapter 6 and make a few changes, which are
shown in bold (and can also be found in 12-time-based-1.html):

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Time based 1</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {

 var canvas = document.getElementById('canvas'),

CHAPTER 19

460

 context = canvas.getContext('2d'),

 ball = new Ball(),

 start_time = new Date().getTime(),

 time = getTimer(),

 vx = 300,

 vy = -300,

 bounce = -0.7;

 ball.x = canvas.width * Math.random();

 ball.y = canvas.height / 2;

 function getTimer () {

 return (new Date().getTime() - start_time); //milliseconds

 }

 (function drawFrame () {

 window.requestAnimationFrame(drawFrame, canvas);

 context.clearRect(0, 0, canvas.width, canvas.height);

 var elapsed = getTimer() - time,

 left = 0,

 right = canvas.width,

 top = 0,

 bottom = canvas.height;

 time = getTimer();

TIPS AND TRICKS

461

 ball.x += vx * elapsed / 1000;

 ball.y += vy * elapsed / 1000;

 if (ball.x + ball.radius > right) {

 ball.x = right - ball.radius;

 vx *= bounce;

 } else if (ball.x - ball.radius < left) {

 ball.x = left + ball.radius;

 vx *= bounce;

 }

 if (ball.y + ball.radius > bottom) {

 ball.y = bottom - ball.radius;

 vy *= bounce;

 } else if (ball.y - ball.radius < top) {

 ball.y = top + ball.radius;

 vy *= bounce;

 }

 ball.draw(context);

 }());

 };
 </script>
 </body>
</html>

The velocities are bumped up, as described previously, and are left as hard-coded values, rather than
randomly determined. There is a variable called time, that's set to the result of the function getTimer. The
getTimer function is simple; it returns the number of milliseconds the animation runs—and that’s all it
does, it's just a counter.

If you call getTimer once and store its value, and then call it again later and subtract the two values, you
know exactly—down to the millisecond—how much time elapsed between the two.

So this is the strategy we use: Call getTimer at the beginning of each frame and see how many
milliseconds have elapsed since the last frame. If you divide that by 1,000, you have what fraction of a

CHAPTER 19

462

second elapsed. Because your vx and vy are now in terms of pixels per second, you can multiply them by
this fraction and know how much to move the object. Also, don’t forget to reset the value of the time so
you can measure the next frame.

Test the example, and you see that the ball moves at about the same speed as the original. But the really
amazing thing is that no matter what frame rate the animation is played at, it still moves at the same
speed! Of course, higher rates make for a much smoother animation, and the lower ones are quite jumpy,
but the velocity itself should be consistent.

This method can also be used in a timer-based animation. It's not listed here, but take a look at document
13-time-based-2.html and see that the regular animation loop has been replaced with
window.setInterval, while continuing to apply velocity using getTimer. You can also adjust the fps
variable and see how the animation looks at different frame rates.

You can use this technique with any example in the book that contains velocity. In doing so, you also need
to apply a similar technique to any acceleration or repeated forces, such as gravity, because these are
also time based. Values for acceleration have to be much larger when converted to this type of animation,
because acceleration is defined as distance per time interval per time interval. For example, gravity is
approximately 32 feet per second per second.

Where gravity might be something like 0.1 in our a frame-based animations, it has to be more like 300
here. Then you apply it like so:

vy += gravity * elapsed / 1000;

Go ahead and try gravity applied like this to the previous example, with a value of 300. You should find
that it looks about equal to the same frame-based animation with a gravity of 0.1. You can find this code in
the exercise 14-time-based-3.html.

Collisions between same-mass objects
Remember Chapter 11 and the conservation of momentum? That was some serious code. It happens you
can make it a little bit simpler when two objects of the same mass collide. Along the line of collision,
objects simply swap their velocities. Although you still use coordinate rotation to determine that line of
collision, as well as the object’s velocities on it, this wipes out the complex conservation of momentum
stuff. To see how it works, let’s go back to the example 06-multi-billiard-2.html in Chapter 11, and
use that as the base for the next example, 15-same-mass.html. It's a big file, so all of the code from the
original won't be listed here, but look at the for loop that create all the balls near the top of the script:

for (var radius, ball, i = 0; i < numBalls; i++) {
 radius = Math.random() * 20 + 15;
 ball = new Ball(radius, Math.random() * 0xffffff);
 ball.mass = radius;
 ball.x = Math.random() * canvas.width;
 ball.y = Math.random() * canvas.height;
 ball.vx = Math.random() * 10 – 5;
 ball.vy = Math.random() * 10 – 5;
 balls.push(ball);
}

TIPS AND TRICKS

463

For the new example, we remove the line in bold and create a new variable at the top of the script:

var radius = 20;

This makes all the balls the same size and mass.

Next, locate the checkCollision function and find this section:

 //rotate ball0's velocity
 vel0 = rotate(ball0.vx, ball0.vy, sin, cos, true),

 //rotate ball1's velocity
 vel1 = rotate(ball1.vx, ball1.vy, sin, cos, true),

 //collision reaction
 vxTotal = vel0.x – vel1.x;

vel0.x = ((ball0.mass - ball1.mass) * vel0.x + 2 * ball1.mass * vel1.x) /
 (ball0.mass + ball1.mass);
vel1.x = vxTotal + vel0.x;

This is the part that finds the velocities along the line of collision, and, along with their masses, figures out
the result of the collision. The part labeled “collision reaction” is the code that factors in the conservation of
momentum, and this is the section you can get rid of. You can replace that portion with code that simply
swaps vel0 and vel1. This makes the whole section shown look like this:

 //rotate ball0's velocity
 vel0 = rotate(ball0.vx, ball0.vy, sin, cos, true),

 //rotate ball1's velocity
 vel1 = rotate(ball1.vx, ball1.vy, sin, cos, true);

//collision reaction, swap the two velocities
var temp = vel0;
vel0 = vel1;
vel1 = temp;

Here you eliminate a good bit of math, and if you test the file before and after, you should see the same
thing.

Integrating sound
Something that has been conspicuously absent from this book has been the use of sound. Although sound
is not directly a part of animation, well-done sound effects can go a long way to making an animation more
immersive and realistic.

One of the most anticipated features of HTML5 is its support for the audio element, enabling native sound
playback in the browser. The good news is that most browsers supporting HTML5 have some kind of
support for audio. The bad news is, at least at the time of writing, the level of implementation varies across
browsers. Because of licensing issues with audio formats, it is often unclear what browser plays which file
type. Although this can be a frustrating environment to develop for, it is not an insurmountable one, if you

CHAPTER 19

464

take certain precautions. It's important to provide your audio samples in a range of formats so browsers
can pick the one they support.

In this example, We again go back to the 05-bouncing-2.html file from Chapter 6, with the ball that
bounces off walls. Each time the ball hits a wall, it should make a sound.

The first thing you need is a sound to play. You can download one from the Internet, use one of your own,
or use the audio clips that are provided with the rest of the example code. Place them in the same
directory as your document.

Now you need to include the following audio tag in the body of your HTML document:

<audio id="sound">
 <source src="boing.ogg"/>
 <source src="boing.mp3"/>
 <p>This browser does not support the <code>audio</code> element.</p>
</audio>

Here we create an audio element and provide it with a pair of formats to pick from: Ogg Vorbis and MP3.
Between these two, you should have all the major browsers covered. We also provide a fallback message
to display in case the browser does not support the HTML5 audio element. This message is ignored if it
does.

We can access the audio element from JavaScript using the DOM interface and assign it to a variable:

var sound = document.getElementById('sound');

The sound should be ready, and all you have to do is call its play method:

sound.play();

In the next example, we use JavaScript to check if the browser supports the audio element before we start
the animation loop. If it's not supported, we display a blank canvas and throw an error message to the
browser's debugging console. To test for audio support, you can check whether the audio object that
returns from the DOM contains the canPlayType method:

if (typeof sound !== 'object' || !sound.canPlayType) {
 throw new Error("The audio element is not supported in this browser.");
}

Here's the code for the example, 16-sound-events.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Sound Events</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <canvas id="canvas" width="400" height="400"></canvas>
 <audio id="sound">
 <source src="boing.ogg" />

TIPS AND TRICKS

465

 <source src="boing.mp3" />
 <p>This browser does not support the <code>audio</code> element.</p>
 </audio>
 <script src="utils.js"></script>
 <script src="ball.js"></script>
 <script>
 window.onload = function () {
 var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 sound = document.getElementById('sound'),
 ball = new Ball(),
 vx = Math.random() * 10 – 5,
 vy = Math.random() * 10 – 5,
 bounce = -0.7;

 //the animation only runs with audio
 if (typeof sound !== 'object' || !sound.canPlayType) {
 throw new Error("This browser does not support the audio element.");
 }

 (function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);
 context.clearRect(0, 0, canvas.width, canvas.height);

 var left = 0,
 right = canvas.width,
 top = 0,
 bottom = canvas.height;

 ball.x += vx;
 ball.y += vy;

 if (ball.x + ball.radius > right) {
 sound.play();
 ball.x = right – ball.radius;
 vx *= bounce;
 } else if (ball.x - ball.radius < left) {
 sound.play();
 ball.x = left + ball.radius;
 vx *= bounce;
 }
 if (ball.y + ball.radius > bottom) {
 sound.play();
 ball.y = bottom – ball.radius;
 vy *= bounce;
 } else if (ball.y - ball.radius < top) {
 sound.play();
 ball.y = top + ball.radius;
 vy *= bounce;
 }

 ball.draw(context);
 }());
 };

CHAPTER 19

466

 </script>
 </body>
</html>

Test the animation and see … make that, hear, the difference that sound makes. Of course, finding the
right sounds to use in the right circumstances, and not overdoing it, is an art in itself.

Because of the inconsistencies in the way browsers have implemented the audio element, several
JavaScript libraries have sprung up to smooth things out for the developer. If you come across problems
with a particular browser, don't be afraid to look around for some projects that address this cross-platform
need. Some of these libraries might even fallback to using Flash when all else fails, but at least you know
the user will hear the sound.

Summary
Congratulations on finishing the book! It is no small accomplishment, and the techniques you learned here
can be applied to many different types of graphics programming environments. But of course, perhaps the
most exciting is the potential for web-based animations and games.

There's a bunch of examples provided in this book for you to reference, play around with, and break. That
really is the best way to learn and move forward, tear the programs apart until you understand how each
little piece affects the rest. Of course, reading how things work is important, but you must code,
experiment, and put these ideas to use. And besides, that's the most fun part anyway. There's always
more to learn, so don't get hung up about not knowing this type of math, or that new programming style;
just hack it out, debug it, and get it to work. From there you can build on your successes and failures, and
keep creating even better things.

467

Appendix

Useful Formulas

Throughout the book, there are various formulas related to the different motions and effects you’ve
created. These have been distilled down to the most useful and most commonly used formulas, equations,
and code snippets, and are listed at the end of each chapter. These have been collected here to serve as
a one-shot reference for those things you’ll probably use the most.

Chapter 3

Calculate basic trigonometric functions

sine of angle = opposite / hypotenuse
cosine of angle = adjacent / hypotenuse
tangent of angle = opposite / adjacent

Convert radians to degrees and degrees to radians

radians = degrees * Math.PI / 180
degrees = radians * 180 / Math.PI

Rotate to the mouse (or any point)

//substitute mouse.x, mouse.y with the x, y point to rotate to
dx = mouseX – object.x;
dy = mouseY – object.y;
object.rotation = Math.atan2(dy, dx) * 180 / Math.PI; //radians to degrees

APPENDIX

468

Create waves

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);

 //assign value to x, y or other property of object
 value = center + Math.sin(angle) * range;
 angle += speed;
}());

Create circles

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);

 //assign position to x, y of object, use as drawing coordinates
 xposition = centerX + Math.cos(angle) * radius;
 yposition = centerY + Math.sin(angle) * radius;
 angle += speed;
}());

Create ovals

(function drawFrame () {
 window.requestAnimationFrame(drawFrame, canvas);

 //assign position to x, y of object, use as drawing coordinates
 xposition = centerX + Math.cos(angle) * radiusX;
 yposition = centerY + Math.sin(angle) * radiusY;
 angle += speed;
}());

Get the distance between two points

//points are x1, y1 and x2, y2
//can be object positions, mouse coordinates, etc.
dx = x2 – x1;
dy = y2 – y1;
dist = Math.sqrt(dx * dx + dy * dy);

Chapter 4

Convert hex to decimal

console.log(hexValue);

Convert decimal to hex

console.log(decimalValue.toString(16));

USEFUL FORMULAS

469

Combine component colors

color = red << 16 | green << 8 | blue;

Extract component colors

red = color24 >> 16 & 0xFF;
green = color24 >> 8 & 0xFF;
blue = color24 & 0xFF;

Draw a curve through a point

//xt, yt is the point you want to draw through
//x0, y0 and x2, y2 are the end points of the curve
x1 = xt * 2 - (x0 + x2) / 2;
y1 = yt * 2 - (y0 + y2) / 2;

context.moveTo(x0, y0);
context.quadraticCurveTo(x1, y1, x2, y2);

Chapter 5

Convert angular velocity to x, y velocity

vx = speed * Math.cos(angle);
vy = speed * Math.sin(angle);

Convert angular acceleration (any force acting on an object) to x, y
acceleration

ax = force * Math.cos(angle);
ay = force * Math.sin(angle);

Add acceleration to velocity

vx += ax;
vy += ay;

Add velocity to position

object.x += vx;
object.y += vy;

APPENDIX

470

Chapter 6

Remove an out-of-bounds object

if (object.x - object.width / 2 > right ||
 object.x + object.width / 2 < left ||
 object.y - object.height / 2 > bottom ||
 object.y + object.height / 2 < top) {
 //code to remove object
}

Regenerate an out-of-bounds object

if (object.x - object.width / 2 > right ||
 object.x + object.width / 2 < left ||
 object.y - object.height / 2 > bottom ||
 object.y + object.height / 2 < top) {
 //reset object position and velocity
}

Screen wrapping for an out-of-bounds object

if (object.x – object.width / 2 > right) {
 object.x = left – object.width / 2;
} else if (object.x + object.width / 2 < left) {
 object.x = right + object.width / 2;
}
if (object.y – object.height / 2 > bottom) {
 object.y = top – object.height / 2;
} else if (object.y + object.height / 2 < top) {
 object.y = bottom + object.height / 2;
}

Apply friction (the correct way)

speed = Math.sqrt(vx * vx + vy * vy);
angle = Math.atan2(vy, vx);

if (speed > friction) {
 speed -= friction;
} else {
 speed = 0;
}

vx = Math.cos(angle) * speed;
vy = Math.sin(angle) * speed;

USEFUL FORMULAS

471

Apply friction (the easy way)

vx *= friction;
vy *= friction;

Chapter 8

Simple easing, long form

var dx = targetX – object.x,
 dy = targetY – object.y;

vx = dx * easing;
vy = dy * easing;
object.x += vx;
object.y += vy;

Simple easing, abbreviated form

vx = (targetX - object.x) * easing;
vy = (targetY – object.y) * easing;
object.x += vx;
object.y += vy;

Simple easing, short form

object.x += (targetX - object.x) * easing;
object.y += (targetY - object.y) * easing;

Simple spring, long form

var ax = (targetX - object.x) * spring,
 ay = (targetY - object.y) * spring;

vx += ax;
vy += ay;
vx *= friction;
vy *= friction;
object.x += vx;
object.y += vy;

Simple spring, abbreviated form

vx += (targetX - object.x) * spring;
vy += (targetY - object.y) * spring;
vx *= friction;
vy *= friction;
object.x += vx;
object.y += vy;

APPENDIX

472

Simple spring, short form

vx += (targetX - object.x) * spring;
vy += (targetY - object.y) * spring;
object.x += (vx *= friction);
object.y += (vy *= friction);

Offset spring

var dx = object.x – fixedX,
 dy = object.y – fixedY,
 angle = Math.atan2(dy, dx),
 targetX = fixedX + Math.cos(angle) * springLength,
 targetY = fixedY + Math.sin(angle) * springLength;

//spring to targetX, targetY as above

Chapter 9

Distance-based collision detection

//starting with objectA and objectB
//if using an object without a radius property,
//you can use width or height divided by 2
var dx = objectB.x – objectA.x,
 dy = objectB.y – objectA.y,
 dist = Math.sqrt(dx * dx + dy * dy);

if (dist < objectA.radius + objectB.radius) {
 //handle collision
}

Multiple-object collision detection

objects.forEach(function (objectA, i) {
 for (var j = i + 1; j < objects.length; j++) {
 //evaluate reference using j. For example:
 var objectB = objects[j];
 //perform collision detection between objectA and objectB
 }
});

Chapter 10

Coordinate rotation

x1 = x * Math.cos(rotation) – y * Math.sin(rotation);
y1 = y * Math.cos(rotation) + x * Math.sin(rotation);

USEFUL FORMULAS

473

Reverse coordinate rotation

x1 = x * Math.cos(rotation) + y * Math.sin(rotation);
y1 = y * Math.cos(rotation) – x * Math.sin(rotation);

Chapter 11

Conservation of momentum, in straight mathematical terms

 (m0 - m1) × v0 + 2 × m1 × v1
v0Final = ----------------------------
 m0 + m1

 (m1 - m0) × v1 + 2 × m0 × v0
v1Final = ----------------------------
 m0 + m1

Conservation of momentum in JavaScript, with a shortcut

var vxTotal = vx0 – vx1;
vx0 = ((ball0.mass - ball1.mass) * vx0 + 2 * ball1.mass * vx1) / (ball0.mass + ball1.mass);
vx1 = vxTotal + vx0;

Chapter 12

Basic gravity

force = G × m1 × m2 / distance2

JavaScript-friendly gravity implementation

function gravitate (partA, partB) {
 var dx = partB.x – partA.x,
 dy = partB.y – partA.y,
 distSQ = dx * dx + dy * dy,
 dist = Math.sqrt(distSQ),
 force = partA.mass * partB.mass / distSQ,
 ax = force * dx / dist,
 ay = force * dy / dist;

 partA.vx += ax / partA.mass;
 partA.vy += ay / partA.mass;
 partB.vx -= ax / partB.mass;
 partB.vy -= ay / partB.mass;
}

APPENDIX

474

Chapter 14

Law of cosines

a2 = b2 + c2 - 2 × b × c × cos A
b2 = a2 + c2 - 2 × a × c × cos B
c2 = a2 + b2 - 2 × a × b × cos C

Law of cosines in JavaScript

var A = Math.acos((b * b + c * c - a * a) / (2 * b * c)),
 B = Math.acos((a * a + c * c - b * b) / (2 * a * c)),
 C = Math.acos((a * a + b * b - c * c) / (2 * a * b));

Chapter 15

Basic perspective

scale = fl / (fl + zpos);
object.scaleX = object.scaleY = scale;
object.alpha = scale; //optional
object.x = vanishingPointX + xpos * scale;
object.y = vanishingPointY + ypos * scale;

Z-sorting

//assumes an array of 3D objects with a zpos property
function zSort (a, b) {
 return (b.zpos – a.zpos);
}

objects.sort(zSort);

Coordinate rotation

x1 = xpos * cos(angleZ) – ypos * sin(angleZ);
y1 = ypos * cos(angleZ) + xpos * sin(angleZ);

x1 = xpos * cos(angleY) – zpos * sin(angleY);
z1 = zpos * cos(angleY) + xpos * sin(angleY);

y1 = ypos * cos(angleX) – zpos * sin(angleX);
z1 = zpos * cos(angleX) + ypos * sin(angleX);

3D distance

dist = Math.sqrt(dx * dx + dy * dy + dz * dz);

475

Index

A
Acceleration

angular, 123–124
definition, 117
formulas, 469
gravity, 121–122
layman’s definition, 117
on one axis, 117–119
on two axes, 119–121
ship controls, 126–129
spaceship, 124–126

Animation, 69, 131, 225, 247, 291, 343
animation loops, 16–19

frame-by-frame animation, 9, 16
JavaScript timer, 19
rendering and displaying frames,

17
rules, 17
using requestAnimationFrame,

19–20
while loop, 18

dragging an object
around canvas, 158
with motion code, 160

dynamic animation, 6–7
easing, 170
frames

as records, 6
definition, 5
programmed frames, 6
rendering and displaying frames,

16
JavaScript, 9–34
motion, 4–5
nontemperal media, 4
pressing and releasing an object

mouse events, 153
using touch events, 156

scripted animation, 17
springing, 180
static animation, 7
temporal media, 4

INDEX

476

throwing
definition, 162
drawFrame function, 163
setting velocity, 162
trackVelocity function, 163

time, 4
trigonometry

angles, 36–41
circles and ellipses, 58–61
circular movement, 58–60
definition, 36
distance between two points, 62
elliptical movement, 60–61
formulas, 66–67, 467
Pythagorean theorem, 61–65
right-angle triangle, 36
rotation, 47–50
sine waves, 50–52
cosine waves, 58–60

Array.splice method, 133

B
Backface culling, 414–418
Billiard ball physics

conservation of momentum, 249–
273

mass, 248
momentum, 248

Bouncing off angles, 232
code optimization, 238–239
coordinate rotation, 234–238
multiple angles, 243–246
not falling off the edge problem, 240

getBounds method, 240–241
hit testing, 240

under the line problem, 241–243
Bounding rectangle method, 203

C
Canvas drawing API

commands, 76
drawing context, 77
drawing curves

through control point, 81–82
with quadraticCurveTo method,

80–81
Canvas element coordinate system,

38–40
Collision detection

between irregular shaped objects,
211

distance-based collision detection,
212
collision-based springing, 216–218
formula, 224
simple collision detection, 212–

216
geometric hit testing methods, 202

between object and point, 209–
211

two objects, 202–209
multiple-object collision detection,

218
basic collision detection, 219–220
multiple-object springing, 221–224

with circle’s bounding box, 209
with rectangle’s bounding box, 208

Combining colors, bitwise operators,
72–73

Conservation of momentum, 249
formulas

in JavaScript, 473
in mathematics, 473

in JavaScript, 273
in mathematics, 273

INDEX

477

on one axis, 250
code optimization, 254–255
placing the objects, 253–254

on two axis, 255
angle of collision, 256
checkCollision function, 258
one-dimensional collision, 256
plug-and-play momentum

formula, 258
two-dimensional collision, 256

Coordinate rotation
advanced coordinate rotation

multiple objects, 230–232
rotation angle, 228
single objects, 229–230

formulas, 472
in third dimension, 371
simple coordinate rotation

angle and radius calculation, 227
positioning the object, 226

3D basics
bouncing

multiple object, 354–357
single object, 352–354
Z-sorting, 357–358

collision detection, 378–381
coordinate rotation, 371–378
easing, 368–370
gravity, 359–361
perspectives

formula, 346–347
in JavaScript, 347
techniques, 346

springing, 370–371
velocity and acceleration, 350–352
wrapping, 361–368
z axis

left-hand coordinate system, 345
right-hand coordinate system, 344

D
Distance-based collision detection

formulas, 472
3D lighting

clamping, 419
lightMag, 422
3D solid, backface culling and depth

sorting, 427
triangle constructor method, 419
vectors

cross product, 421
dot product, 421

3D lines and fills
modeling 3D solids, 401

cylinder, 407–409
extruded letter A, 405–407
pyramid, 404–405
spinning cube, 401–404

moving 3D solids, 409–411
points and lines, 383–389

Point3d class, 387
point definition, 383
schematic representation, 386
with invisible points, 386

shapes
3D spinning letter E, 393
3D spinning square, 392
plotting points, graph paper, 392
square, 389

using triangles
advantages, 395
benefits, 396
complex polygon, 395

INDEX

478

definition, 397
surface normal, 395

Drawframe function, 57

E
Easing

advanced easing, 179
formulas, 471
proportional motion, 170
simple easing

alpha component, 179
calculations, 173
formulas, 199–200
illusion of motion, 170
moving targets, 177–178
on colors, 179
schematic representation, 171
strategies, 171
target rotation, 178
turning off easing, 174–177
verbose syntaxes, 172

Enhanced depth sorting, 417–418
Environmental boundaries, 132

bouncing, 141–146
steps, 142
strategies, 141
vs. screen wrapping, 141

formulas, 470–471
regenerating objects, 137–139
removing objects, 133–137
screen wrapping, 139–141
setting up boundaries, 132–133

F
Forward kinematics (FK)

process automation, 301–308

walk cycle, 302
programming

moving single segment, 293–298
moving two segments, 298–301

Frame-by-frame animation, 9, 16
Friction

angular velocity, 147
definition, 146
scaled-back velocity code, 147
spaceship simulation, 149–150
velocity multiplication, 148–149

G
Geometric hit testing methods, 202
GetBounds method, 202
Gravity

description, 277
formulas, 473
gravitational force

collision detection and reaction,
280–281

gravitational constant, 277–279
orbiting, 281–282
slingshot effect, 279

H
Hit testing, 201
HTML5

canvas element support, 10–11
CSS stylessheet, 14
debugging tools, 15–16
document, 12–13
features, 10
performance, 11
utils.js script, 14

Hypotenuse, 40

INDEX

479

I
Inverse kinematics (IK)

dragging method
with multiple segments, 322–326
with single segments, 320, 321–

322
law of cosines, 335

formula, 339
in JavaScript, 339
programming, 336–339

reaching method
for an object, 332
for the mouse, 326
interaction, 333
multiple segment reaching, 332–

334
with single segments, 319, 320–

321

J
JavaScript

HTML5 (see HTML5)
objects, 20

constructor function, 21–22
functional iteration, 22–23
name property, 21
prototypes, 22

user interaction, 23
events and event handlers, 23–24
listeners and handlers, 24–34

K
Kinematics

definition, 291
forward kinematics, 292
inverse kinematics, 292

L
Law of cosines, formula, 474
Linear vertical motion, 54–55
LineTo and moveTo method

create multiple curves, 82
closed curves, 87
context.quadraticCurveTo

methods, 83
smooth multiple curves, 85
with midpoints, 84

drawing curves
quadraticCurveTo method, 80
through control point, 81

Listeners and handlers
addEventListener method, 24
key code property, 32–34
keyboard events, 31–32
mouse events, 24, 26–27

mousemove, 24
mouseup and mousedown, 25, 26

mouse position, 27–29
removeEventListener method, 24
touch events, 29
touch position, 30–31

M
Mass, 248
Matrix

addition, 432–433
canvas transforms

affine transformation, 437
context.save() and

context.restore() methods, 439
identity matrix, 438
skewing, 439

definition, 431

INDEX

480

multiplication, 433
coding with matrices, 436–437
coordinate rotation, 435–436
scaling, 433–435

Momentum, 248
Multiple-object collision detection

formulas, 224, 472

P
Particles, 275–277
Pythagorean theorem, 61–65

Q
Quadratic Bézier curve, 80

R
Rendering techniques

canvas element
CSS-style strings, 69–70
drawing API, 76–77
drawing context, 77

clearRect method, 77
line style properties, 78

color, canvas element
bitwise combination, 72–73
bitwise extraction, 73–74
color utility functions, 74–76
combining colors, 71–72
extracting component colors, 73
hexadecimal color values, 70–71
transparency, 74

formulas, 100–101, 468
lineTo and moveTo method, 78–80

arc method, 87
arcTo method, 87
bezierCurveTo method, 87

multiple curves creation, 82–87
quadraticCurveTo method, 80–82

loading and drawing images, 91
context.drawImage method, 92
using image elements, 92

shapes, 87–88
gradient fills, 88–89
setting gradient color stops, 89–91

S
Speeds, and centers, 56
Springing, 282

chained springs, 186–189
formulas, 199–200, 471
vs. gravity, 282–283
line drawing and gravity additions,

185
to a moving target, 184
multiple objects

three objects connected, 196
two objects connected, 193

multiple springs, 189–191
nodes

with connections, 286–288
with mass, 288–289

offsetting the target, 191–193
in one dimension, 180–182
proportional motion, 170, 180
springy node garden, 283–286
in two dimensions, 183–184

T
Throwing

definition, 162
drawFrame function, 163
setting velocity, 162

INDEX

481

trackVelocity function, 163
Trig functions

arcsine, 45
arctangent, 45–47
cosine, 42–44
sine, 41–42
tangent, 44–45

Trigonometry
angles, 36–41

canvas coordinate system, 38–40
radians and degrees, 36–38

context.rotate(angle)method,
37

measurements, 37
triangle sides, 40–41
trig functions, 41–47

circles and ellipses, 58–61
circular movement, 58–60
definition, 36
distance between two points, 62
elliptical movement, 60–61
formulas, 66–67, 467
Pythagorean theorem, 61–65
right-angle triangle, 36
rotation, 47–50
sine waves, 50–52

smooth up and down motion, 52–
54

waves
cosine waves, 58–60
linear vertical motion, 54–55
pulsing motion, 55–56
with drawing API, 57–58
with two angles, 56–57

U
User interaction

dragging an object
around canvas, 158–159
with motion code, 160–162

pressing and releasing an object, 153
mouse events, 154
using touch events, 156–158

throwing (see Throwing)
Utils.intersects function, 205

V
Velocity

and vectors, 106
magnitude and direction, 107, 111
negative velocity, 107

angular velocity, 110–113
concepts, 105
extended velocity, 115–116
formulas, 469
layman’s definition, 105
mouse follower, 114–115
on one axis, 107–109
on two axes, 109–110
vector addition, 113–114

W, X, Y
Walk cycle

beginnings, 303
calfOffsetSlider, 306
calfRangeSlider, 306
drawFrame function, 304
gravity, 309–310
handling collision, 310–311
handling reaction, 311–312
offset definition, 303

INDEX

482

screen wrapping, 313–317
speedSlider, 306
thighBaseSlider, 306
thighRangeSlider, 306

Z
Z-sorting, 357–358

Foundation HTML5
Animation with

JavaScript

Billy Lamberta

ii

Foundation HTML5 Animation with JavaScript

Copyright © 2011 by Billy Lamberta

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written

permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3665-8

ISBN-13 (electronic): 978-1-4302- 3666-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of
a trademarked name, logos, or image we use the names, logos, or images only in an editorial fashion and to the benefit of the

trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, service marks, and similar terms, even if they are not identified as such, is not to be
taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Distributed to the book trade worldwide by Springer Science+Business Media LLC., 233 Spring Street, 6th Floor, New York, NY
10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page at

www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss

or damage caused or alleged to be caused directly or indirectly by the information contained in this work.

Credits
President and Publisher:

Paul Manning

Lead Editor:
Ben Renow-Clarke

Technical Reviewers:
Robert Hawkes, Brian Danchilla

Editorial Board:
Steve Anglin, Mark Beckner, Ewan

Buckingham, Gary Cornell, Morgan Engel,
Jonathan Gennick, Jonathan Hassell,
Robert Hutchinson, Michelle Lowman,

James Markham, Matthew Moodie, Jeff
Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft,

Gwenan Spearing, Matt Wade,
Tom Welsh

Coordinating Editor:
Adam Heath

Copy Editor:
Damon Larson

Compositor:
Apress Production (Brigid Duffy)

Indexer:
SPi Global

Artist:
SPi Global

Cover Image Artist:
Corné van Dooren

Cover Designer:
Anna Ishchenko

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales

iii

For Jessica.
—Billy Lamberta

vi

Contents

Contents at a Glance .. v
About the Author ... xv
About the Technical Reviewer ... xvi

About the the Cover Image Designer ... xvii

Acknowledgments .. xviii
Introduction ... xix

PART 1: JavaScript Animation Basics

Chapter 1: Basic Animation Concepts ... 3
What is animation? .. 4
Frames and motion ... 4

Frames as records ... 6
Programmed frames .. 6

Dynamic versus static animation ... 6
Summary ... 7

Chapter 2: Basics of JavaScript for Animation ... 9
Basic animation ... 9
An introduction to HTML5 .. 10

Canvas support ... 10
Performance .. 11
A basic HTML5 document ... 12
CSS stylesheet .. 14
Additional scripts ... 14
Debugging ... 15

Animating with code .. 16
Animation loops ... 16
An animation loop using requestAnimationFrame .. 19

JavaScript objects ... 20
Basic objects ... 21
Creating new kinds of objects ... 21
Prototypes ... 22
Functional style .. 22

vii

User interaction ... 23
Events and event handlers .. 23
Listeners and handlers .. 24

Summary ... 34

Chapter 3: Trigonometry for Animation ... 35
What is trigonometry? ... 36
Angles .. 36

Radians and degrees .. 36
The canvas coordinate system .. 38
Triangle sides .. 40
Trigonometry functions .. 41

Rotation ... 47
Waves .. 50

Smooth up and down motion ... 52
Linear vertical motion .. 54
Pulsing motion ... 55
Waves with two angles .. 56
Waves with the drawing API .. 57

Circles and ellipses ... 58
Circular movement .. 58
Elliptical movement .. 60

Pythagorean Theorem ... 61
Distance between two points ... 62

Important formulas in this chapter ... 66
Calculate basic trigonometric functions ... 66
Convert radians to degrees and degrees to radians ... 66
Rotate to the mouse (or any point) .. 66
Create waves ... 66
Create circles ... 66
Create ovals .. 67
Get the distance between two points .. 67

Summary ... 67

Chapter 4: Trigonometry for Animation ... 69
Colors on the canvas ... 69

Using hexadecimal color values .. 70
Combining colors ... 71
Extracting component colors ... 73

viii

Transparency ... 74
Color utility functions ... 74

The Drawing API ... 76
The canvas context ... 77
Removing the drawing with clearRect ... 77

Setting the line appearance ... 78
Drawing paths with lineTo and moveTo .. 78

Drawing curves with quadraticCurveTo ... 80
Creating multiple curves .. 82
Additional curves ... 87

Creating shapes with fill .. 87
Creating gradient fills ... 88
Setting gradient color stops ... 89

Loading and drawing images .. 91
Loading images ... 91
Using image elements ... 92
Using video elements .. 93

Pixel manipulation ... 94
Getting pixel data ... 94
Painting pixel data ... 96

Important formulas in this chapter ... 100
Convert hex to decimal .. 100
Convert decimal to hex .. 100
Combine component colors ... 100
Extract component colors .. 100
Draw a curve through a point .. 101

Summary ... 101

Part II: Basic Motion

Chapter 5: Velocity and Acceleration .. 105
Velocity .. 105

Vectors and velocity .. 106
Velocity on one axis ... 107
Velocity on two axes .. 109
Angular velocity ... 110
Vector addition ... 113
A mouse follower ... 114
Velocity extended .. 115

ix

Acceleration ... 116
Acceleration on one axis ... 117
Acceleration on two axes... 119
Gravity as acceleration .. 121
Angular acceleration .. 123
A spaceship ... 124
Ship controls .. 126

Important formulas in this chapter ... 129
Convert angular velocity to x, y velocity .. 129
Convert angular acceleration (any force acting on an object) to x, y acceleration 129
Add acceleration to velocity ... 129
Add velocity to position .. 129

Summary ... 129

Chapter 6: Boundaries and Friction ... 131
Environmental boundaries ... 132

Setting boundaries ... 132
Removing objects .. 133
Regenerating objects ... 137
Screen wrapping .. 139
Bouncing .. 141

Friction ... 146
Friction, the right way .. 147
Friction, the easy way .. 148
Friction applied .. 149

Important formulas in this chapter ... 150
Remove an out-of-bounds object .. 150
Regenerate an out-of-bounds object ... 150
Screen wrapping for an out-of-bounds object ... 151
Apply friction (the correct way) .. 151
Apply friction (the easy way) ... 151

Summary ... 151

Chapter 7: User Interaction: Moving Objects Around .. 153
Pressing and releasing an object .. 153

Using touch events .. 156
Dragging an object .. 158

Combining dragging with motion code .. 160
Throwing .. 162

x

Summary ... 166

Part III: Advanced Motion

Chapter 8: Easing and Springing ... 169

Proportional Motion ... 169
Easing .. 170

Simple easing .. 170
Advanced easing ... 179

Springing ... 180
Springing in one dimension ... 180
Springing in two dimensions .. 183
Springing to a moving target ... 184
So where’s the spring? .. 184
Chaining springs .. 186
Springing to multiple targets .. 189
Offsetting the target ... 191
Attaching multiple objects with springs .. 193

Important formulas in this chapter ... 199
Simple easing, long form ... 199
Simple easing, abbreviated form ... 199
Simple easing, short form .. 199
Simple spring, long form .. 199
Simple spring, abbreviated form .. 200
Simple spring, short form .. 200
Offset spring .. 200

Summary ... 200

Chapter 9: Collision Detection .. 201
Collision detection methods .. 201
Geometric hit testing methods ... 202

Hit testing two objects .. 202
Hit testing an object and a point .. 209
Summary of geometric hit testing .. 211

Distance-based collision detection .. 212
Simple distance-based collision detection... 212
Collision-based springing .. 216

Multiple-object collision detection strategies ... 218
Basic multiple-object collision detection .. 219

xi

Multiple-object springing .. 221
Important formulas in this chapter ... 224

Distance-based collision detection .. 224
Multiple-object collision detection .. 224

Summary ... 224

Chapter 10: Coordinate Rotation and Bouncing Off Angles 225
Simple coordinate rotation ... 225
Advanced coordinate rotation .. 228

Rotating a single object ... 229
Rotating multiple objects ... 230

Bouncing off an angle .. 232
Performing the rotation .. 234
Optimizing the code ... 238
Making it dynamic .. 239
Fixing the “not falling off the edge” problem .. 240
Fixing the “under the line” problem .. 241
Bouncing off multiple angles ... 243

Important formulas in this chapter ... 246
Coordinate rotation .. 246
Reverse coordinate rotation .. 246

Summary ... 246

Chapter 11: Billiard Ball Physics .. 247
Mass .. 248
Momentum ... 248
Conservation of Momentum .. 249

Conservation of Momentum on One Axis .. 250
Conservation of Momentum on Two Axes .. 255

Important Formulas in this Chapter ... 273
Conservation of Momentum, in Straight Mathematical Terms .. 273
Conservation of Momentum in JavaScript, with a Shortcut ... 273

Summary ... 273

Chapter 12: Particle Attraction and Gravity .. 275
Particles ... 275
Gravity ... 277

Gravitational force ... 277
Collision detection and reaction .. 280

xii

Orbiting 281
Springs 282

Gravity versus springs .. 282
A springy node garden ... 283
Nodes with connections.. 286
Nodes with mass .. 288

Important formulas in this chapter 290
Basic gravity ... 290
JavaScript-friendly gravity implementation . .. 290

Summary . .. 290

Chapter 13: Forward Kinematics: Making Things Walk 291
Introducing Forward and Inverse Kinematics . .. 292
Getting Started Programming Forward Kinematics 292

Moving One Segment ... 293
Moving Two Segments ... 298

Automating the Process ... 301
Building a Natural Walk Cycle 302
Making It Dynamic .. 305

Making It Really Walk ... 308
Giving It Some Space ... 309
Adding Gravity .. 309
Handling the Collision ... 310
Handling the Reaction .. 311
Screen Wrapping, Revisited ... 312

Summary . .. 317

Chapter 14: Inverse Kinematics: Dragging and Reaching 319
Reaching and Dragging Single Segments . .. 319

Reaching with a Single Segment . .. 320
Dragging with a Single Segment 321

Dragging Multiple Segments .. 322
Dragging Two Segments 322
Dragging More Segments .. 324

Reaching with Multiple Segments 326
Reaching for the Mouse ... 326
Reaching for an Object ... 332
Adding Some Interaction .. 333

Using the Standard Inverse Kinematics Method 334

xiii

Introducing the Law of Cosines ... 335
Programming the Law of Cosines .. 336

Important Formulas in This Chapter .. 339
Law of Cosines .. 339
Law of Cosines in JavaScript .. 339

Summary ... 339

Part IV: 3D Animation

Chapter 15: 3D Basics ... 343
The third dimension and perspective .. 344

The z axis .. 344
Perspective .. 346

Velocity and acceleration .. 350
Bouncing .. 352

Single object bouncing .. 352
Multiple object bouncing .. 354
Z-sorting .. 357

Gravity ... 359
Wrapping ... 361
Easing and springing ... 368

Easing .. 368
Springing ... 370

Coordinate rotation .. 371
Collision detection ... 378
Important formulas in this chapter ... 381

Basic perspective .. 381
Z-sorting .. 381
Coordinate rotation .. 381
3D distance .. 381

Summary ... 381

Chapter 16: 3D Lines and Fills .. 383
Creating points and lines ... 383
Making shapes .. 389
Creating 3D fills ... 394

Using triangles ... 395
Modeling 3D solids .. 401

Modeling a spinning cube .. 401

xiv

Modeling other shapes .. 404
Moving 3D solids ... 409
Summary ... 411

Chapter 17: Backface Culling and 3D Lighting ... 413
Backface culling... 414
Enhanced depth sorting .. 417
3D lighting .. 418
Summary ... 427

Part V: Additional Techniques

Chapter 18: Matrix Math .. 431
Matrix basics .. 431
Matrix operations ... 432

Matrix addition ... 432
Matrix multiplication ... 433

Canvas transforms .. 437
Summary ... 441

Chapter 19: Tips and Tricks .. 443
Brownian (random) motion .. 443
Random distribution .. 447

Square distribution ... 447
Circular distribution .. 450
Biased distribution ... 452
Collision-based distribution ... 456

Timer- and time-based animation .. 457
Timer-based animation .. 458
Time-based animation ... 459

Collisions between same-mass objects .. 462
Integrating sound ... 463
Summary ... 466

Appendix: Useful Formulas .. 467

Index .. 475

xv

About the Author

Billy Lamberta is a programmer and multimedia experimenter. After working as a television news
photojournalist in his hometown of Richmond, Virginia, he turned his attention to web development and
interactive programming using Flash and JavaScript. Billy is interested in the convergence of visual
mediums for the purpose of storytelling, and the promise of the open web for distribution. He lives in
Buffalo, New York where he watches a lot of hockey.

xvi

About the Technical Reviewers

Brian Danchilla is a PHP and Java developer who has written web,
numerical analysis, graphics and voip applications. Danchilla has a BA
degree as a double major in computer science and mathematics and
recently coauthored the book "Pro PHP Programming" (Apress 2011).
When not programming, he likes to spend time playing guitar or being
outside. He resides in Saskatoon, SK, Canada.

Robert Hawkes thrives on solving problems through code. He’s addicted
to visual programming, and can’t get enough of HTML5 canvas. Most of
his waking life is spent working on crazy projects involving all sorts of new
and exciting technologies, both on-line and off. Aside from his practical
work, Rob has written a book for Apress called "Foundation HTML5
Canvas," which is all about making games with the new Web technology.
He works as a Technical Evangelist for Mozilla.

xvii

About the Cover Image Artist

Corné van Dooren designed the front cover image for this book. After taking a brief
hiatus from friends of ED to create a new design for the Foundation series, he worked at
combining technological and organic forms, the results of which now appear on this and
other book covers.

Corné spent his childhood drawing on everything at hand and then began exploring the
infinite world of multimedia—and his journey of discovery hasn’t stopped since. His
mantra has always been, “The only limit to multimedia is the imagination”—a saying that

keeps him constantly moving forward.

Corné works for many international clients, writes features for multimedia magazines, reviews and tests
software, authors multimedia studies, and works on many other friends of ED books. You can see more of
his work at and contact him through his website at www.cornevandooren.com.

http://www.cornevandooren.com

xviii

Acknowledgments

This book owes a debt of gratitude to the people in the JavaScript and Flash communities who have
contributed countless programs and tutorials for everyone to learn from. My programming knowledge is a
direct result of the free-software movement, and the willingness of other programmers to share their code.
Thank you for my education.

Thank you Keith Peters, who this book is just not possible without.
I've learned much from your work, and am honored to contribute, if just a little, to it.

Thanks to all the great people at Apress who worked very hard, and through my shortcomings, to put this
book together. A special thank you to Ben Renow-Clarke and Adam Heath for their guidance, and to Brian
Danchilla and Rob Hawkes for the fantastic feedback that made this book better.

Finally, thanks to my family: my parents who had the foresight to get a crazy and impractical home
computer for us kids, even if I had to teach them how to turn it on; and to my sisters, who have always
supported me. And, of course, thank you Jessica for being very patient with me during this entire process.
I love you all.

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	About the Cover Image Artist
	Acknowledgments
	Introduction

	Basic Animation Concepts
	What is animation?
	Frames and motion
	Frames as records
	Programmed frames

	Dynamic versus static animation
	Summary
	Chapter 2

	Basics of JavaScript for Animation
	Basic animation
	An introduction to HTML5
	Canvas support
	Performance
	A basic HTML5 document
	CSS stylesheet
	Additional scripts
	Debugging

	Animating with code
	Animation loops
	An animation loop using requestAnimationFrame

	JavaScript objects
	Basic objects
	Creating new kinds of objects
	Prototypes
	Functional style

	User interaction
	Events and event handlers
	Listeners and handlers

	Summary
	Chapter 3

	Trigonometry for Animation
	What is trigonometry?
	Angles
	Radians and degrees
	The canvas coordinate system
	Triangle sides
	Trigonometry functions

	Rotation
	Waves
	Smooth up and down motion
	Linear vertical motion
	Pulsing motion
	Waves with two angles
	Waves with the drawing API

	Circles and ellipses
	Circular movement
	Elliptical movement

	Pythagorean Theorem
	Distance between two points

	Important formulas in this chapter
	Calculate basic trigonometric functions
	Convert radians to degrees and degrees to radians
	Rotate to the mouse (or any point)
	Create waves
	Create circles
	Create ovals
	Get the distance between two points

	Summary
	Chapter 4

	Trigonometry for Animation
	Colors on the canvas
	Using hexadecimal color values
	Combining colors
	Extracting component colors
	Transparency
	Color utility functions

	The Drawing API
	The canvas context
	Removing the drawing with clearRect
	Setting the line appearance

	Drawing paths with lineTo and moveTo
	Drawing curves with quadraticCurveTo
	Creating multiple curves
	Additional curves

	Creating shapes with fill
	Creating gradient fills
	Setting gradient color stops

	Loading and drawing images
	Loading images
	Using image elements
	Using video elements

	Pixel manipulation
	Getting pixel data
	Painting pixel data

	Important formulas in this chapter
	Convert hex to decimal
	Convert decimal to hex
	Combine component colors
	Extract component colors
	Draw a curve through a point

	Summary

	Velocity and Acceleration
	Velocity
	Vectors and velocity
	Velocity on one axis
	Velocity on two axes
	Angular velocity
	Vector addition
	A mouse follower
	Velocity extended

	Acceleration
	Acceleration on one axis
	Acceleration on two axes
	Gravity as acceleration
	Angular acceleration
	A spaceship
	Ship controls

	Important formulas in this chapter
	Convert angular velocity to x, y velocity
	Convert angular acceleration (any force acting on an object) to x, y acceleration
	Add acceleration to velocity
	Add velocity to position

	Summary
	Chapter 6

	Boundaries and Friction
	Environmental boundaries
	Setting boundaries
	Removing objects
	Regenerating objects
	Screen wrapping
	Bouncing

	Friction
	Friction, the right way
	Friction, the easy way
	Friction applied

	Important formulas in this chapter
	Remove an out-of-bounds object
	Regenerate an out-of-bounds object
	Screen wrapping for an out-of-bounds object
	Apply friction (the correct way)
	Apply friction (the easy way)

	Summary
	Chapter 7

	User Interaction: Moving Objects Around
	Pressing and releasing an object
	Using touch events

	Dragging an object
	Combining dragging with motion code

	Throwing
	Summary

	Easing and Springing
	Proportional Motion
	Easing
	Simple easing
	Advanced easing

	Springing
	Springing in one dimension
	Springing in two dimensions
	Springing to a moving target
	So where’s the spring?
	Chaining springs
	Springing to multiple targets
	Offsetting the target
	Attaching multiple objects with springs

	Important formulas in this chapter
	Simple easing, long form
	Simple easing, abbreviated form
	Simple easing, short form
	Simple spring, long form
	Simple spring, abbreviated form
	Simple spring, short form
	Offset spring

	Summary
	Chapter 9

	Collision Detection
	Collision detection methods
	Geometric hit testing methods
	Hit testing two objects
	Hit testing an object and a point
	Summary of geometric hit testing

	Distance-based collision detection
	Simple distance-based collision detection
	Collision-based springing

	Multiple-object collision detection strategies
	Basic multiple-object collision detection
	Multiple-object springing

	Important formulas in this chapter
	Distance-based collision detection
	Multiple-object collision detection

	Summary
	Chapter 10

	Coordinate Rotation and Bouncing Off Angles
	Simple coordinate rotation
	Advanced coordinate rotation
	Rotating a single object
	Rotating multiple objects

	Bouncing off an angle
	Performing the rotation
	Optimizing the code
	Making it dynamic
	Fixing the “not falling off the edge” problem
	Fixing the “under the line” problem
	Bouncing off multiple angles

	Important formulas in this chapter
	Coordinate rotation
	Reverse coordinate rotation

	Summary
	Chapter 11

	Billiard Ball Physics
	Mass
	Momentum
	Conservation of Momentum
	Conservation of Momentum on One Axis
	Conservation of Momentum on Two Axes

	Important Formulas in this Chapter
	Conservation of Momentum, in Straight Mathematical Terms
	Conservation of Momentum in JavaScript, with a Shortcut

	Summary
	Chapter 12

	Particle Attraction and Gravity
	Particles
	Gravity
	Gravitational force
	Collision detection and reaction
	Orbiting

	Springs
	Gravity versus springs
	A springy node garden
	Nodes with connections
	Nodes with mass

	Important formulas in this chapter
	Basic gravity
	JavaScript-friendly gravity implementation

	Summary
	Chapter 13

	Forward Kinematics: Making Things Walk
	Introducing Forward and Inverse Kinematics
	Getting Started Programming Forward Kinematics
	Moving One Segment
	Moving Two Segments

	Automating the Process
	Building a Natural Walk Cycle
	Making It Dynamic

	Making It Really Walk
	Giving It Some Space
	Adding Gravity
	Handling the Collision
	Handling the Reaction
	Screen Wrapping, Revisited

	Summary
	Chapter 14

	Inverse Kinematics: Dragging and Reaching
	Reaching and Dragging Single Segments
	Reaching with a Single Segment
	Dragging with a Single Segment

	Dragging Multiple Segments
	Dragging Two Segments
	Dragging More Segments

	Reaching with Multiple Segments
	Reaching for the Mouse
	Reaching for an Object
	Adding Some Interaction

	Using the Standard Inverse Kinematics Method
	Introducing the Law of Cosines
	Programming the Law of Cosines

	Important Formulas in This Chapter
	Law of Cosines
	Law of Cosines in JavaScript

	Summary

	3D Basics
	The third dimension and perspective
	The z axis
	Perspective

	Velocity and acceleration
	Bouncing
	Single object bouncing
	Multiple object bouncing
	Z-sorting

	Gravity
	Wrapping
	Easing and springing
	Easing
	Springing

	Coordinate rotation
	Collision detection
	Important formulas in this chapter
	Basic perspective
	Z-sorting
	Coordinate rotation
	3D distance

	Summary
	Chapter 16

	3D Lines and Fills
	Creating points and lines
	Making shapes
	Creating 3D fills
	Using triangles

	Modeling 3D solids
	Modeling a spinning cube
	Modeling other shapes

	Moving 3D solids
	Summary
	Chapter 17

	Backface Culling and 3D Lighting
	Backface culling
	Enhanced depth sorting
	3D lighting
	Summary

	Matrix Math
	Matrix basics
	Matrix operations
	Matrix addition
	Matrix multiplication

	Canvas transforms
	Summary
	Chapter 19

	Tips and Tricks
	Brownian (random) motion
	Random distribution
	Square distribution
	Circular distribution
	Biased distribution
	Collision-based distribution

	Timerand time-based animation
	Timer-based animation
	Time-based animation

	Collisions between same-mass objects
	Integrating sound
	Summary
	Appendix

	Useful Formulas
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M, N, O
	P
	Q
	R
	S
	T
	U
	V
	W, X, Y
	Z

