
HTML5 Cookbook

HTML5 Cookbook

Christopher Schmitt and Kyle Simpson

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

HTML5 Cookbook
by Christopher Schmitt and Kyle Simpson

Published by O'Reilly Media, Inc., , , .

Printing History:

ISBN: 978-1-449-39679-4
1315931630

Table of Contents

Preface . xix

1. Fundamental Syntax & Semantics . 1
Introduction 1
Specifying the DOCTYPE 1

Problem 1
Solution 1
Discussion 2
See Also 2

Specifying the Character Set 2
Problem 2
Solution 2
Discussion 2
See Also 4

Specifying the Language 4
Problem 4
Solution 4
Discussion 4
See Also 4

Optimizing scripts and links 4
Problem 4
Solution 4
Discussion 5
See Also 5

Adding Document Structure With HTML5’s New Elements 5
Problem 5
Solution 5
Discussion 6
See Also 9

Choosing Between article and section 9
Problem 9
Solution 9

v

Discussion 11
See Also 11

Checking Your Document Outline 11
Problem 11
Solution 11
Discussion 11
See Also 14

Modifying the Document Outline 14
Problem 14
Solution 14
Discussion 14
See Also 14

Emphasizing Text 15
Problem 15
Solution 15
Discussion 15
See Also 15

Adding Importance to Text 16
Problem 16
Solution 16
Discussion 16
See Also 16

Highlighting Text for Reference 17
Problem 17
Solution 17
Discussion 17
See Also 17

Marking Up Small Print 17
Problem 17
Solution 18
Discussion 18
See Also 18

Defining Acronyms & Abbreviations 18
Problem 18
Solution 18
Discussion 19
See Also 19

Adding Links to Block-Level Content 19
Problem 19
Solution 19
Discussion 20
See Also 20

Marking Up Figures and Captions 20

vi | Table of Contents

Problem 20
Solution 20
Discussion 20
See Also 21

Marking Up Dates and Times 21
Problem 21
Solution 21
Discussion 22
What About Microformats? 22
Publication Dates 23
See Also 23

Setting the Stage for Native Expanding and Collapsing 23
Problem 23
Solution 23
Discussion 24
See Also 24

Controlling the Numbering of Your Lists 25
Problem 25
Solution 25
Discussion 25
See Also 26

Hide Content to Show Later 26
Problem 26
Solution 26
Discussion 26
See Also 27

Making Portions of a Page Editable 27
Problem 27
Solution 27
Discussion 27
See Also 28

Set the Stage for Native Drag and Drop 28
Problem 28
Solution 28
Discussion 28
See Also 29

2. Progressive Markup & Techniques . 31
Introduction 31
Adding More Semantic Meaning 31

Problem 31
Solution 32
Discussion 32

Table of Contents | vii

See Also 32
Picking a Markup Style 33

Problem 33
Solution 33
Discussion 33
See Also 34

Understanding Browser Support for HTML5 34
Problem 34
Solution 34
Discussion 35
See Also 35

Making Internet Explorer Recognize HTML5 Elements 35
Problem 35
Solution 35
Discussion 37
See Also 37

Detecting HTML5 Features with JavaScript 38
Problem 38
Solution 38
Discussion 42
See Also 42

Using HTML5 Boilerplate 42
Problem 42
Solution 42
Discussion 44
See Also 45

Validating HTML5 45
Problem 45
Solution 45
Discussion 47
See Also 47

Mapping HTML5 Elements to id and class Names 48
Problem 48
Solution 48
Discussion 50
See Also 51

3. Forms . 53
Introduction 53
Displaying a Search Input Field 53

Problem 53
Solution 53
Discussion 54

viii | Table of Contents

See Also 55
Contact Information Input Fields 55

Problem 55
Solution 55
Discussion 56
See Also 58

Utilizing Date and Time Input Fields 58
Problem 58
Solution 58
Discussion 59
See Also 61

Number Inputs 61
Problem 61
Solution 61
Discussion 62
See Also 63

Selecting From a Range of Numbers 64
Problem 64
Solution 64
Discussion 64
See Also 65

Selecting Colors 65
Problem 65
Solution 65
Discussion 65
See Also 67

Creating an Editable Drop-down 67
Problem 67
Solution 67
Discussion 67
See Also 69

Requiring a Form Field 69
Problem 69
Solution 69
Discussion 70
See Also 71

Auto-focusing a Form Field 71
Problem 71
Solution 71
Discussion 71
See Also 72

Displaying Placeholder Text 72
Problem 72

Table of Contents | ix

Solution 72
Discussion 73
See Also 73

Disabling Autocomplete 74
Problem 74
Solution 74
Discussion 74
See Also 75

Restricting Values 75
Problem 75
Solution 75
Discussion 75
See Also 77

Making HTML5 Work in Older Browsers 77
Problem 77
Solution 77
Discussion 80
See Also 80

Validating Form Data in Older Browsers with JavaScript 81
Problem 81
Solution 81
Discussion 82

Example: Sample Form 82
Problem 82
Solution 82
Discussion 83

4. Native Audio . 85
Introduction 85
Adding HTML5 Audio 85

Problem 85
Solution 85
Discussion 88
See Also 90

Manipulating the Audio Stream 90
Problem 90
Solution 90
Discussion 91
See Also 92

Generating audio Using JavaScript 92
Problem 92
Solution 93
Discussion 93

x | Table of Contents

See Also 93
Visualizing audio Using canvas 93

Problem 93
Solution 93
Discussion 96
See Also 96

Sample Design: Custom Audio Player 96
Define audio and player structure 96
JavaScript API 97
CSS for Style 99
See Also 100

5. Native Video . 103
Introduction 103
Adding HTML5 Video 103

Problem 103
Solution 103
Discussion 105
See Also 106

Ensuring Multi-Browser Video Support 107
Problem 107
Solution 107
Discussion 107
See Also 108

Setting Video Dimensions 108
Problem 108
Solution 109
Discussion 109
See Also 109

Displaying a Placeholder Image Before Video Plays 110
Problem 110
Solution 110
Discussion 110
See Also 111

Making Video Loop 111
Problem 111
Solution 111
Discussion 111
See Also 112

Sample Design: Manipulating Video With canvas 112
Add video and canvas 113
Generate Preview 113
Set Preview Dimensions 113

Table of Contents | xi

Add an Event Listener 113
And close out the function: 114
Draw Previews 114
The Final Product 114
See Also 115

6. Microdata and Custom Data . 117
Introduction 117

When to use microdata versus custom data 118
Adding Microdata to Markup 118

Problem 118
Solution 119
Discussion 119
See Also 119

Using Microdata and Schema.org 119
Problem 119
Solution 119
Discussion 120
See Also 121

Adding Custom Data to Markup 121
Problem 121
Solution 121
Discussion 121
See Also 122

Accessing Custom Data with JavaScript 122
Problem 122
Solution 122
Discussion 123
See Also 124

Manipulating Custom Data 124
Problem 124
Solution 124
Discussion 125
See Also 125

Example: Creating a Map Application Using Custom Data 125
Problem 125
Solution 126
Discussion 127
See Also 128

7. Accessibility . 129
Introduction 129

The Purpose of Accessibility 129

xii | Table of Contents

Accessibility Guidelines 130
Writing Appropriate ALT Text Descriptions 131

Problem 131
Solution 131
Discussion 132
See Also 134

Identifying Abbreviations and Acronyms 134
Problem 134
Solution 134
Discussion 135
See Also 135

Identifying Sections of a Page Using ARIA Landmark Roles 135
Problem 135
Solution 135
Discussion 137
See Also 138

Creating More Accessible Navigation Links 138
Problem 138
Solution 138
Discussion 139
See Also 140

Associating Form Fields with their Labels 140
Problem 140
Solution 140
Discussion 141
See Also 141

Grouping Form Fields Logically 141
Problem 141
Solution 141
Discussion 142
See Also 142

Enabling a fieldset Dynamically 143
Problem 143
Solution 143
Discussion 144
See Also 144

Identifying Required Form Fields 144
Problem 144
Solution 144
Discussion 145
See Also 145

Using ARIA Live Regions to Announce When Dynamic Content Is Up-
dating 146

Table of Contents | xiii

Problem 146
Solution 146
Discussion 148
See Also 148

8. GeoLocation . 149
Introduction 149
Getting Basic GeoLocation Data 149

Problem 149
Solution 150
Discussion 151
See Also 152

Basic GeoLocation Data with Fallback 152
Problem 152
Solution 152
Discussion 153
See Also 154

Reverse Geocoding an Address with Latitude and Longitude 154
Problem 154
Solution 155
Discussion 156
See Also 157

Convert an Address into Latitude and Longitude 157
Problem 157
Solution 157
Discussion 158
See Also 159

Directions From Current Location 159
Problem 159
Solution 159
Discussion 162
See Also 165

Starbucks to Starbucks 165
Problem 165
Solution 165
Discussion 168
See Also 169

9. Canvas . 171
Introduction 171
Drawing on a canvas 172

Problem 172
Solution 172

xiv | Table of Contents

Discussion 174
See Also 176

Using Transparency 176
Problem 176
Solution 177
Discussion 178
See Also 179

Setting canvas Dimensions 179
Problem 179
Solution 180
Discussion 180

Creating a Gradient 181
Problem 181
Solution 181
Discussion 182
See Also 184

Pulling External Images Into a canvas Drawing 184
Problem 184
Solution 184
Discussion 184

Setting Color Transformations 185
Problem 185
Solution 186
Discussion 187
See Also 187

Working with Geometric Transformations 188
Problem 188
Solution 188
Discussion 189

Placing Text on canvas 191
Problem 191
Solution 191
Discussion 192
See Also 192

Clipping canvas Drawings 192
Problem 192
Solution 192
Discussion 193

Animating canvas Drawings 193
Problem 193
Solution 194
Discussion 195

Drawing Graphs with canvas 197

Table of Contents | xv

Problem 197
Solution 197
Discussion 198
See Also 198

Saving a canvas Drawing to a File 199
Problem 199
Solution 199
Discussion 199
See Also 200

10. Advanced HTML5 JavaScript . 201
Introduction 201
Local Storage 202

Problem 202
Solution 202
Discussion 203
See Also 205

Application Caching 205
Problem 205
Solution 205
Discussion 208
See Also 209

Drag and Drop 209
Problem 209
Solution 209
Discussion 212
See Also 214

Web Workers 214
Problem 214
Solution 214
Discussion 216

Web Sockets 218
Problem 218
Solution 218
Discussion 220
See Also 222

History 222
Problem 222
Solution 222
Discussion 224
See Also 226

Local Files 226
Problem 226

xvi | Table of Contents

Solution 226
Discussion 228
See Also 229

Table of Contents | xvii

Preface

Your first few paragraphs should introduce the book to the reader by describing, what
this book is about, interesting points about this technology, things to bear in mind, etc.

Audience
While it would probably suffice to say that this book is for any person interested in
learning about...

Assumptions This Book Makes
So on and so forth about what expertise and/or technical savvy is necessary to utilize
or appreciate, etc.

Contents of This Book
The most common presentation of this section lists each chapter with brief descrip-
tions. Some others describe each part or provide a narrative explanation of the book.
For example:

Part I describes...

Chapter 1 covers...

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

xix

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “HTML5 Cookbook by Christopher Schmitt
and Kyle Simpson (O’Reilly). Copyright 2011 Christopher Schmitt and Kyle Simpson,
978-1-449-39679-4.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

xx | Preface

mailto:permissions@oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449396794

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Preface | xxi

http://www.oreilly.com/catalog/9781449396794
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://my.safaribooksonline.com/?portal=oreilly

Acknowledgments
Use this section to thank reviewer and other people and organizations that assisted
with the book’s creation.

xxii | Preface

CHAPTER 1

Fundamental Syntax & Semantics

Emily Lewis

Introduction
This chapter is designed to get you up and running with HTML5 basics.

Covering the fundamental recipes, from declaring the DOCTYPE and character set to
dealing with ambiguities of the new HTML5 semantics, this chapter helps lay the
groundwork for the rest of the book.

Specifying the DOCTYPE

Problem
You want to create an HTML5 page.

Solution
Specify the HTML5 DOCTYPE at the very beginning of your page:

<!DOCTYPE html>
<html>
 <head>
 <title>HTML5, for Fun & Profit</title>
 </head>
 <body>
 </body>
</html>

Note that the DOCTYPE is not case-sensitive. Feel free to go CaMeL
cAsE with the characters..

1

Discussion
The Document Type Definition, or DOCTYPE, tells browsers and validators what ver-
sion of HTML the page is written in. Previous versions of HTML specified the version
number, such as the DOCTYPE for XHTML 1.0 Strict:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

With HTML5, the version is dropped from the DOCTYPE. This allows HTML5 to be
backwards compatible in terms of syntax and, hopefully, makes the transition to
HTML5 easier.

Let’s say you have a site that is valid HTML 4.0, but you want to transition to HTML5.
Start with just the DOCTYPE change, and you not only have a valid site, but also a
valid HTML5 site.

Additionally, all browsers recognize the shortened DOCTYPE and render in strict
standards mode.

There are some elements that have changed between HTML4 and
HTML5, so some now removed or deprecated parts of your HTML4
document.

For example, <center>) might not technically validate as HTML5.

See Also
The W3C Working Draft discussion on differences between HTML 4 and HTML5
includes DOCTYPE at http://www.w3.org/TR/html5-diff/#doctype.

Specifying the Character Set

Problem
You need to define the character encoding of your web page.

Solution
In your document head, add a meta declaration for the character set:

<meta charset="UTF-8" />

Discussion
Character encoding tells browsers and validators what set of characters to use when
rendering web pages.

2 | Chapter 1: Fundamental Syntax & Semantics

http://www.w3.org/TR/html5-diff/#doctype

If you do not declare the character set in your HTML, browsers first try to determine
the character set from your server’s HTTP response headers (specifically, the “Content-
Type” header).

The character set declared in the response headers is generally taken in preference over
the character set specified in your document, and is thus the preferred method.

However, if you cannot control what headers your server sends, declaring the character
set in your HTML document is the next best option.

If a character set is neither declared in the document nor in the response headers, the
browser might choose one for you and it may be the wrong one for your site’s needs.

This could not only cause issues with rendering, but also poses a security risk.

Several years ago, a cross-site scripting vulnerability was discovered at
Google that demonstrates the importance of character encoding: http:
//shiflett.org/blog/2005/dec/googles-xss-vulnerability

In previous versions of HTML, the character set needed to be declared with additional
attributes and values:

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

But, like the DOCTYPE, HTML5 only needs the minimum information required by
browsers. Again, this helps with backwards compatibility and makes it easier for au-
thors to implement.

Special Characters

In this recipe, the page was specified to Unicode (UTF-8) because it is a versatile en-
coding that covers most web builders’ needs. Sometimes, though, you need to include
a character that is outside the encoding.

A great resource for character entities is at http://www.digitalmediami
nute.com/reference/entity/. It includes the numeric, named and Unicode
references for many of the more common characters allowed in HTML.

For these characters, you specify them with a Numeric Character Reference (NCR) or
as a named entity in order to help browsers render them correctly. If you wanted a
copyright symbol, for example, you could include it in your HTML as an NCR:

©

Or you could include it as a named entity:

©

Specifying the Character Set | 3

http://shiflett.org/blog/2005/dec/googles-xss-vulnerability
http://shiflett.org/blog/2005/dec/googles-xss-vulnerability
http://www.digitalmediaminute.com/reference/entity/
http://www.digitalmediaminute.com/reference/entity/

See Also
Mark Pilgrim's "Dive Into HTML5" discussion about character encoding at http://di
veintohtml5.org/semantics.html#encoding.

Specifying the Language

Problem
You want to specify the primary language of your web page.

Solution
Add the lang attribute and appropriate value to your opening html element:

<html lang="en">

Discussion
Browsers, screen readers and other user agents use the lang attribute to know what
language the content should be interpreted in. The example above specifies English via
the en value.

Declaring a document’s primary language isn’t a requirement for HTML5 or any of the
previous versions, for that matter. It is, however, a good practice for both usability and
accessibility.

See Also
Mark Pilgrim's "Dive Into Accessibility" discussion about identifying your document
language at http://diveintoaccessibility.org/day_7_identifying_your_language.html

Optimizing scripts and links

Problem
You want to reference JavaScript and include links to external CSS files in your web
page as simply as possible.

Solution
Include script and link declarations, but without the type attribute:

4 | Chapter 1: Fundamental Syntax & Semantics

http://diveintohtml5.org/semantics.html#encoding
http://diveintohtml5.org/semantics.html#encoding
http://diveintoaccessibility.org/day_7_identifying_your_language.html

<link rel="stylesheet" href="styles.css" />
<script src="scripts.js"></script>

Discussion
HTML5 requires only the minimum amount of information needed for user agents. In
previous versions of HTML, both CSS links and script required the type attribute to
indicate the language. If you forgot to include type, though, most browsers assumed
the correct value.

Makes sense, since there is really only one standard scripting language and only one
styling language for the web right now. HTML5 makes type officially optional, but still
validates older documents that do include the attribute.

See Also
The W3C Working Draft discussion on differences between HTML 4 and HTML5
includes changed attributes at http://www.w3.org/TR/html5-diff/#changed-attributes.

Adding Document Structure With HTML5’s New Elements

Problem
You want to define your document structure with the new header, footer, nav, aside,
section and article elements.

Solution
Examine your content and document structure to determine which of the new elements
work with your page:

<header>
Is used to contain the headline(s) for a page and/or section. It can also contain
supplemental information such as logos and navigational aids.

<footer>
Contains information about a page and/or section, such as who wrote it, links to
related information and copyright statements.

<nav>
Contains the major navigation links for a page and, while not a requirement, is
often contained by header.

<aside>
Contains information that is related to the surrounding content but also exists
independently, such as a sidebar or pull-quotes.

Adding Document Structure With HTML5’s New Elements | 5

http://www.w3.org/TR/html5-diff/#changed-attributes

<section>
Is the most generic of the new structural elements, containing content that can be
grouped thematically or is related.

<article>
Is used for self-contained content that could be consumed independent of the page
as a whole, such as a blog entry.

A simple blog structure, with a headline, navigation, sidebar, blog posts and footer (see
Figure 1-2) could be marked up in HTML5 as:

<header>
 <h1><abbr title="Hypertext Markup Language">HTML</abbr>5, for Fun & Profit</h1>
 <nav>

 Archive
 About

 </nav>
</header>
<article>
 <h2><code>nav</code> Isn't for All Links</h2>
 <p>Though the <code>nav</code> element often contains links, that doesn't mean that all links on a site need <code>nav</code>.</p>
</article>
<article>
 <h2>You've Got the <code>DOCTYPE</code>. Now What?</h2>
 <p>HTML5 isn't an all or nothing proposition. You can pick and choose what works best for you. So once you have the <code>DOCTYPE</code> in place, you should explore.</p>
</article>
<aside>
 <h2>HTML5 Elsewhere</h2>
 <p>Feed your HTML5 fix with resources from our partners:</p>

 Loving HTML5
 Semantic Sally

</aside>
<footer>
 <p>Copyright © 2011 HTM5, for Fun & Profit. All rights reserved.</p>
</footer>

And, with the right CSS and supporting HTML, this markup could render on the
browser as shown in Figure 1-1.

Discussion
These new structural elements were developed based on actual practices. A review of
over a billion web pages (see http://code.google.com/webstats/) revealed the naming
conventions markup authors were already using to structure and describe their content
via class and id, including:

• Header

• Footer

6 | Chapter 1: Fundamental Syntax & Semantics

http://code.google.com/webstats/

• Nav

The new elements in HTML5 simply attempt to reflect what authors are already doing.

Structural Elements

Using these structural elements helps you make your markup more semantic, but they
also help define the main landmarks in the document.

Consider how important it is for screen reader users and folks who navigate with the
keyboard to be able to skip to different areas of the page, like the navigation.

Previously, we’ve tried to provide such functionality via “skip links” and shortcuts, but
HTML5 establishes formal landmark elements that can be used.

That said, this is still a hypothetical.

As of this writing, no browsers or assistive technologies reference the structural ele-
ments for any navigational purposes.

In fact, the Web Accessibility Initiative’s Accessible Rich Internet Applications (WAI-
ARIA) specification already addresses how to use HTML5 with ARIA landmark roles
(see Chapter 2) for this very purpose.

When to Use Structural Elements

How do you know when to use these new elements?

Again, focus on your content and consider the semantics of each element.

For example, most sites have an area considered a “header,” comprised of a logo, maybe
the company name and a tagline. And that certainly sounds like a good case for header.

You may also have a section or aside in your document with its own set of headlines
and navigation, for which header is also completely appropriate.

The same holds true for footer. While most pages have content appropriate for the
new footer element — author, copyrights, related information — sections, articles
and asides can feature the same information. And, in turn, can also include footer.

Figure 1-1. Sample rendering of a simple blog structure using HTML5’s new elements.

Adding Document Structure With HTML5’s New Elements | 7

Or consider nav. You may have many groups of links on your site, some of which are
for navigation, while others are external.

But nav is only appropriate for major site navigation, not search results links or a blog-
roll.

When to Use div Elements

As you can see from the blog markup example, the new structural elements can replace
many of the non-semantic container divs that you may have grown accustomed to
using. But div still has a place at the HTML5 party.

If you ever need a containing element strictly for style purposes, div is the element to
use. You don’t want to use one of the new structural elements just to serve as a hook
for your CSS. That is not what semantic markup is about.

Just remember to focus on your content and avoid unnecessary use of div, such as when
another element is more semantic.

For example, if you have a paragraph of text, use the p element not div. Both give you
block-level formatting, but p is more semantic for that particular purpose.

Styling Structural Elements

All of today’s browsers render the content contained by these new elements, however
some browsers don’t recognize them and, as such, treat them like inline elements. This
default rendering can cause some serious problems with styling.

Fortunately, it doesn’t take much to fix.

The current cast of browsers simply needs to be told to treat the elements as block-level
elements:

header, footer, nav, article, aside, section {
 display: block;
}

And with that single CSS declaration, you can happily style the structural elements.
Well, almost.

In versions of Internet Explorer (IE) prior to IE9 you have to add a bit of JavaScript to
your document so IE recognizes the elements and allow you to style them:

<script>
 document.createElement('header');
 document.createElement('footer');
 document.createElement('nav');
 document.createElement('article');
 document.createElement('aside');
 document.createElement('section');
</script>

8 | Chapter 1: Fundamental Syntax & Semantics

Any time you add a new HTML5 element to your document, you need to add this
document.createElement if you want cooperation from Internet Explorer before version
9. See Chapter 2 for a more detailed discussion on using JavaScript with IE.

See Also
Script Junkie's article "Using HTML5's New Semantic Tags Today" at http://msdn.mi
crosoft.com/en-us/scriptjunkie/gg454786.

Choosing Between article and section

Problem
You don’t know whether article or section is the most appropriate element to use on
your web page.

Solution
Focus on your content and the semantic definitions of article and section (“Choosing
Between article and section” on page 9).

<article>

article can be considered a specialized form of section. It is intended for content that
could stand on its own, outside of all surrounding content, such as “syndicatable”
content like blog posts.

article is suitable for other types of content, including:

• Video and accompanying transcript

• News articles

• Blog comments

Often the name of an article or a blog post is in the title of the URI. If
that’s the case with a page you are working on, that content should be
wrapped in an article element.

As you saw in the code example in “Choosing Between article and sec-
tion” on page 9, we used article to contain the individual blog posts:

<article>
 <h2><code>nav</code> Isn't for All Links</h2>
 <p>Though the <code>nav</code> element often contains links, that doesn't mean that all links on a site need <code>nav</code>.</p>
</article>

Choosing Between article and section | 9

http://msdn.microsoft.com/en-us/scriptjunkie/gg454786
http://msdn.microsoft.com/en-us/scriptjunkie/gg454786

<article>
 <h2>You've Got the <code>DOCTYPE</code>. Now What?</h2>
 <p>HTML5 isn't an all or nothing proposition. You can pick and choose what works best for you. So once you have the <code>DOCTYPE</code> in place, you should explore.</p>
</article>

<section>

section, meanwhile, is the most generic of the new structural elements, intended to
simply group related content. However, it is not a generic container element like div.
The content it groups must be related.

This definition, applied to “Choosing Between article and section” on page 9, could
mean the addition of section as the parent element for both instances of article:

<section>
 <article>
 <h2><code>nav</code> Isn't for All Links</h2>
 <p>Though the <code>nav</code> element often contains links, that doesn't mean that all links on a site need <code>nav</code>.</p>
 </article>
 <article>
 <h2>You've Got the <code>DOCTYPE</code>. Now What?</h2>
 <p>HTML5 isn't an all or nothing proposition. You can pick and choose what works best for you. So once you have the <code>DOCTYPE</code> in place, you should explore.</p>
 </article>
</section>

This example meets the core criteria for section: the grouped content is thematically
related.

But, wait! The spec (see http://www.w3.org/TR/html5/sections.html#the-section-ele
ment) further clarifies:

“A general rule is that the section element is appropriate only if the element's contents
would be listed explicitly in the document's outline.”

The document outline refers to HTML5’s new sectioning content model where each of
the new structural elements creates its own self-contained outline. This outline is gen-
erated by the headings (h1-h6) contained in each element (see “Emphasizing
Text” on page 15).

So, based on this context, if you want to use section, the content should have a natural
heading.

Given this additional clarification, let’s modify the markup from “Choosing Between
article and section” on page 9 to include a heading for section:

<section>
 <h1>Most Recent Blog Posts</h1>
 <article>
 <h2><code>nav</code> Isn't for All Links</h2>
 <p>Though the <code>nav</code> element often contains links, that doesn't mean that all links on a site need <code>nav</code>.</p>
 </article>
 <article>
 <h2>You've Got the <code>DOCTYPE</code>. Now What?</h2>
 <p>HTML5 isn't an all or nothing proposition. You can pick and choose what works best for you. So once you have the <code>DOCTYPE</code> in place, you should explore.</p>

10 | Chapter 1: Fundamental Syntax & Semantics

http://www.w3.org/TR/html5/sections.html#the-section-element
http://www.w3.org/TR/html5/sections.html#the-section-element

 </article>
</section>

Discussion
The difference between section and article can be confusing and, as the spec evolves,
the path doesn’t seem to be getting much clearer. For the majority of use cases, though,
considering these guidelines should help:

• Do not use section simply as a styling hook. Use divs and spans instead.

• Do not use section if header, footer, aside or article is more semantically appro-
priate (“Choosing Between article and section” on page 9) for your content.

• Do not use section unless it has a natural heading.

See Also
HTML5 Doctor has a handy flow chart to help choose the right HTML5 structural
elements at http://html5doctor.com/happy-1st-birthday-us/#flowchart.

Checking Your Document Outline

Problem
You want to view your document’s content outline.

Solution
Run your page through the HTML5 Outliner tool: http://gsnedders.html5.org/outliner/.

Discussion
HTML5 has an outline algorithm that calculates the structure of a web document. This
algorithm is based on sections defined by the new structural elements.

For the main document outline, section and aside each introduce a new section in the
outline, while the heading(s) within each form the outline content. This is known as
explicit sectioning.

Let’s examine the following markup example:

<section>
 <h1>Most Recent Blog Posts</h1>
 <article>
 <h2><code>nav</code> Isn't for All Links</h2>
 <p>Though the <code>nav</code> element often contains links, that doesn't mean that all links on a site need <code>nav</code>.</p>
 </article>

Checking Your Document Outline | 11

http://html5doctor.com/happy-1st-birthday-us/#flowchart
http://gsnedders.html5.org/outliner/

 <article>
 <h2>You've Got the <code>DOCTYPE</code>. Now What?</h2>
 <p>HTML5 isn't an all or nothing proposition. You can pick and choose what works best for you. So once you have the <code>DOCTYPE</code> in place, you should explore.</p>
 </article>
</section>

This markup would generate the following document outline:

1. Most Recent Blog Posts

a. nav Isn’t for All Links

b. You’ve Got the DOCTYPE. Now What?

Heading Levels

Regardless of version, headings in HTML are ranked, with h1 being the highest and
h6 being the lowest.

Before HTML5, this ranking helped structure the document outline. However, with
HTML5, the importance of heading rank in determining the outline is trumped by the
sectioning elements.

Let’s modify the previous example to reflect h6 as the primary heading of section and
h1 as the primary heading of article:

<section>
 <h6>Most Recent Blog Posts</h6>
 <article>
 <h1><code>nav</code> Isn't for All Links</h1>
 <p>Though the <code>nav</code> element often contains links, that doesn't mean that all links on a site need <code>nav</code>.</p>
 </article>
 <article>
 <h1>You've Got the <code>DOCTYPE</code>. Now What?</h1>
 <p>HTML5 isn't an all or nothing proposition. You can pick and choose what works best for you. So once you have the <code>DOCTYPE</code> in place, you should explore.</p>
 </article>
</section>

Because HTML5 uses the structural elements section and aside to know when a new
outline section begins (not the headings), we still get the exact same outline as the
original example:

1. Most Recent Blog Posts

a. nav Isn’t for All Links

b. You’ve Got the DOCTYPE. Now What?

Implicit Sectioning

Since structural elements aren’t required in HTML5, heading rank does still affect the
document structure if sectioning elements aren’t used. This is known as implicit sec-
tioning. Further, implicit and explicit sectioning can be used together to form the docu-
ment outline.

12 | Chapter 1: Fundamental Syntax & Semantics

An implicit section starts with a new heading and is positioned in the document outline
according to that heading’s rank in relation to a previous heading. If a heading is a lower
rank than its predecessor, it opens a new sub-section in the outline. If a heading is a
higher rank, it closes the previous section and opens a new one.

Let’s create a new example to see how heading rank supports implicit sections:

<section>
 <h1>You've Got the <code>DOCTYPE</code>, Now What?</h1>
 <h2>Simplified <code>link</code>s and <code>script</code>s</h2>
 <p>HTML5's more flexible and simplified syntax ...</p>
 <h2>Block-Level Links</h2>
 <p>With HTML5, <code>a</code>s can contain block ...</p>
 <h3>Looking Back</h3>
 <p>In earlier versions of HTML, you had to ...</p>
 <h2>Add Structure</h2>
 <p>HTML5 gives us several new elements to add ...</p>
</section>

This example utilizes heading rank, rather than explicit sectioning elements, to generate
the following outline:

1. You’ve Got the DOCTYPE, Now What?

a. Simplified links and scripts

b. Block-level Links

Tip #2: Looking Back

c. Add Structure

Why Is This Important?

Knowing what your document outline looks like can help you decide not only which
heading levels to use, but also helps you decide which structural elements to use. Re-
member how section should have a natural heading (“Checking Your Document Out-
line” on page 11)?

Checking your document outline show if you have neglected to include a heading,
which may prompt you to reconsider whether that element was the most appropriate
for your content.

Additionally, a document outline that accurately reflects your content hierarchy can
help users of assistive devices navigate your site.

Unfortunately, no browsers have implemented this outlining yet, nor do any assistive
technologies utilize it for navigation.

Still, checking the document outline should be a part of the development process helps
significantly when deciding which elements and heading levels to use.

Checking Your Document Outline | 13

See Also
For an extremely detailed look at the outline algorithm and sectioning, the Mozilla
Developer Network is an excellent resource at https://developer.mozilla.org/en/Sections
_and_Outlines_of_an_HTML5_document.

Modifying the Document Outline

Problem
You have a primary page title and tagline marked up with headings (h1 and h2, respec-
tively), but you don’t want the tagline included in your document outline.

Solution
Contain the both headings with the hgroup element:

<hgroup>
 <h1>HTML5, for Fun & Profit</h1>
 <h2>Tips, Tricks and Resources</h2>
</hgroup>

Discussion
hgroup hides all headings, except the highest ranked, from the document outline. In the
above example, the only content that would appear in the document outline is
“HTML5, for Fun & Profit” from the h1.

Even reversing the source order of the two headings still only pulls the highest ranked
h1 content into the document outline:

<hgroup>
 <h2>Tips, Tricks and Resources</h2>
 <h1>HTML5, for Fun & Profit</h1>
</hgroup>

See Also
Emily Lewis' in-depth discussion of headings, hgroup and the HTML5 outline at http:
//ablognotlimited.com/articles/the-beauty-of-semantic-markup-part-3-headings.

14 | Chapter 1: Fundamental Syntax & Semantics

https://developer.mozilla.org/en/Sections_and_Outlines_of_an_HTML5_document
https://developer.mozilla.org/en/Sections_and_Outlines_of_an_HTML5_document
http://ablognotlimited.com/articles/the-beauty-of-semantic-markup-part-3-headings
http://ablognotlimited.com/articles/the-beauty-of-semantic-markup-part-3-headings

Emphasizing Text

Problem
You want to add emphasis or emphatic stress to text content.

Solution
Contain the text to be emphasized with the em element:

<p>My name is Jane, not John.</p>

Discussion
After looking at this example, you may be wondering what is new here, since em has
been around since HTML 4. The difference is that HTML5 slightly redefines em for text
with “emphatic stress,” which I translate as any text that, when spoken, I would verbally
emphasize.

Redefining <i>

Another change in HTML5’s text-level semantics is that the i element is no longer
considered presentational. You can now use i to indicate text that is in an alternate
voice or mood, or somehow offset from the normal prose.

For example, a taxonomic designation, a technical term, a thought, an idiomatic
phrase, or some other text whose typical typographic presentation is italicized:

<p>Sally thought to herself, <i>when will IE6 die?</i>.</p>

Despite the new semantic distinction, browsers typically render both em and i in italics
(see Figure 1-2). Of course, you can change the default styling of either element with
CSS.

See Also
HTML5 Doctor's article "The i, b, em, & strong elements" at http://html5doctor.com/i
-b-em-strong-element/.

Figure 1-2. Browsers render both the i and em elements in italics.

Emphasizing Text | 15

http://html5doctor.com/i-b-em-strong-element/
http://html5doctor.com/i-b-em-strong-element/

Adding Importance to Text

Problem
You want to indicate a span of text that is important.

Solution
Contain the important text with the strong element:

<p>Registration is required for this event.</p>

Discussion
In previous versions of HTML, strong was used to indicate strong emphasis. Now, in
HTML5 strong indicates importance, such as alerts and warnings.

Redefining

Much like it’s shunned sibling i, the b element makes a comeback in HTML5. No longer
considered a presentational element, b is used to stylistically offset text from the normal
prose without conveying any extra importance.

For example, b could be used for keywords, product names, or other content whose
text would typically be unique compared to surrounding text such as a paragraph lead:

<p>Once upon a time, there was a man who lost his mind.</p>

The difference between strong and b is now more semantically clear, but both are
typically rendered in browsers with a heavier font weight (see Figure 1-3). Of course,
CSS lets you change the default styling as needed.

See Also
The author’s article "The Beauty of Semantic Markup, Part 2: , , ,
<i> at http://ablognotlimited.com/articles/the-beauty-of-semantic-markup-part-2
-strong-b-em-i.

Figure 1-3. Browsers render both the and elements in bold.

16 | Chapter 1: Fundamental Syntax & Semantics

http://ablognotlimited.com/articles/the-beauty-of-semantic-markup-part-2-strong-b-em-i
http://ablognotlimited.com/articles/the-beauty-of-semantic-markup-part-2-strong-b-em-i

Highlighting Text for Reference

Problem
You want to highlight the search term(s) in a list of search results.

Solution
Contain the search term with the mark element:

<p>Your search for <mark>awesomesauce</mark> resulted in 923 entries:</p>

Discussion
mark is an entirely new element in HTML5. While the most common scenario for its
use is likely for search terms, it can be more broadly used for text that is “marked or
highlighted for reference purposes, due to its relevance in another text.”

mark adds no additional semantic importance or emphasis to the text it contains, but
current browsers (that doesn’t include IE before version 9) do display the content with
a yellow background by default (see Figure 1-4), which you can change with CSS.

See Also
HTML5 Doctor's article "Draw attention with mark" at http://html5doctor.com/draw
-attention-with-mark/.

Marking Up Small Print

Problem
You want to offset a legal disclaimer and copyright statement as small print.

Figure 1-4. Browsers render the <mark> element with a yellow background by default.

Marking Up Small Print | 17

http://html5doctor.com/draw-attention-with-mark/
http://html5doctor.com/draw-attention-with-mark/

Solution
Contain the small print content with the small element:

<p><small>The owner of this blog is not responsible for mind blowage. Please consume at your own risk.</small></p>
<p><small>Copyright © 2011 Awesomest Blog. All rights reserved.</small></p>

Discussion
HTML5 redefined the previously presentational small as semantically appropriate for
content typically considered “small print,” such as legalese, disclaimers, terms, condi-
tions and copyrights. And though small is supposed to indicate semantics only, brows-
ers do display content a bit smaller by default (see Figure 1-5).

See Also
The W3C Working Draft discussion of text-level semantics in HTML5 includes the
<small> element at http://www.w3.org/TR/html5/text-level-semantics.html#the-small
-element.

Defining Acronyms & Abbreviations

Problem
You want to provide expanded definitions for acronyms and abbreviations.

Solution
Contain the abbreviation or acronym with abbr, and include the definition as the
title value:

<abbr title="Accessible Rich Internet Applications">ARIA</abbr>

Figure 1-5. The first sentence does not contain the <small> element, while the second does. Note the
slightly smaller font size in part of the second sentence.

18 | Chapter 1: Fundamental Syntax & Semantics

http://www.w3.org/TR/html5/text-level-semantics.html#the-small-element
http://www.w3.org/TR/html5/text-level-semantics.html#the-small-element

Discussion
In previous versions of HTML we had both the abbr and the acronym elements. Not
surprisingly in the always-ready-for-a-debate web world, these two elements caused
much controversy.

Part of the issue is that prior to version 7, IE didn’t display the title value of abbr as a
tooltip (see Figure 1-6). To get around this usability limitation, authors simply started
using acronym, regardless of whether the content was actually an acronym.

Another part of the issue was the argument about what was an acronym vs. what con-
stituted an abbreviation.

Today, the debate ends (at least for practical purposes), as acronym has been dropped
completely from the HTML5 specification. The reasoning is that all acronyms are
shortened forms of words or phrases, which is the very definition of an abbreviation.

See Also
WHATWG's Living Standard's text-level semantics includes <abbr> at: http://www
.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the
-abbr-element.

Adding Links to Block-Level Content

Problem
You want to wrap your site logo and main heading with a single hyperlink.

Solution
Contain both the logo image and the heading with the a element:

 <h1>HTML5, for Fun & Profit</h1>

>

Figure 1-6. Default rendering of <abbr> tooltip in Firefox 5.0.

Adding Links to Block-Level Content | 19

http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-abbr-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-abbr-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-abbr-element

Discussion
Previous versions of HTML restricted a to inline content. So, if you had different ele-
ments that all needed to be linked to the same resource, you had to individually specify
the a for each:

<h1>HTML5, for Fun & Profit</h1>

Now, with HTML5, a elements can contain block-level elements. You can also still use
a as in the past, for containing inline content. The only thing you can’t nest inside an
a is another a.

This alone is a great reason for using the HTML5 DOCTYPE.

See Also
HTML5 Doctor's article "'Block-level' links in HTML5" at http://html5doctor.com/block
-level-links-in-html-5/.

Marking Up Figures and Captions

Problem
You want to include an illustration with a caption on your web page.

Solution
Contain the illustration image with the figure element, and include the caption text
within figcaption:

<figure>

 <figcaption>The increasing amount of awesome that this blog demonstrates.</figcaption>
</figure>

Discussion
figure and figcaption are both two new elements introduced in HTML5. Though the
above example references an illustration (img), figure is not restricted to that type of
content. It can be used to specify code examples, photos, charts, audio and data tables,
to name just a few.

20 | Chapter 1: Fundamental Syntax & Semantics

http://html5doctor.com/block-level-links-in-html-5/
http://html5doctor.com/block-level-links-in-html-5/

Why so many different types of content? Because the spec defines figure (http://www
.w3.org/TR/html-markup/figure.html) rather broadly:

“... a unit of content, optionally with a caption, that is self-contained, that is typically
referenced as a single unit from the main flow of the document, and that can be moved
away from the main flow of the document without affecting the document’s meaning.”

If you’ve been paying attention, it might’ve occurred to you that this definition sounds
quite similar to that for aside (http://www.w3.org/TR/html-markup/aside.html). To
know which element is most appropriate for your content, consider whether the con-
tent is essential for understanding the surrounding content. If it is not essential, only
related, then use aside. Otherwise, figure is appropriate.

And keep in mind two things:

• figcaption is optional and can reside anywhere within figure, whether before or
after the figure content.

• Just because this recipe’s example uses an image, doesn’t mean all images need to
be contained by figure.

See Also
HTML5 Doctor's "Simplequiz #4" on figures, captions and alt text at http://html5doc
tor.com/html5-simplequiz-4-figures-captions-and-alt-text/.

Marking Up Dates and Times

Problem
You want to encode date-time content for machines, but still retain human readability.

Solution
Wrap the human-friendly date-time information in the time element, and specify the
machine-readable information via the datetime attribute:

<p>Published: <time datetime="2011-01-15">January 15, 2011</time></p>

Depending on the date and time you are trying to specify, the following approaches are
also valid:

Time only

<p>The class starts at <time datetime="08:00">8:00 am</time>.</p>

Date and time (requires time zone specification)

<p>Registration opens on <time datetime="2011-01-15T08:00-07:00">January 15, 2011 at 8:00 am, Mountain Time</time>.</p>

Marking Up Dates and Times | 21

http://www.w3.org/TR/html-markup/figure.html
http://www.w3.org/TR/html-markup/figure.html
http://www.w3.org/TR/html-markup/aside.html
http://html5doctor.com/html5-simplequiz-4-figures-captions-and-alt-text/
http://html5doctor.com/html5-simplequiz-4-figures-captions-and-alt-text/

Visible machine-readable format (no date-time required)

<p>Published: <time>2011-01-15</time></p>

Discussion
Before we discuss this new element, let’s first address machine-readability. This is sim-
ply the notion of enriching your web content with additional, semantic information
that machines (search engines, users agents, etc.) can parse to glean more meaning from
your content.

Next, let’s talk date-time information on the web. For machine-readability, date-time
has to be specified in the international standard format, ISO 8601. For dates, the format
is YYYY-MM-DD. For times of day, the format is hh:mm:ss. And when combining dates with
times, you join the numeric representations with a T: YYYY-MM-DDThh:mm:ss.

Okay, back to the new time element: as you can see from the examples, you can specify
dates, times and date-times. What the human user experiences is the content contained
by time. What machines read is the datetime ISO 8601 value.

To date, we’re not aware of any machines that are currently parsing the
datetime information from time. But we can imagine this soon be on the
horizon, particularly for search engines that want to accurately display
time-sensitive results for news queries.

One limitation of time that is worth mentioning is that it can’t be used for imprecise
dates such as August 2011. It does require, minimally, the day, month and year for
dates.

What About Microformats?
By this point, perhaps, you are wondering about microformats (http://microformats
.org), which are HTML-based design patterns for expressing machine-readable seman-
tics. The hCalendar (http://microformats.org/hCalendar) microformat, for example, is
used for indicating date-time information.

Want to learn more about microformats? Check out Emily Lewis’ Mi-
croformats Made Simple (http://microformatsmadesimple.com) for lots of
practical examples and easy-to-understand explanations.

Neither HTML5 generally, nor the time element specifically, negate the use of micro-
formats. You can still use them. In fact, the time element would make a great semantic
hook for adding hCalendar. Yet current microformats parsers don’t recognize the
time element, so the two can’t be used together.

22 | Chapter 1: Fundamental Syntax & Semantics

http://microformats.org
http://microformats.org
http://microformats.org/hCalendar
http://microformatsmadesimple.com

This is unfortunate for a POSH and microformats devotee, but it is the reality of this
industry.

As new technologies evolve, older technologies respond, and we designers and devel-
opers have to weigh the pros, the cons and the future.

Publication Dates
Another new date-related feature in HTML5 is the pubdate attribute for time. Adding
this attribute indicates that the time is the actual publication date-time for a web page
or an article (such as a blog post) on a page:

<p>Published: <time datetime="2011-01-09" pubdate>January 9, 2011</time></p>

This helps differentiate publication dates from other instances of time on a page or
within an article.

See Also
Mark Pilgrim's "Dive Into HTML5" discussion on dates and times at: http://divein
tohtml5.org/semantics.html#time-element.

Setting the Stage for Native Expanding and Collapsing

Problem
You want to provide content that can expand and collapse with user focus (once
browsers support it).

Solution
Contain the full content with the details element and indicate the content area that is
“focusable” with summary:

<details>
 <summary>Upcoming Topics</summary>
 <p>For the new year, we have a great line up of articles!</p>

 Understanding the Outline Algorithm
 When to Use <code>hgroup</code>
 Machine Semantics with Microdata

</details>

Setting the Stage for Native Expanding and Collapsing | 23

http://diveintohtml5.org/semantics.html#time-element
http://diveintohtml5.org/semantics.html#time-element

Discussion
This Recipe sets up a solid semantic structure for a very common behavior that we
currently have to use JavaScript to achieve.

The summary element indicates which content is the “control” that expands or collapses
the full details content upon user focus (see Figure 1-7). And, if you wanted to ensure
that details was expanded by default (see Figure 1-8), you can add the open attribute:

<details open>

Only Chrome currently supports this behavior. For the other browsers you still have
to use JavaScript to create expanding/collapsing content, because none of today’s
browsers support the functionality of details and summary.

See Also
Remy Sharp has put together a nice little script that forces browsers to apply the ex-
panding and collapsing behavior to details at https://gist.github.com/370590.

Figure 1-7. Default display of <summary> in Chrome 13 with collapsed <details> content.

Figure 1-8. Default display of <summary> in Chrome 13 with <details open>.

24 | Chapter 1: Fundamental Syntax & Semantics

https://gist.github.com/370590

Controlling the Numbering of Your Lists

Problem
You want an ordered list to have numbering different than the default of starting with
1.

Solution
Specify one of the semantic control attributes on the ol or li. For instance, to start a
numbered list at three (see Figure 1-9), include the start attribute in your ol and specify
3 as the value:

<ol start="3">
 Apples
 Oranges
 Bananas

Discussion
start has been around for a while, but was deprecated as presentational. HTML5 now
recognizes the semantic value of controlled numbering and welcomes it back. And this
“reordering” via start works the same across all browsers. Yes, IE6 included.

Another attribute for controlling the numbering of your ordered list is the reversed
attribute, which reverses the order of a list, such as a countdown from 10:

<ol reversed>
 Apples
 Oranges
 Bananas

Unfortunately, none of the current browsers support this attribute yet.

Figure 1-9. Default rendering of <ol start="3"> in Firefox 5.0.

Controlling the Numbering of Your Lists | 25

You can also specify the exact number value for each li which could come in handy if
you are ranking something and there is a “tie” (see Figure 1-10):

<p>The results are in for your favorite fruit, and we have a tie for first place!</p>

 <li value="1">Bananas
 <li value="1">Oranges
 <li value="2">Apples

The value attribute for li is also supported by all current browsers.

See Also
The W3C's Working Draft about grouping content includes the ol element at http://
www.w3.org/TR/html5/grouping-content.html#the-ol-element.

Hide Content to Show Later

Problem
You have content that you want to hide until after a user logs in.

Solution
Add the hidden attribute to the element containing the content to be temporarily hid-
den:

<p hidden>As a special deal for members, use discount code AWESOMESAUCE and save 10% off all purchases from these vendors.</p>

Discussion
The hidden attribute is one of the more controversial additions to HTML5.

As the spec defines it, hidden should be applied to content that is not yet or no longer
relevant to the current user view and, as such, should not be rendered by browsers.

Figure 1-10. Ordered list with specified values.

26 | Chapter 1: Fundamental Syntax & Semantics

http://www.w3.org/TR/html5/grouping-content.html#the-ol-element
http://www.w3.org/TR/html5/grouping-content.html#the-ol-element

The Document Object Model (DOM) and machines like search engines, though, can
still access the content.

This means that if the content does become relevant to the user view, it can be targeted
via JavaScript, for example, and displayed by removing the attribute.

Where the concerns lie is in the misunderstanding and abuse of this attribute. It is
not to be used for the temporary show/hide that you may encounter with tabbed content
and the like.

Further, we already have CSS solutions that address the display of content such as
display: none and visibility: hidden.

There is semantic value of hidden, especially compared to the CSS alternative. If this
attribute remains in the specification, perhaps over time, the concerns may prove un-
necessary.

Just remember: do not use hidden for presentational purposes and don’t
rely on browsers to actually hide the content. Use it only for semantic
purposes and use CSS to control presentation.

See Also
Peter Beverloo's article "Thoughts on the HTML5 hidden attribute" at http://peter.sh/
2010/06/thoughts-on-the-html5-hidden-attribute/.

Making Portions of a Page Editable

Problem
You want to allow users to directly edit content in the browser.

Solution
Add the contenteditable attribute to the element containing the content to be edited:

<article contenteditable>
 <h2>Stop <code>section</code> Abuse!</h2>
 <p>As the most generic of the HTML5 structural elements, <code>section</code> is often incorrectly used as a styling container, when <code>div</code> is more appropriate.</p>
</article>

Discussion
This attribute is well supported by today’s browsers, including IE6. In fact, contente
ditable first appeared in IE 5.5 and has since been incorporated by other browsers. It

Making Portions of a Page Editable | 27

http://peter.sh/2010/06/thoughts-on-the-html5-hidden-attribute/
http://peter.sh/2010/06/thoughts-on-the-html5-hidden-attribute/

was originally intended to support in-browser editing such as a What You See Is What
You Get (WYSIWYG) editor.

However, on its own, it only allows users to edit content. It does not have any func-
tionality to save those edits, nor does it generate editing controls commonly seen in
WYSIWYG editors. For that type of editing, you need to incorporate JavaScript and
utilize the local storage Application Programming Interface (API) (see Chapter 8).

A good example of when to use contenteditable is for demonstrating the use of how
text should look like when styled with CSS rules or set with a certain typeface, while
allowing users to edit their own text (see Figure 1-11).

See Also
W3C's Working Draft discussion on user interaction includes the contentEditable at-
tribute at: http://www.w3.org/TR/html5/editing.html#contenteditable.

Set the Stage for Native Drag and Drop

Problem
You want to allow users to drag and drop content on your web page.

Solution
Add the draggable attribute to the element that should be draggable:

<h2 draggable>Block-Level Links</h2>

Discussion
draggable, like contenteditable, has good browser support and was originally intro-
duced for IE. By default, certain elements are already draggable: a and img. However,
the simple addition of draggable to your elements does not create the drag-n-drop
scenario on its own. draggable simply allows you to specify the elements that can be
dragged.

Figure 1-11. Once focus is set on element assigned contenteditable, Firefox 5.0 displays a gray dotted
line appears around it, indicating the area that can be edited.

28 | Chapter 1: Fundamental Syntax & Semantics

http://www.w3.org/TR/html5/editing.html#contenteditable

To achieve the desired drag and drop functionality, you need JavaScript to:

1. Tell the browser where the draggable element can be dropped (the drop “zone”)

2. Tell the browser what to do with the element once it has been dropped

See Also
• WHATWG's Living Standard addresses the draggable attribute at http://www

.whatwg.org/specs/web-apps/current-work/multipage/dnd.html#the-draggable-at
tribute.

• HTML5 Doctor features a simple, yet straightforward tutorial on implementing
basic drag and drop at http://html5doctor.com/native-drag-and-drop.

• “Drag and Drop” on page 209 in Chapter 10 of this book.

Set the Stage for Native Drag and Drop | 29

http://www.whatwg.org/specs/web-apps/current-work/multipage/dnd.html#the-draggable-attribute
http://www.whatwg.org/specs/web-apps/current-work/multipage/dnd.html#the-draggable-attribute
http://www.whatwg.org/specs/web-apps/current-work/multipage/dnd.html#the-draggable-attribute
http://html5doctor.com/native-drag-and-drop

CHAPTER 2

Progressive Markup & Techniques

Christina Huggins Ramey

Introduction
As a web developer, you may be eager to implement HTML5’s new features within
your website. However, HTML5 is still a budding technology, and browser-support
for many of its features is spotty at best.

Your excitement at the prospect of a cutting-edge HTML5 site may be tempered by the
following questions:

• How can I accommodate browsers that have yet to support many of HTML5’s
elements?

• What are the current best practices for coding a standards-compliant, cross-
browser compatible HTML5 website?

In this chapter you will learn how to test for supported HTML5 features within a
browser, and the latest techniques for accommodating for those features that aren’t.
You will learn how to get started quickly with an HTML5 boilerplate template that
includes all of the latest tricks, techniques, and best practices for implementing HTML5
technologies. You’ll find out how to validate your HTML5 documents, and even how
to code your XHTML/HTML4 documents for future HTML5 upgradability.

After learning the techniques of this chapter, you will have the confidence to integrate
modern HTML5 web technologies within your web pages, even as browser technology
is still catching up with them.

Adding More Semantic Meaning

Problem
You want to markup content correctly.

31

Solution
Apply markup in a semantic manner.

Semantic markup is markup that describes the content it contains, rather than what the
content should look like.

This means coding paragraphs with the p element, titles with heading elements, and so
on.

Discussion
Sometimes referred to as Plain Old Semantic Markup (POSH), semantic markup es-
chews presentational elements like font or table for layout (see http://microformats.org/
wiki/posh).

POSH focuses on content. If you have a paragraph, use p. A heading? h1. The point is
to use the element that best describes the content.

Become familiar with the changes in HTML5 so that your code remains both semantic
and valid: HTML5 redefined several elements and completely dropped others, like
frame, frameset and noframes.

Also gone are presentational elements and attributes, as shown in Table 2-1.

Table 2-1. Sampling of obsolete presentational features in HTML5.

Elements Attributes

basefont align

big background

center bgcolor

font border

plaintext cellpadding

s cellspacing

strike height

tt nowrap

u valign

 width

See Also
For tips and tricks on how to style semantic markup, read CSS Cookbook, Third Edi-
tion by Christopher Schmitt; for the full list of obsolete elements and attributes, visit
http://www.w3.org/TR/html5/obsolete.html.

32 | Chapter 2: Progressive Markup & Techniques

http://microformats.org/wiki/posh
http://microformats.org/wiki/posh
http://www.w3.org/TR/html5/obsolete.html

Picking a Markup Style

Problem
You want to know what kind of syntax coding style to use.

Solution
One of the core changes HTML5 brings is a more relaxed syntax. Thanks to a simplified
DOCTYPE, all coding styles are valid. HTML and XHTML are both welcome at the
party:

• Uppercase tag names

• Optional quotes for attributes

• Optional values for attributes

• Optional closed empty elements

So, if you want to write loose and free, without concern for casing, quotes, or attribute
values, you can go forth with confidence; your syntax will validate.

That being said, it is worth noting that valid syntax doesn’t necessarily equal good
syntax, and that many developers still tout certain “best practices” which lend to clarity
in your code. These best practices include the following suggestions:

• Code your tag names in lowercase. Uppercase is more difficult to read than low-
ercase, and distinguishing your code from your content in this manner is unnec-
essary: Any decent text editor will color-code your HTML document so that you
can visually pick out your tags with ease.

• Enclose all attribute values in quotes. There might be instances in which you need
to use quotes. E.g., if there is more than one value, so doing this universally helps
to eliminate coding errors and lends to a consistent look.

• Close all elements with content. Knowing where a div ends just makes for clearer
code, and doing this consistently enhances clarity makes your code easier to main-
tain.

Discussion
Whatever coding style you use, consistency is key: adhering to a strict syntax can help
you more quickly identify errors in your markup.

A major benefit is that a strict syntax is easier to standardize for development teams. A
standard convention can save hours in development time, particularly for large projects
with distributed team members.

Picking a Markup Style | 33

Ultimately, though, there is no right or wrong style in HTML5. Simply follow a style
that helps you develop code consistently and troubleshoot efficiently.

See Also
For more style recommendations, see: http://www.fredzlinkz.com/webcitymaster/html5
-syntax-style-recommendations.

Understanding Browser Support for HTML5

Problem
You want to find out if a browser or specific browser version supports a feature of
HTML5.

Solution
As of this writing, the HTML5 specification is still evolving. Even though browsers are
implementing portions of the specification before it’s complete, support in modern
browsers is neither 100% complete nor should it be.

As discussed in the preface and demonstrated by the chapters in this book, there is a
sizable portion of the HTML5 specification that is supported and can be utilized im-
mediately.

For a breakdown of HTML5 support across browsers, see http://caniuse.com/#cats=
HTML5. A visual representation of HTML5 as well as CSS3 can be seen at http://
html5readiness.com as shown in Figure 2-1.

Figure 2-1. A visual representation of native HTML5 audio support in modern browsers.

34 | Chapter 2: Progressive Markup & Techniques

http://www.fredzlinkz.com/webcitymaster/html5-syntax-style-recommendations
http://www.fredzlinkz.com/webcitymaster/html5-syntax-style-recommendations
http://caniuse.com/#cats=HTML5
http://caniuse.com/#cats=HTML5
http://html5readiness.com
http://html5readiness.com

Discussion
Generally speaking, all of today’s latest browsers support HTML5 to some degree or
another.

Using HTML5 isn’t an absolute proposition. You don’t have to use embedded content
or web sockets to use the new structural elements and vice versa. You don’t even have
to use the new structural elements to have a valid HTML5 document; you just need
the Document Type Definition (see “Specifying the DOCTYPE” on page 1).

Pick the features that work for you, and leave the rest. Or, rather, experiment with the
rest to see if you may find a practical implementation for yourself or your projects.

See Also
For a visual representation of browser support for HTML5 and CSS3, see http://
html5readiness.com.

Making Internet Explorer Recognize HTML5 Elements

Problem
Internet Explorer doesn’t apply CSS to elements it doesn’t recognize. And, unfortu-
nately, Internet Explorer (prior to IE9) doesn’t yet recognize most HTML5 elements.
So, implementing HTML5 is difficult, as Internet Explorer won’t render any CSS that
you apply to these new elements.

Solution
A clever solution to this problem, attributed to Sjoerd Visscher (see http://intertwingly
.net/blog/2008/01/22/Best-Standards-Support#c1201006277), and known as the shim
technique, involves creating a DOM element of the same name as the HTML5 element
that you want to use. Once you create this element, Internet Explorer will apply CSS
to it.

For example, let’s say you create the following simple body header that includes a
navigation element:

<header>
 <h1>Riddles of the Sphinx</h1>
 <nav>

 Home
 About
 Blog
 Contact Me

Making Internet Explorer Recognize HTML5 Elements | 35

http://html5readiness.com
http://html5readiness.com
http://intertwingly.net/blog/2008/01/22/Best-Standards-Support#c1201006277
http://intertwingly.net/blog/2008/01/22/Best-Standards-Support#c1201006277

 </nav>
</header>

Then, style these elements:

header {
 width: 600px;
 height: 25px;
 background-color: #ccffff;
 border: 2px solid #66cc99;
 padding: 10px;
}

nav {
 width: 100%;
 float: left;
 list-style: none;
}

nav li {
 float: left;
 padding-right: 7px;
}

When we view this page in Internet Explorer 8 or below (as shown in Figure 2-2), the
CSS is not applied.

For Internet Explorer to recognize these elements, just add the following script to the
head of the HTML document (make sure you add it to the head of the document, as
the elements need to be declared before the page renders):

<script>
 document.createElement("header");
 document.createElement("nav");
 document.createElement("footer");
</script>

Then declare the three HTML5 elements that we’ve used on the page—header, nav,
and footer—as DOM elements.

Figure 2-2. Basic rendering of the list.

36 | Chapter 2: Progressive Markup & Techniques

Now, when we view this page in Internet Explorer (as shown in Figure 2-3), the browser
sees these elements and applies its CSS.

Discussion
While this technique is effective, it can become cumbersome to create DOM elements
for all of the HTML5 elements on a page, especially if you are making heavy use of
many of them.

Web developer Remy Sharp has created a script that enables all of the HTML5 ele-
ments. Integrating this script into your page can be much more convenient than hand
coding a script every time you want to sprinkle some HTML5 into your page.

You can download the script at http://remysharp.com/2009/01/07/html5-enabling
-script/, and integrate into the head of your HTML.

Or, you can hotlink the script from the Google code repository:

<!--[if lt IE 9]>
 <script src="http://html5shim.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->

If you wrap this code within this conditional, it will only call the script if the browser
is Internet Explorer 8 or lower (IE9 has broad-range support for HTML5 elements and
technologies).

See Also
See Also: John Resig's blog post detailing the HTML Shim technique (but Resig calls
“shiv” in his blog post): http://ejohn.org/blog/html5-shiv/.

Figure 2-3. Internet Explorer recognizes the elements.

Making Internet Explorer Recognize HTML5 Elements | 37

http://remysharp.com/2009/01/07/html5-enabling-script/
http://remysharp.com/2009/01/07/html5-enabling-script/
http://ejohn.org/blog/html5-shiv/

Detecting HTML5 Features with JavaScript

Problem
You want to implement HTML5 features when they’re supported by the browser, but
degrade to another solution when they’re not.

Solution
HTML5 comes with great cutting-edge technologies that, as a designer, you may be
eager to take advantage of.

Unfortunately, HTML5 currently comes with limited browser support. You may like
to implement some of these new technologies, but you also want to accommodate
browsers that don’t yet support them.

Modernizr (see http://modernizr.com) is a JavaScript library that makes it very easy to
do just that: it detects the availability of various HTML5 and CSS3 features within a
user’s browser, and allows you to create fallbacks when a desired feature isn’t currently
supported (see Figure 2-4).

Using Modernizr

To see how Modernizr works, let’s run through an example using the JavaScript library
where we create an audio player using HTML5’s audio tag. If the user is viewing the
page with a browser that doesn’t support the audio element, we want to display an
error message alerting the user of the problem.

If we want to be really make this page cross-browser compatible, we
would probably use a Flash audio player as a fallback. However, we
want to keep this example fairly simple for the purposes of this example.

Figure 2-4. The Modernizr site.

38 | Chapter 2: Progressive Markup & Techniques

http://modernizr.com

Here is our basic HTML code for our player:

<div id="caption">
 <div id="audio">
 <audio>
 <source src="turnthepage.ogg">
 <source src="turnthepage.mp3" />
 </audio>
 <p><input type=button onclick="playPause()" value=" " tabindex="0" /> “Turn the Page” / Veil & Subdue / Paul Ramey<p>
 </div>
</div><!--end caption-->

We’ve included an image of the album cover art, and our audio element along with
customized controls.

First, download the Modernizr JavaScript library from http://modernizr.com. Include
reference to this file within the <head> of your HTML document:

<script src="js/modernizr-1.6.min.js"></script>

This script must be included in the <head> of your document with a
normal <script> tag; it cannot be loaded dynamically with script loader
techniques.

Once this script runs, it detects whether or not the browser supports the audio element,
and then it:

1. Assigns a value (true or false) to the JavaScript property Modernizr.audio, and

2. Adds a class to the HTML tag. If the browser supports the audio element, it will
add a class called “audio.” If the browser doesn't support the audio element, it will
add a class called “no-audio.”

Now you can write a script specifying what to do if the Modernizr.audio property is
true or false, and code your CSS specifying styles for elements when the audio element
is supported and when it isn't.

So, let’s write a small script (we can put this in the head of our document) that only
runs when the audio element is supported:

<script>
if (Modernizr.audio) {
 function playPause() {
 var myAudio = document.getElementsByTagName('audio')[0];
 if(myAudio.paused)
 myAudio.play();
 else
 myAudio.pause();
 }
}
</script>

Detecting HTML5 Features with JavaScript | 39

http://modernizr.com

This script adds functionality to the custom controls we added to the page. This script
will only activate if the Modernizr.audio value is true (and thus won't waste browser
resources in the instance that it doesn't support the audio element).

Next, it would be nice if we could get rid of the customized controls altogether when
the browser doesn’t support the audio element. This is easy to do with Modernizr, as
we can take advantage of the class it added to the HTML tag:

.no-audio #audio {
 display: none;
}

.audio #audio input[type="button"] {
 width: 45px;
 height: 29px;
 background: url(button.png);
 border: 0px solid #000;
 float: left;
 margin-right: 10px;
}

When the audio element isn't supported, Modernizr adds a “no-audio” class to the
header element. So, we can select for this class in our CSS, and set the display value for
“none” for any element we want to disappear.

Here, it would be the div we labeled “audio,” which encloses the controls.

When the audio element is supported, however, it adds the “audio” class to the header
element, instead.

So, we can select for this class, too, and style our control button as we please.

The next step is to set up a an error message when the audio element isn't supported.

First, we need to add the HTML for this error box to our HTML and then place a notice
underneath the “audio” div:

<div id="error">
 <p>“Turn the Page” / Veil & Subdue / Paul Ramey</p>
 <div id="error-box">
 <p>Too bad! This browser does not support the audio features on this page. Might I suggest installing the latest version of your browser?</p>
 </div>
</div>

Using the same basic technique as above, we can hide this div when the element is
supported, and style it appropriately when audio is not supported:

.audio #error {
 display: none;
}

.no-audio #error-box {
 background-color: #ffffcc;
 padding: 1px 10px;
 color: #000;

40 | Chapter 2: Progressive Markup & Techniques

 border: 5px solid #ffff66;

}
.no-audio #error-box a {
 color: #333;
}

Figure 2-5 shows the audio element supported by the browser, while Figure 2-6 shows
the result from a browser that does not support the audio element.

Currently Modernizr checks for over twenty HTML5 and CSS3 features and also in-
cludes the shim technique covered in the previous section.

Each checked feature comes with its own specific CSS classes and JavaScript property.
Check out Modernizr's documentation at http://modernizr.com/docs/, which includes
sample code for each feature that it supports.

For more information and Recipes on using HTML5 audio, see Chap-
ter 5.

Figure 2-5. The audio controls appear in the browser that supports the audio element.

Figure 2-6. How the page looks when the audio element is not supported.

Detecting HTML5 Features with JavaScript | 41

http://modernizr.com/docs/,

Discussion
Modernizr isn’t the only tool available to assess and work around this issue: Tradi-
tionally, “UA-sniffing” or “browser-sniffing” was used to determine which browser a
user was running. Then, the designer could implement browser-specific code to cus-
tomize the page.

This method, however, is unreliable in a number of ways. First of all, a browser can
fake a UA string, which is the value that the browser-sniffing technique looks at to
determine the browser.

Additionally, users can switch off certain features of their browsers, so that even if you
can determine the correct browser, you still can't be sure which features are supported.

Also, if the user is running a new browser, a newer version of a browser, or an alternative
browser that you may not have bothered to check for, your code may fail to recognize
it altogether. Not to mention that it falls on your shoulders to be on top of what browsers
support which features.

Modernizr avoids these pitfalls, as it detects, specifically, which features are supported,
rather than merely trying to detect what browser the user is viewing the page through.
This is a far more reliable method if you want fine-tuned control over the user’s expe-
rience of your web site.

Modernizr now supports a “production” version (see http://www.mod
ernizr.com/download/). This version generates a custom build of Mod-
ernizr with only the HTML5 tests needed for your sites or web appli-
cations.

See Also
The documentation on the official Modernizr website at http://www.modernizr.com/
docs/.

Using HTML5 Boilerplate

Problem
You want to get up and running with HTML5 with a robust working template.

Solution
Use Paul Irish’s HTML5 Boilerplate (as shown in Figure 2-7) as a jumping-off point for
your website. Not only does it include an HTML5 template complete with an organized

42 | Chapter 2: Progressive Markup & Techniques

http://www.modernizr.com/download/
http://www.modernizr.com/download/
http://www.modernizr.com/docs/
http://www.modernizr.com/docs/

folder structure and CSS file, it also incorporates current coding best practices, browser
bug fixes, and popular JavaScript libraries.

It incorporates three years of research into current cutting-edge coding techniques, so
you can just get on with building your web site. In fact, HTML5 Boilerplate includes
so much, that it would be time prohibitive to mention it all. So, here are some of its
highlights:

• An index.html file which includes:

— Valid HTML5 markup

— References to JavaScript libraries Modernizr and jQuery (which are included
with the template)

— Conditional statements that add classes to body tags based on what version of
Internet Explorer the page is being viewed on (so you can easily create IE6 or
IE7-specific styles)

— A basic structural skeleton within the <body> tag

— IE6 .png fix script

— Google analytics script

• CSS file that includes:

— A global reset

— Font normalization (so your fonts are sized the same across all browsers)

— Some basic styles for lists, tables, and so on

— A few non-semantic classes (for image replacement and element hiding)

— Print styles

— Space for mobile browser and orientation styles (for e.g., an iPad displayed hor-
izontally vs. vertically)

• A favicon and Apple touch icon (which you'll probably want to customize)

• Webserver config files

Figure 2-7. HTML5 Boilerplate site.

Using HTML5 Boilerplate | 43

While a dizzying array of cutting-edge web technology, it’s fairly simple to get started
with using the boilerplate.

Using the HTML5 Boilerplate

First, download the latest version of the HTML5 Boilerplate from https://github.com/
paulirish/html5-boilerplate.

Unzip the files and place the files at the root of your web project.

Paul Irish suggests that you start off by deleting a couple of things:

1. The demo files (located in a folder called “Demo”)

2. Profiler code (located near bottom of the index.html file; it begins with the com-
ment “yui profiler and profileviewer - remove for production”)

Use the index.html file as a template for all of your HTML documents. Flesh out the
basic elements and div containers included in the file. Or, start from scratch and create
your own: while his skeleton is a great start, feel free to take it as a starting point.

You’ll also want to customize the information in the head of the document (the title,
author, and so on).

As a last tweak to your HTML document, add your site id to the Google analytics code
at the bottom of the file. (If you don't use Google analytics, you’ll want to delete this
section.)

Then, you’ll want to customize the style.css file. The boilerplate CSS file has a space
for your primary CSS. It begins with the comment:

/* Primary Styles
 Author:
*/

Once you’ve added the primary CSS, feel free to add orientation styles and mobile
browser styles. You'll find these under the section beginning with the comment:

/*
 * Media queries for responsive design
 * These follow after primary styles so they will successfully override.
 */

Finally, customize the favicon and Apple touch icon. That should be as easy as replacing
the current icons included in the boilerplate files.

Discussion
While it’s fairly simple to get a basic HTML5 site started with HTML5 Boilerplate, to
really get the most out of the boilerplate, you’ll want to study the online documentation
to understand some of what is going on with the code.

44 | Chapter 2: Progressive Markup & Techniques

https://github.com/paulirish/html5-boilerplate
https://github.com/paulirish/html5-boilerplate

For instance, if you don’t understand the classes that the boilerplate includes in the
HTML (such as the IE body classes or the image-replacement class), you won’t be able
to take advantage of these useful bits of CSS in your site. If you don’t know how to
implement IE6 .png fix that's included with the boilerplate, then the script turns out to
be fairly useless.

Additionally, there may be some things you’ll want to get rid of, if you don't use them.
Delete the IE6 .png script, if you don't care about supporting IE6. Or, delete the .htac-
cess file, if you aren’t on an Apache server. Knowing what is included in the boilerplate
makes it easy to trim down the boilerplate to include only what you need.

That’s not to say you need spend hours poring over the documentation to understand
every bit of its inner workings. You might as well create your own boilerplate, if you
go through all that trouble.

However, it will behoove you to get an overview of the pieces that make up the boil-
erplate; that way, if there is something you think may be useful for your site, you can
study that bit in more detail.

See Also
• The Official Guide to HTML5 Boilerplate at: http://net.tutsplus.com/tutorials/html

-css-techniques/the-official-guide-to-html5-boilerplate/.

• The HTML5 Boilerplate Documentation at: https://github.com/paulirish/html5
-boilerplate/wiki.

Validating HTML5

Problem
You want to identify and eliminate coding errors in your HTML.

Solution
Validating your code is one of the key best practices in web development, and is a great
first step in eliminating coding errors. While validation doesn’t guarantee that your
web page will look or behave like you expect, it does guarantee that any unexpected
behavior is not due to a mismatched tag or unrecognized CSS selector.

Why validate? Fortunately (or unfortunately, depending on your position on web
standards), most web browsers try and compensate for invalid coding. So, even a hor-
rendous collection of tag soup consisting of mismatched tags and improper nesting will
probably look okay in most browsers. However, different browsers handle errors dif-
ferently.

Validating HTML5 | 45

http://net.tutsplus.com/tutorials/html-css-techniques/the-official-guide-to-html5-boilerplate/
http://net.tutsplus.com/tutorials/html-css-techniques/the-official-guide-to-html5-boilerplate/
https://github.com/paulirish/html5-boilerplate/wiki
https://github.com/paulirish/html5-boilerplate/wiki

So, if your code isn’t valid, a browser can try to compensate for errors in unexpected
ways. Additionally, mobile browsers are less forgiving of erroneous code (they simply
don’t have the resources to compensate for errors the way that desktop browsers can).
So, an invalid page that renders fine on your desktop browser may break on your mobile
phone. In light of modern web technologies, it is becoming increasingly important to
validate your code and eliminate errors. In doing so, you go one step further in ensuring
that your web page renders as expected across multiple browsing environments.

Fortunately, validating for HTML5 is not much different that validating XHTML/
HTML4. Indeed, you may find that creating a valid HTML5 document is much easier,
as HTML5 specifications, in general, are much more lenient than their predecessor. If
you want to capitalize your HTML tags, go ahead. The HTML will still validate.

If you’re too lazy to close out your li tags, you need not feel guilty for doing so. The
validator won’t chastise you—it will leave that job up to your colleagues.

So, let’s get on to the business of validating our code. Currently, there are two popular
online validators that you can use:

• W3C’s “Unicorn” Unified validator, which performs a variety of checks, and can
validate HTML5 and CSS3: http://validator.w3.org/unicorn/ as shown in Figure 2-8.

• Validator.nu HTML5 Validator: http://html5.validator.nu/.

To check your code, you can enter the URL, upload your HTML file, or simply paste
the contents of the file into the validator. Once you check the code, the validator will
either verify that the code is valid HTML (and CSS, if you are checking that as well),
or, it will present you with a list of errors, by line number as shown in Figure 2-9.

Note that you will usually need to run your page through the validator frequently: Many
syntax errors (e.g., an improperly closed tag) can generate a cascade of further errors
that are eliminated when the initial error is fixed. So, re-validate your document as you
correct your errors.

Figure 2-8. The unified validator dubbed Unicorn.

46 | Chapter 2: Progressive Markup & Techniques

http://validator.w3.org/unicorn/
http://html5.validator.nu/

Currently, W3C’s Unicorn validator checks CSS 2.1, by default, but you can customize
this check to include CSS3 as well.

Discussion
Validation isn’t the end-all, be-all of good HTML coding.

There may be instances in which you purposefully include invalid code in your HTML
document. Perhaps there is a necessary hack that doesn’t validate, or there is a piece
of cutting-edge CSS that isn’t yet widely supported across browsers (and it thus not
recognized by modern validators).

These can be perfectly valid reasons for having a web document that doesn’t validate.
And while it may be controversial whether you should include said hack or CSS tech-
nique, intentionally including a piece of invalid code can still be a part of good web
development practice.

Validation should be seen as one of many tools in your web development toolbox, and
should not have the final say as to whether your page is coded correctly.

Validating your code is a great way to find unintentional errors in coding, and, all things
being equal, a valid HTML5 document is generally better than an invalid one.

See Also
The documentation for these two services at http://code.w3.org/unicorn and http://about
.validator.nu/.

Figure 2-9. Validator results.

Validating HTML5 | 47

http://code.w3.org/unicorn
http://about.validator.nu/
http://about.validator.nu/

Mapping HTML5 Elements to id and class Names

Problem
You aren’t ready for HTML5 yet, but you want to code your site so that upgrading to
HTML5 in the future will be painless.

Solution
There may be legitimate reasons why you don’t want to take the HTML5 plunge yet.

Perhaps you worry about browser support. Perhaps you like to keep things simple, and
you don’t want to implement the myriad of scripts and tweaks necessary to make an
HTML5 site compatible with all modern browsers.

However, you still appreciate the semantic markup of HTML5. And you’d like to code
your site so that, when all modern browsers catch up, your XHTML/HTML4 code will
be as ready as possible for HTML5.

Fortunately, it’s quite simple to mirror the semantic structure of an HTML5 site using
divs labeled with HTML5-ish id and class names. Let’s take a look at how this can be
done.

We’re going to create a simple blog front page as shown in Figure 2-10.

By looking at this site, we can pick out a few key structural elements:

• A body header, which contains

— the blog title, and

— a navigation bar

• A section that contains

Figure 2-10. A sample web page.

48 | Chapter 2: Progressive Markup & Techniques

— two blog posts

• A footer

If we were coding this site in HTML5, we’d mark this up with various <header> and
<footer> tags, a <nav> tag, and <article> tags. However, as we’re going to mark this
up with (X)HTML4 instead, we’re going to mirror the structure and naming conven-
tions of HTML5 as closely as possible using divs with id and class names.

First, let’s work on the header:

<div id="header">
 <h1>living with simplicity</h1>
 <div id="tagline">
 life. joy. simple.
 </div>
 <div class="nav">

 About
 Archives
 Contact Me
 Subscribe

 </div><!--end nav-->
</div><!--end header-->

Ultimately, this may differ little from how you would have initially coded this page.
But note that we have mirrored the HTML5 element names with the “header” and
“nav” divs. In HTML5, the header tag should include a heading tag (here we have our
h1 title tag), and can include the nav element as well (hence, the inclusion of the navi-
gation bar within our header).

Next, let’s markup our blog posts:

<div class="posts">
 <div class="article">
 <div class="header">
 <h1>10 ways to eat ethically, cheaply, and well</h1>
 <div class="meta">Posted on February 1st, 2011</div>
 </div><!--end header-->
 [Post Content]
 <div class="footer">
 <div class="meta">Tags: simplicity, food</div>
 </div><!--end footer-->
 </div><!--end article-->
 <div class="article">
 <div class="header">
 <h1>adventures in composting</h1>
 <div class="meta">Posted on January 15th, 2011</div>
 </div><!--end header-->
 [Post Content]
 <div class="footer">
 <div class="meta">Tags: simplicity, green</div>
 </div><!--end footer-->

Mapping HTML5 Elements to id and class Names | 49

 </div><!--end article-->
</div><!--end posts-->`

Note, first, that we’ve wrapped our posts in a div we labeled “posts.” Now, you may
be tempted to name it “section” (along with the corresponding HTML5 section tag).
After all, a collection of blog posts does seem to account for its own generic section.

Recall, however, that the HTML5 section element is not meant to stand in for any old
div: something is justifiably a “section” only if it has at least one head tag (i.e., only if
it can represent a level in the outline of the HTML document.) This div, however, does
not have a head tag, so we have given it an alternative semantic name.

Next, we’ve wrapped each post within a div that we’ve named “article.” This corre-
sponds to the article tag in HTML5. Each article div, in turn, has it’s own header and
footer (which, again, would match up with the header and footer HTML5 tags).

Interestingly, we’ve also enclosed each post title in h1 tags. Prior to HTML5, having
more than one h1 tag within an XHTML/HTML document was generally frowned
upon. In order for your page to be outlined properly within the DOM, your head tags
should follow a natural progression: h3 tags followed h2, h2 followed the <h1> tag,
which enclosed the title of the page. With the advent of HTML5, this was no longer
necessary: As the browser understood the article element, semantically, it could be
ranked (and outlined) differently than, say, the header element.

You no longer needed to rely on the head tags to do all of the ranking and outlining of
the information within your document—that task was replaced by these new seman-
tically-rich elements.

So, each of your elements such as header or article can begin with their own h1 tag.
While it may seem strange to mirror this new coding convention in an XHTML/HTML4
document, it will nonetheless make it easier to transition your page to HTML5 later on.

Finally, we close our page with a div labeled “footer,” which maps onto the HTML5
footer tag:

<div id="footer"> <p>© 2011 Christina Ramey</p> </div>

Now, when you are ready to switch to HTML5, it will be easy enough to change all of
these divs to their corresponding HTML5 tags, thus saving you the headache of having
to do any major restructuring to your page.

Discussion
There is no mystery to this technique of mapping of HTML5 tags to XHTML/HTML4
divs. Indeed, you many not need to alter your current coding technique much, if at all.
However, once you decide on proper id and class names that mirror HTML5 tags, it is
best to stick with that naming convention (particularly if you are coding a lot of pages).

That way, when it does come time to translate these pages to HTML5, you don’t need
to recall that you named your header “header” in one document, but “main-header”

50 | Chapter 2: Progressive Markup & Techniques

in another. It will also make it easier to do a quick find-and-replace with your text editor
across multiple documents.

If you need help coming up with an appropriate naming convention, there are some
designers who have already gone through the trouble. Check out

See Also
Oli Studholme’s HTML5 id/class name cheat sheet at http://oli.jp/2008/html5-class
-cheatsheet/.

Mapping HTML5 Elements to id and class Names | 51

http://oli.jp/2008/html5-class-cheatsheet/
http://oli.jp/2008/html5-class-cheatsheet/

CHAPTER 3

Forms

Kimberly Blessing

Introduction
Forms are the workhorse of any web application. Whether you are updating your
Facebook status, paying a bill online, or remotely programming your DVR, forms are
making the magic happen

Currently, making that magic both robust and seamless requires some interesting and
tricky uses of HTML and JavaScript.

HTML5 makes much of this work far simpler – and even where browsers aren’t yet
supporting these new HTML5 form features, it’s easy to add support with JavaScript
on these building blocks.

HTML5 gives us new elements and input attribute values for the input element to yield
new form fields, as well as new attributes that allow us to remove many lines of Java-
Script.

However, since not all browsers yet support these new features, some JavaScript is still
needed to ensure cross-browser compatibility.

Displaying a Search Input Field

Problem
You want to present a user with a search form field.

Solution
Use the input element with HTML5 type value of search.

<form>
 <p><label>Search <input type="search" name="query"></label></p>

53

 <p><button type="submit">Submit</button></p>
</form>

Discussion
The search input type displays a text input field that may visually differ from that of a
regular text field, based on the stylistic conventions of the platform.

For example, Safari on MacOS displays the search field with rounded, instead of boxed,
corners as shown in Figure 3-1. Both Safari and Chrome display an icon within the field
to delete the current value as shown in Figure 3-2.

Some user agents will display a plain text input field for the search input type, so support
cannot be determined by visual appearance alone.

Testing Browser Support

To accurately test a browser’s support (see Table 3-1) of the search input type, load
Mike Taylor’s support test page at http://www.miketaylr.com/code/input-type-attr
.html. The page shows not only support for search attribute value, but other attribute
values for input as well.

Figure 3-1. A blank search input field in Safari 5.

Figure 3-2. A search input field with content in Chrome 12.

54 | Chapter 3: Forms

http://www.miketaylr.com/code/input-type-attr.html
http://www.miketaylr.com/code/input-type-attr.html

If a user agent does not support the search input type, it will revert to displaying a text
input field.

Table 3-1. Search input type support.

IE Firefox Chrome Safari Opera iOS Android

10 Platform Preview 2 4.0+ 10+ 4.0+ 11.0+ ✓ ✓

What is the value in having a separate input type for search input fields, when only
some user agents will render a visually different input field? There are a few answers to
this question.

First, easily enabling operating system visual styles in the browser can make for a better
user experience.

Second, designating a search input field as such may help assistive devices more cor-
rectly signal users as to the purpose of the field or form.

Finally, the search input type gives us a more semantic input type value to use in our
forms, and gives us a better hook for our CSS, as compared to using a class or id.

input[type="search"] {
 border-radius: 10px;
}

The above CSS applies rounded corners to the search input field for all user agents that
support the border-radius property.

See Also
For more information on search inputs in WebKit browsers that includes Chrome and
Safari, see http://css-tricks.com/webkit-html5-search-inputs/.

Contact Information Input Fields

Problem
You want to present a user with a form to provide contact information, such as an e-
mail address, a URL, and a telephone number.

Solution
Use the input element with HTML5 type values of email, url, and tel:

<form>
 <fieldset>
 <legend>Contact Information</legend>
 <p><label>E-mail address <input type="email" name="email"></label></p>

Contact Information Input Fields | 55

http://css-tricks.com/webkit-html5-search-inputs/

 <p><label>Web site <input type="url" name="website"></label></p>
 <p><label>Telephone number <input type="tel" name="phone"></label></p>
 </fieldset>
 <p><button type="submit">Submit</button></p>
</form>

Discussion
How many times have you created text input fields to collect data like an email address,
and then had to write JavaScript to validate the input? You won’t have to do this with
the new email and url input types.

These restrict the value to a valid email address or absolute URL. If the user enters a
value that is not valid then the user agent warns the user and the form data is not
submitted (see Figure 3-3 through Figure 3-6 for examples of this across various brows-
ers).

The tel input type does not enforce any particular syntax, due to the variety of tele-
phone number formats used around the world. The new pattern attribute can be used
to enforce a particular syntax, however. For more information, see Recipe 4.12, Re-
stricting values.

User agents vary in terms of the feedback provided to the user as they complete the form.

Figure 3-3. The email input field error messaging in Firefox 4.

Figure 3-4. The email input field error messaging in Chrome 12

56 | Chapter 3: Forms

At the time of this writing, some browsers are starting to visually highlight fields that
do not validate on blur when the user exits the input field, but do not display the error
message until the form is submitted.

Other browsers provide no feedback until the form is submitted.

See Table 3-2 for a browser support chart.

Customizing the default error message

Look closely at Figure 3-5 and Figure 3-6 and notice that the default error message
varies from browser to browser. You can specify your own language by adding a title
attribute to each input field.

<input type="url" name="website" title="That doesn't look like a valid web address.">

Like search, it’s visually difficult to determine whether or not a user agent supports
email, url, or tel. Mike Taylor’s support test at http://www.miketaylr.com/code/input
-type-attr.html is useful here, too. Browsers that do not support these new input type
display a text input field.

Figure 3-5. The url input field error messaging in Firefox 4

Figure 3-6. The url input field error messaging in the second Internet Explorer Platform Preview

Contact Information Input Fields | 57

http://www.miketaylr.com/code/input-type-attr.html
http://www.miketaylr.com/code/input-type-attr.html

Table 3-2. Email, url, and telephone input types support.

IE Firefox Chrome Safari Opera iOS Android

10 Platform Preview 2 4.0+ 10+ 4.0+ 11.0+ ✓ ✓

On some touch-screen devices, the user agent will display a custom on-screen keyboard
for these fields. For example, if the email input field is selected, the keyboard shows
not only letters but also the ampersand ,@, and a period as seen in Figure 3-7. Cool, huh?

See Also
For more about on-screen keyboard configurations for these fields, see Mark Pilgrim’s
Dive Into HTML 5 online book at http://diveintohtml5.org/forms.html#type-email and
http://diveintohtml5.org/forms.html#type-url.

Utilizing Date and Time Input Fields

Problem
You want to provide a user with a form to specify a date and/or time – for example,
when scheduling an appointment.

Solution
HTML 5 provides a number of new input types to assist in date and time entry.

This first solution uses the input element with HTML5 type value of datetime to display
both a date-picker widget and time spinner control in combination as shown in Fig-
ure 3-8.

<form>
 <p><label>Appointment Date and Time <input type="datetime" name="dateAndTime"></label></p>

Figure 3-7. Ampersand and TLD are easily in reach on iPad keyboard

58 | Chapter 3: Forms

http://diveintohtml5.org/forms.html#type-email
http://diveintohtml5.org/forms.html#type-url

 <p><button type="submit">Submit</button></p>
</form>

To present the date and time input fields separately, use separate input fields with the
HTML5 type values date and time as shown in Figure 3-9 and Figure 3-10.

<form>
 <fieldset>
 <legend>Appointment Request</legend>
 <p><label>Date <input type="date" name="date"></label></p>
 <p><label>Time <input type="time" name="time"></label></p>
 </fieldset>
 <p><button type="submit">Submit</button></p>
</form>

Discussion
The datetime, date and time family of input types, which also includes month, week, and
datetime-local, are excellent proof that new features in HTML 5 are based on what
web designers and developers have been doing for years with various JavaScript libraries
and other solutions.

Figure 3-8. The datetime input field renders a date-picker widget and time spinner control in Opera
11.50.

Figure 3-9. Date and time input fields in Opera 11.

Utilizing Date and Time Input Fields | 59

Opera has been the leader in generating date and time controls – rendering a calendar-
based date picker control for date and a time spinner control for time – and many expect
other browsers to eventually follow their lead.

Webkit-based desktop browsers recently introduced support for the input types, using
spinners for both. User agents that do not support these input types revert to a text
input field.

For a look at the browser support for date and time input types, see Table 3-3.

Table 3-3. Date and time input types support.

IE Firefox Chrome Safari Opera iOS Android

- - 10+ 5.0+ 9.0+ ✓ ✓

To deliver a more consistent cross-browser experience, see section 4.13,
Making HTML5 work in older browsers.

Like all other form inputs, you can specify a value to be displayed when the page is
rendered.

The value for the date input type must be a valid date string, such as 2010-12-31 that
represents December 31, 2010.

The value for the time input type must be a valid time string, such as 23:59:59 that
represents 11:59 PM, one second before midnight.

Meanwhile, the value for the datetime input type must be a valid global date and time
string, such as 2010-12-31T23:59:59Z that represents one second before midnight UTC
on December 31, 2010.

Figure 3-10. Date and time input fields in Chrome 12.

60 | Chapter 3: Forms

Additional Features

Two new input element attributes, the min and max attributes, can limit the range of
dates and times that users can select. This is useful in cases where you don’t want users
to select appointment dates or times in the past or select birthdates in the future as
shown in Figure 3-11.

<form>
 <fieldset>
 <legend>Appointment Request</legend>
 <p><label>Date <input type="date" name="date" min="2011-03-15" max="2012-03-14"></label></p>
 <p><label>Time <input type="time" name="time" min="08:00" max="18:00"></label></p>
 </fieldset>
 <p><button type="submit">Submit</button></p>
</form>

See Also
For more information on valid date and time values, see the HTML5 specification at
http://www.w3.org/TR/html5/common-microsyntaxes.html#dates-and-times..

Number Inputs

Problem
You want to present a user with a form to enter a number, for example, to enter the
quantity of an item in an order form.

Solution
Use the input element with HTML5 type value of number.

<form>
 <p><label>Quantity <input type="number" name="quantity"></label></p>

Figure 3-11. Dates prior to March 15, 2011 are not selectable when the min attribute is used in Opera
11.50.

Number Inputs | 61

http://www.w3.org/TR/html5/common-microsyntaxes.html#dates-and-times

 <p><button type="submit">Submit</button></p>
</form>

Discussion
As you may have guessed, the number input type restricts the value to a valid number –
a floating point number, to be specific.

If the user enters a value that is not valid then the user agent warns the user and the
form data is not submitted as shown in Figure 3-12.

Some user agents display this form field with a spinner control next to the field, while
others do not. On some touch-screen devices, the user agent displays a numeric on-
screen keyboard for this field.

For browser support reference on number input type, see Table 3-4.

Table 3-4. Number input type support.

IE Firefox Chrome Safari Opera iOS Android

10 Platform Preview 2 - 10+ 4.0+ 9.0+ ✓ ✓

User Friendly Input Fields

As always, it’s important to think through the user experience when implementing the
number input type.

For example, if you asking for a U.S. Zip Code using the number input type, presenting
a spinner control might confuse the user, since its purpose isn’t well known yet. On
the other hand, you can’t rely on all browsers displaying a spinner, so take care in
crafting instructional text – don’t reference the spinner arrows, in case they’re not there!

Load Mike Taylor’s support test (see http://www.miketaylr.com/code/input-type-attr
.html) to determine what level of support a particular browser has for this input type.
If a user agent does not recognize the number input type, it will display a text input field.

Figure 3-12. A number spinner control in Chrome 12.

62 | Chapter 3: Forms

http://www.miketaylr.com/code/input-type-attr.html
http://www.miketaylr.com/code/input-type-attr.html

Additional Features

The min and max attributes can be used with the number input type to limit the values
that can be entered. In addition, you can use the step attribute to specify the amount
by which the value should be incremented. In this example, a customer must order in
pairs, so the minimum quantity is 2 and the step value is 2 as shown in Figure 3-13.

<form>
 <p><label>Quantity (must order in pairs of 2) <input type="number" name="quantity" min="2" max="20" step="2"></label></p>
 <p><button type="submit">Submit</button></p>
</form>

For a screen shot of an on-screen keyboard configuration for number, see Figure 3-14.

See Also
See Mark Pilgrim’s write up on input number at http://diveintohtml5.org/forms.html
#type-number..

Figure 3-13. Internet Explorer 10 Platform Preview 2 uses a text entry field for the number input
type, but honors the min, max, and step attributes and will display an error if necessary.

Figure 3-14. The number keyboard is displayed when number is the input value

Number Inputs | 63

http://diveintohtml5.org/forms.html#type-number
http://diveintohtml5.org/forms.html#type-number

Selecting From a Range of Numbers

Problem
You want to present a user with a form to select a number from a range – for example,
to adjust the volume on a video.

Solution
Use the input element with HTML5 type value of range.

<form>
 <p><label>Volume <input type="range" name="volume" min="0" max="10" step=".5" value="5"></label></p>
</form>

Discussion
The range input type is like number in that it restricts the value to a valid floating-point
number, but it has the added caveat that the exact value is not important.

Exact values are important on product order forms, for values like quantity, so number
should be used in those cases. The range input type is useful in cases of relative or
subjective input, such as assigning a rating to an event or product.

To emphasize this point, the specification requires that the control be rendered as a
slider or similar control as shown in Figure 3-15.

Webkit-based browsers and Opera render a horizontal slider control for the range input
type.

If a user agent does not recognize this input type, it displays a text input field instead.

For browser support reference on input type support, see Table 3-5.

Figure 3-15. The range input type in Opera 11.50.

64 | Chapter 3: Forms

Table 3-5. Range input type support.

IE Firefox Chrome Safari Opera iOS Android

- - 10+ 4.0+ 10.0+ ✓ ✓

To deliver a more consistent cross-browser experience, see section 4.13,
Making HTML5 work in older browsers.

Additional Features

Like the number input type, you can specify minimum and maximum values using the
min and max attributes, and an increment value using the step attribute. These could be
used with range to replace the radio buttons commonly used for scaled ratings, such
as satisfaction rankings.

See Also
The W3C specification on range at http://www.w3.org/TR/html-markup/input.range
.html..

Selecting Colors

Problem
You want to present a user with a form to select a color – for example, to customize
the look of a web page.

Solution
Use the input element with HTML5 type value of color.

<form>
 <p><label>Background color <input type="color" name="bg"></label></p>
 <p><label>Foreground color <input type="color" name="fg"></label></p>
 <p><button type="submit">Submit</button></p>
</form>

Discussion
The color input type restricts the value to a valid RGB value in hexadecimal format
including the number sign or octothorpe, “#”, displayed before the six digits.

The HTML 5 specification prescribes a color well control for this input type, but so far
only Opera has implemented this control.

Selecting Colors | 65

http://www.w3.org/TR/html-markup/input.range.html
http://www.w3.org/TR/html-markup/input.range.html

Webkit-based browsers that support color, like Chrome and Safari, render a text input
field but successfully validate entries and prohibit form submission if the value is not
valid as shown in Figure 3-16 and Figure 3-17.

If a user agent does not support the color input type, it will display a text input field
instead.

For browser support of input color value, see Table 3-6.

Table 3-6. Color input type support.

IE Firefox Chrome Safari Opera iOS Android

- - 10+ 5.0+ 11.0+ ✓ ✓

To deliver a more consistent cross-browser experience, see section 4.13,
Making HTML5 work in older browsers.

Figure 3-16. The color input type in Opera 11.50

Figure 3-17. The color input type in Chrome 12.

66 | Chapter 3: Forms

See Also
The word “octothorpe” is a good word and bears repeated mention in polite company;
see http://en.wiktionary.org/wiki/octothorpe.

Creating an Editable Drop-down

Problem
You want to give the user the ability to enter text but also prompt her with some sug-
gestions to choose from. This is sometimes known as an editable drop-down or a combo
bo4.

Solution
Use the HTML5 datalist element to create a list of suggestions using the option ele-
ment, and associate the list with an input element via the list attribute.

<form>
 <p><label>Donation amount <input type="text" name="donation" list="donations"></label></p>
 <datalist id="donations">
 <option value="10.00">10.00</option>
 <option value="25.00">25.00</option>
 <option value="50.00">50.00</option>
 </datalist>
 <p><button type="submit">Submit</button></p>
</form>

Discussion
The datalist element is used to define a list of suggested values for other input controls
– it is not a form input or control itself.

The suggested values are specified using option elements, just as they would be for a
select element, but nothing renders on screen until the datalist is associated with an
input element.

Binding of a datalist to an input field is done by specifying an id on the datalist and
using this as the value of the list attribute on the input element.

The result is a control that both accepts user input and presents a list of options for the
user to choose from. This is not unlike the type-ahead or autocomplete functionality
implemented in many browsers or on most search web sites as shown in Figure 3-18
and Figure 3-19.

For browsers that have not yet implemented datalist, the above solution results in the
display of the text input field, but not the list of suggestions.

Creating an Editable Drop-down | 67

http://en.wiktionary.org/wiki/octothorpe

In a few cases, older browsers may display the option labels.

For a reference on datalist browser support, see Table 3-7.

Table 3-7. Datalist element support.

IE Firefox Chrome Safari Opera iOS Android

10 Platform Preview 2 4.0+ - - 10.0+ - -

datalist Workaround

Web developer Jeremy Keith has proposed the following implementation, which works
with both modern browsers that support the HTML5 datalist element and those that
do not.

The result is valid, semantic, and elegant: in the former case, the editable drop-down
is rendered, but in the latter case, a select drop-down is rendered next to the text input
field as shown in Figure 3-20.

<form>
 <p><label for="donation">Donation amount</label>
 <datalist id="donations">
 <select name="donation">

Figure 3-18. An editable drop-down rendered using input and datalist in Firefox 4.

Figure 3-19. An editable drop-down rendered using input and datalist in Internet Explorer 10 Platform
Preview 2.

68 | Chapter 3: Forms

 <option></option>
 <option value="10.00">10.00</option>
 <option value="25.00">25.00</option>
 <option value="50.00">50.00</option>
 <option>Other</option>
 </select>
 If other, please specify:
 </datalist>
 <input type="text" id="donation" name="donation" list="donations"></p>
 <p><button type="submit">Submit</button></p>
</form>

See Also
Read Jeremy Keith’s full post on the datalist solution at http://adactio.com/journal/
4272/. For updated information on datalist support, see http://caniuse.com/datalist.

Requiring a Form Field

Problem
You want to require a form field’s completion prior to form submission.

Solution
Apply the HTML5 required attribute on any form field that must be completed in order
to submit the form.

<form>
 <fieldset>
 <legend>Login</legend>
 <p><label>Username <input type="text" name="username" required></label></p>
 <p><label>Password <input type="password" name="pwd" required></label></p>
 </fieldset>
 <p><button type="submit">Submit</button></p>
</form>

Figure 3-20. Jeremy Keith’s datalist fallback solution in Chrome 12.

Requiring a Form Field | 69

http://adactio.com/journal/4272/
http://adactio.com/journal/4272/
http://caniuse.com/datalist

Discussion
The required attribute may be specified on zero or more form elements in a form.

When the user submits the form, any required field that has been left blank will cause
the browser to stop the submission and an error message will be displayed.

The visual display of the error varies from browser to browser as shown in Fig-
ure 3-21 to Figure 3-25.

Figure 3-21. Required attribute error messaging in Firefox 4.

Figure 3-22. Required attribute error messaging in Chrome 12.

Figure 3-23. Required attribute error messaging in Opera 11.5.

70 | Chapter 3: Forms

If a user agent does not recognize the required attribute, it will be ignored.

You can still craft JavaScript to perform this validation, using this attribute, however.
See section 4.14 Validating form data in older browsers with JavaScript, for details.

For a reference on required attribute support in browsers, see Table 3-8.

Table 3-8. Required attribute support.

IE Firefox Chrome Safari Opera iOS Android

10 Platform Preview 2 4.0+ 10+ 5.0+ 10.0+ ✓ ✓

See Also
Check browser support for form field validation at http://caniuse.com/form-validation.

Auto-focusing a Form Field

Problem
You want to place focus in a particular form field when a page loads.

Solution
Apply the HTML5 autofocus attribute to only one form field.

<form>
 <p><label>Search <input type="search" name="query" autofocus></label></p>
 <p><button type="submit">Submit</button></p>
</form>

Discussion
Autofocus behavior on the web is alternately loved or hated.

Figure 3-24. Required attribute error messaging in IE 10 Platform Preview 2

Auto-focusing a Form Field | 71

http://caniuse.com/form-validation

It’s great when the search box on Google is autofocused, but it’s roundly hated when
a page autofocuses in a field when the user expects to scroll a page by pressing the down
arrow key.

A native solution both eliminates the need to write JavaScript and is potentially more
accessible.

When implementing the autofocus attribute, remember that it may be specified only
once per document, not per form! To maintain accessibility, a user agent may honor a
user setting or action that would override the focus action.

If a user agent does not recognize the autofocus attribute, it will be ignored. You can
still use JavaScript to autofocus a field.

For a browser support reference of autofocus support, please see Table 3-9.

Table 3-9. Autofocus attribute support.

IE Firefox Chrome Safari Opera iOS Android

10 Platform Preview 2 4.0+ 3.0+ 4.0+ 10.0+ ✓ ✓

See Also
See section 4.14 Validating form data in older browsers with JavaScript, for details.

Displaying Placeholder Text

Problem
You want to display some hint or help text within a form field.

Solution
The HTML5 placeholder attribute is used to specify instructional text when the user
is not focused in the form field.

<form>
 <fieldset>
 <legend>Contact Information</legend>
 <p><label>E-mail address <input type="email" name="email" placeholder="user@domain.com"></label></p>
 <p><label>Web site <input type="url" name="website" placeholder="http://www.domain.com/"></label></p>
 <p><label>Telephone number <input type="tel" name="phone" placeholder="123-123-1234"></label></p>
 </fieldset>
 <p><button type="submit">Submit</button></p>
</form>

72 | Chapter 3: Forms

Discussion
Usability experts and user interface designers have been trying to solve the problem of
displaying unobtrusive instructional text to users in forms for a long time.

In the past five years, placeholder text within an input field has become a standard
design pattern, and now we have a standard way of implementing this solution.

When a placeholder attribute is specified on an input element, a user agent will display
the value of the placeholder attribute in the rendered form field.

The placeholder text can then be toggled off and on, depending on which page element
has focus and whether or not there is data in the form field: when the user is focused
on the field, the placeholder text will disappear; if the user leaves the form field blank
and leaves the field, the placeholder text will reappear as shown in Figure 3-25.

While the placeholder attribute helps make a form more useable, its purpose is to
provide an additional hint to the user. Do not omit the label element, which properly
captions a form control.

If a user agent has not implemented support for the placeholder attribute, the attribute
will be ignored.

For a browser reference chart on placeholder attribute support, see Table 3-10.

Table 3-10. Placeholder attribute support.

IE Firefox Chrome Safari Opera iOS Android

10 Platform Preview 2 4.0+ 4.0+ 4.0+ 11.0+ ✓ ✓

See Also
To deliver a more consistent experience to both browsers that support it and those that
do not, see Recipe 3.1e, Making HTML5 Work in Older Browsers.

Figure 3-25. Placeholder text in Internet Explorer 10 Platform Preview 2.

Displaying Placeholder Text | 73

Disabling Autocomplete

Problem
You want to prevent autocompletion tools from populating a form field.

Solution
Set the HTML5 autocomplete attribute to “off” for any individual input field, such as
a password field.

<form>
 <fieldset>
 <legend>Login</legend>
 <p><label>Username <input type="text" name="username"></label></p>
 <p><label>Password <input type="password" name="pwd" autocomplete="off"></label></p>
 </fieldset>
 <p><button type="submit">Submit</button></p>
</form>

Discussion
The autocomplete attribute was introduced by Microsoft Internet Explorer in 1999 and
was adopted by other browsers, although it was not part of any previous HTML or
XHTML specification.

By default, autocomplete is enabled (on) for all form fields. You may currently rely on
your browser’s ability to remember your passwords and autocomplete functionality to
log in to many of the web sites you visit.

If, however, you specify a value of off for this attribute, you will disable this function-
ality.

In addition to disabling autocomplete at the individual input field level, you can also
disable it at the form level. If you disable autocomplete at the form level, you can re-
enable it for an individual form field by setting autocomplete=”on”.

While many security experts suggest applying autocomplete=”off” to form fields that
contain sensitive data, you should keep in mind that this is not a particularly effective
security measure.

Some browsers do not yet support autocomplete and since so many tools exist to cir-
cumvent autocomplete=”off” – tools that still auto-inject a user's stored password – it's
often security theater or simply a false security measure.

Those browsers that do not support autocomplete simply ignore the attribute alto-
gether.

For a browser support reference on autocomplete support, see Table 3-11.

74 | Chapter 3: Forms

Table 3-11. Autocomplete attribute support.

IE Firefox Chrome Safari Opera iOS Android

Yes* 4+ Yes* Yes* 10.0+ Yes* Yes*

In table 3-11, “yes” indicates that the browser has implemented auto
complete in a pre-HTML 5, non-standard way. Use Mike Taylor’s input
and attribute support page at http://www.miketaylr.com/code/input-type
-attr.html to determine when a browser has implemented it per the
HTML 5 standard.

See Also
The autocomplete attribute in the WHATWG HTML specification at http://www
.whatwg.org/specs/web-apps/current-work/multipage/forms.html#attr-form-autocom
plete.

Restricting Values

Problem
You want to restrict the value of an input field according to a set of rules you specify.

Solution
Use the HTML5 pattern attribute to specify a regular expression that will be used to
validate the user’s input.

<form>
 <p><label>Telephone number <input type="tel" name="phone" pattern="[2-9][0-9]{2}-[0-9]{3}-[0-9]{4}" title="North American format: XXX-XXX-XXXX"></label></p>
 <p><button type="submit">Submit</button></p>
</form>

Discussion
For years, web professionals have been writing validation scripts to check user data
prior to form submissions – and likely most of us would say that we have hated it.

With HTML 5, we have a method for checking form input that doesn’t rely on Java-
Script: regular expressions.

Restricting Values | 75

http://www.miketaylr.com/code/input-type-attr.html
http://www.miketaylr.com/code/input-type-attr.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#attr-form-autocomplete
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#attr-form-autocomplete
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#attr-form-autocomplete

Regular expressions are very powerful and fun to write, once you get
the hang of them. You don’t need to pour over a big book like Mastering
Regular Expressions. Instead, the Regular Expressions Cookbook will
help you to figure out how to define some common expressions. Then
you’ll be ready for that big book in no time.

The HTML5 pattern attribute allows you to specify a regular expression for an input
field. On blur of the input field or on submit of the form (browser implementations
vary), the user’s input will be validated against the pattern, and if it does not match, an
error will be displayed and the form will not be submitted as shown in Figure 3-26.

Regular expressions for pattern must use the same syntax as in JavaScript. Keep in
mind that the pattern attribute must match the entire value or else the user will see the
error messaging.

When the pattern attribute is used, you should also specify a title attribute to describe
the pattern. The user agent may display this text to the user as a tooltip or as an error
if the submitted value does not match the pattern as shown in Figure 3-27.

Figure 3-26. Pattern mismatch on blur of input field in Firefox 4. An error “bubble”, similar to those
seen elsewhere in this chapter, will be displayed on form submit.

Figure 3-27. Title rendered as tooltip in Internet Explorer 10 Platform Preview 2.

76 | Chapter 3: Forms

If a user agent cannot compile the regular expression, it is ignored and no validation
will happen on that input. If a user agent does not recognize the pattern attribute, it,
too, is ignored.

For a browser reference chart for pattern attribute support, see Table 3-12.

To deliver a more consistent cross-browser experience, see section 4.14,
Validating form data in older browsers with JavaScript.

Table 3-12. Pattern attribute support.

IE Firefox Chrome Safari Opera iOS Android

10 Platform Preview 2 4+ 10+ 5+ 11+ - -

See Also
Just as with the required attribute, to keep up with browser support for pattern check
http://caniuse.com/form-validation. For a list of commonly used regular expressions, see
http://html5pattern.com/..

Making HTML5 Work in Older Browsers

Problem
You want to make HTML5 input types and attributes work in browsers that do not
support HTML5.

Solution
Use the Modernizr JavaScript library (see http://www.modernizr.com) to detect support
for specific HTML5 attributes, then develop or use alternate solutions, such as jQuery
UI (see http://jqueryui.com) for instances where features are not supported.

Making HTML5 Work in Older Browsers | 77

http://caniuse.com/form-validation
http://html5pattern.com/
http://www.modernizr.com
http://jqueryui.com

Modernizr is a small, open-source JavaScript library that detects native
implementations of HTML5 and CSS3 features in browsers. Instead of
performing browser detection in order to determine support, Modernizr
performs individual feature detection. Modernizr is a very reliable way
to detect support for HTML5 form features.

jQuery UI is a library of user interface design pattern implementations.
It is based on and requires the jQuery JavaScript library, which is used
by many of the top sites on the web, including Google, Amazon, Twitter,
and Microsoft. jQuery makes manipulating the DOM easy, and jQuery
UI gives you easy to implement, themeable widgets.

Example 1: Supporting the autofocus attribute

Save Modernizr locally and call it in the head of your document.

<head>
 <script src="modernizer.js"></script>
</head>

Code your form using the autofocus attribute.

<form>
 <p><label>Search <input type="search" name="query" id="query" autofocus></label></p>
 <p><button type="submit">Submit</button></p>
</form>

Write a script to detect support for autofocus and, if not available, use JavaScript to
focus on the element. This script can appear immediately after your form, to trigger the
focus event as quickly as possible.

<script>
 if (!Modernizr.input.autofocus) {
 document.getElementById("query").focus();
 }
</script>

Example 2: Supporting the placeholder attribute

Call Modernizr and jQuery in the head of your document.

<head>
 <script src="modernizer.js"></script>
 <script src="jquery.js"></script>
</head>

Code your form using the placeholder attribute.

<form>
 <p><label>Search <input type="search" name="query" id="query" value="" placeholder="Enter query"></label></p>
 <p><button type="submit">Submit</button></p>
</form>

Write a script to detect support for placeholder and, if not available, use JavaScript to
toggle the display of the placeholder text in the input field.

78 | Chapter 3: Forms

<script>
 if (!Modernizr.input.placeholder) {
 $("#query").focus(function() {
 if ($("#query").val() == $("#query").attr('placeholder')) {
 $("#query").val("");
 }
 });
 $("#query").blur(function() {
 if ($("#query").val() == "") {
 $("#query").val($("#query").attr('placeholder'));
 }
 });
 $("#query").blur();
 }
</script>

Even if you’ve never seen jQuery before, the above code is probably very easy to read.

jQuery uses CSS selector syntax to refer to elements in the DOM, so $("#query") refers
to the search input field with an id of query. The focus and blur methods are chained
on to the search field, thus creating event handlers for when the field gains and loses
focus.

When the blur event is triggered, the value (val) of the search field is set to the place-
holder attribute value, provided the value was empty.

When the focus event is triggered, the value of the search field is set to an empty string
– but only if the previous value was the same as the placeholder attribute text.

This script can appear immediately after the form, or it can be combined with other
scripts at the bottom of the body of your document.

Example 3: Supporting the date input type

Call Modernizr, jQuery, and jQuery UI in the head of your document. (Don’t forget the
CSS for jQuery UI!)

<head>
 <script src="modernizr.js"></script>
 <script src="jquery.js"></script>
 <script src="jquery-ui.js"></script>
 <link href="jquery-ui.css" rel="stylesheet">
</head>

Code your form using the date input type.

<form>
 <p><label>Date of Birth <input type="date" name="dob" id="dob"></label></p>
 <p><button type="submit">Submit</button></p>
</form>

Write a script to detect support for date and, if not available, trigger jQuery UI’s date
picker widget.

Making HTML5 Work in Older Browsers | 79

<script>
 if (!Modernizr.inputtypes.datetime) {
 $("#dob").datepicker();
 }
</script>

I bet you’re surprised at how little code is needed for this example, as compared to the
previous one! This is the beauty of adopting a reusable solution, like jQuery UI. The
following is the result for a browser that does not natively support the date input type
as shown in Figure 3-28.

Like the previous example, this script can appear immediately after the form, or it can
be combined with other scripts at the bottom of the body of your document.

Discussion
Remember that the new input types in HTML 5 are derived from the solutions that
developers have been creating with HTML and JavaScript for quite a while – so it is
fairly easy to find UI libraries that provide substitute functionality for browsers that do
not yet support HTML 5 forms.

In the future, when all of your users have upgraded to browsers that support HTML 5
elements, input types, and attributes, notice that you’ll be able to quickly and easily
remove the scripts without needing to change your markup!

See Also
For additional discussion on fallback solutions, see http://diveintohtml5.org/forms.html
#autofocus.

Figure 3-28. jQuery UI date picker is triggered since Firefox 4 does not support the date and time
input types.

80 | Chapter 3: Forms

http://diveintohtml5.org/forms.html#autofocus
http://diveintohtml5.org/forms.html#autofocus

Validating Form Data in Older Browsers with JavaScript

Problem
You want to validate form data in browsers that do not support HTML5.

Solution
Use the Modernizr JavaScript (see http://www.modernizr.com) library to detect support
for specific HTML5 attributes and script alternate solutions when features are not sup-
ported. (Refer back to section 3.13, Making HTML 5 work in older browsers, for in-
formation on Modernizr and other JavaScript libraries.)

Save Modernizr locally and call it in the head of your document. I’m also calling jQuery
(se http://www.jquery.com) to make it easy to reference the form element and to attach
an event handler.

<head>
 <script src="modernizer.js"></script>
 <script src="jquery.js"></script>
</head>

Code your form using HTML5 form validation attributes, such as required and pattern.

<form>
 <fieldset>
 <legend>Login</legend>
 <p><label>Username <input type="text" name="username" required></label></p>
 <p><label>Password <input type="password" name="password" required pattern="[0-9a-zA-Z]{12}" title="Must be 12 alphanumeric characters"></label></p>
 </fieldset>
 <p><button type="submit">Submit</button></p>
</form>

Write a script to detect support for required and pattern and define alternate form
handling if support is not available.

<script>
if (!Modernizr.input.required || !Modernizr.input.pattern) {
 $('form').submit(function() {
 var validData = true;
 $('[required], [pattern]').each(function() {
 if (($(this).attr('required') !== false) && ($(this).val() == "")){
 $(this).focus();
 alert("The " + $(this).attr('name') + " field is required!");
 validData = false;
 return false;
 }
 if ($(this).attr('pattern')){
 var regexp = new RegExp($(this).attr('pattern'));
 if (!regexp.test($(this).val())){
 $(this).focus();
 alert("The data in the " + $(this).attr('name') + " field isn't in the right format!");

Validating Form Data in Older Browsers with JavaScript | 81

http://www.modernizr.com
http://www.jquery.com

 validData = false;
 return false;
 }
 }
 });
 return validData;
 });
}
</script>

Discussion
We’ve been validating forms with JavaScript for about fifteen years, so there are plenty
of ways to require form field completion and to validate data. What’s new about this
solution is that it leverages the HTML5 form attributes required and pattern to estab-
lish the rules for validation, and the JavaScript simply keys off of them. In the recent
past, developers have used the rel attribute to perform a similar style of validation, but
this is no longer necessary (nor is it valid HTML 5).

Again, when all of your users have upgraded to browsers that natively support HTML
5 form validation, you’ll be able to quickly and easily remove the scripts without need-
ing to change your markup.

Example: Sample Form

Problem
You want to present a user with an appointment scheduling form, for example, for
scheduling a doctor’s appointment.

Solution
<!DOCTYPE html>
<html>
<head>
<title>Appointment Scheduler</title>
</head>

<body>
<h1>Appointment Scheduler</h1>

<form>

 <fieldset>
 <legend>Personal Information</legend>
 <p><label>Name <input type="text" name="name" required></label></p>
 <p><label>Telephone number <input type="tel" name="phone" required pattern="[2-9][0-9]{2}-[0-9]{3}-[0-9]{4}" title="North American format: XXX-XXX-XXXX"></label></p>
 <p><label>E-mail address <input type="email" name="email"></label></p>
 <p><label>Date of birth <input type="date" name="dob"></label></p>

82 | Chapter 3: Forms

 </fieldset>

 <fieldset>
 <legend>Appointment Request</legend>
 <p><label for="reason">What is the reason for your visit?</label>
 <datalist id="reasons">
 <select name="reason">
 <option>Annual physical</option>
 <option>Cold or flu symptoms</option>
 <option>Blood test</option>
 <option>Post-operative</option>
 <option>Other</option>
 </select>
 If other, please specify:
 </datalist>
 <input id="reason" name="reason" list="reasons"></p>
 <p><label>Current pain level <input type="range" name="pain" min="0" max="10" step=".5" value="5" title="0 is no pain, 10 is worst pain imaginable"></label></p>
 <p><label>Preferred date <input type="date" name="date" required min="2011-03-15" max="2012-03-14"></label></p>
 <p><label>Preferred time <input type="time" name="time" required min="08:00" max="18:00" step="1:00"></label></p>
 </fieldset>

 <p><button type="submit">Submit</button></p>
</form>

</body>
</html>

Discussion
This is the future of form markup, my friends! When rendered in a browser that fully
supports HTML 5 forms, the only thing this form will want for is some CSS – no
JavaScript necessary! It will render nicely across a variety of devices and be much more
accessible than what we use today, as shown in Figure 3-29.

Figure 3-29. The sample form, with basic styling, in Opera 11.5.

Example: Sample Form | 83

When will we have full support in the majority of browsers for HTML 5 forms? Opera
is leading the way in support, but Firefox and Chrome are on rapid release cycles and
are catching up quickly.

The second Internet Explorer Platform Preview was released during the writing of this
chapter and it, too, shows good progress.

84 | Chapter 3: Forms

CHAPTER 4

Native Audio

Emily Lewis

Introduction
You already deal with embedded content—content that is imported or inserted into a
web page—almost every day (see http://www.w3.org/TR/html5/content-models.html
#embedded-content-0). Think about the img element. It inserts content, the image, into
your web page via the src attribute.

With HTML5, we now have many more options for embedded content, including na-
tive audio via the new audio element (see http://dev.w3.org/html5/markup/audio.html).

Native? Yes. That means no more ungainly object and embed. No more need to deliver
audio with a third-party plugin and, as such, no more design headaches with dynamic
layouts or dropdown menus.

With audio in our arsenal, we not only can deliver audio files directly through the
browser, but we can style and manipulate the element and its attributes via CSS and
JavaScript.

Adding HTML5 Audio

Problem
You want to play native audio on your web page.

Solution
Add the audio element, with the src attribute referencing the file location of your audio
file and fallback content for older browsers:

85

http://www.w3.org/TR/html5/content-models.html#embedded-content-0)
http://www.w3.org/TR/html5/content-models.html#embedded-content-0)
http://dev.w3.org/html5/markup/audio.html

<audio src="audio.ogg" controls>
 Download episode 42 of Learning to Love HTML5
</audio>

Also be sure to include the controls attribute if you want browsers to display a default
control interface for your audio (see Figure 4-1):

<audio src="audio.ogg" controls>

The audio file in this example uses the Ogg Vorbis (.ogg), which is a royalty-free, open
source codec (see http://www.vorbis.com).

There are many other audio formats for the web (see Table 4-1), which is one of the
biggest challenges in implementing HTML5 audio.

A codec is a technology for compressing and decompressing data. Au-
dio codecs compress and/or decompress digital audio data into different
formats (see Table 4-1) that aim to retain the highest level of quality
with the minimum bit rate.

Multiple Audio Codecs

The HTML5 specification does not dictate or make any recommendations about what
audio codecs should be supported.

And since it would make far too much sense for browser makers to agree (see http://
lists.whatwg.org/pipermail/whatwg-whatwg.org/2009-June/020620.html), there isn’t a
single format that works in all browsers as shown in Table 4-1.

Table 4-1. Current browser support for HTML5 audio formats

Browser

AAC

(.aac)

MP3

(.mp3)

Ogg Vorbis

(.ogg)

WAV

(.wav)

WebM

(.webm)

Chrome 6+ X X X

Firefox 3.6+ X X X

IE9+ X X X

Opera 10.5+ X X

Safari 5+ X X X

.aac
Lossy compression scheme developed as an improvement over MP3, with similar
bit rates but better sound quality.

Figure 4-1. Default audio controls in Chrome 9 include play/pause, progress bar and volume/mute.

86 | Chapter 4: Native Audio

http://www.vorbis.com
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2009-June/020620.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2009-June/020620.html

.mp3
Patented yet popular format, which uses lossy compression to achieve file sizes
one-tenth of non-compressed.

.ogg
An open source alternative to .mp3 that also uses a lossy compression format.

.wav
Proprietary format for audio that does not utilize any compression.

.webm
Google’s open, royalty-free media format, which relies on the Vorbis audio codec
for compression.

Integrating Multiple Sources

In terms of which to choose, the reality is that if you want your content to reach the
widest audience, you have to encode and include multiple audio files in your HTML5
audio.

Fortunately, HTML5 gives us a solution by enabling you to declare multiple files in
your audio element.

When using the source element in audio, the src attribute is dropped.
src only comes into play (pun intended) if you are referencing a single
audio format.

In terms of best practices, it’s recommended that you minimally include the .ogg roy-
alty-free format and either the .mp3 or .wav formats.

This type of approach should cover your bases with the latest browsers:

<audio controls>
 <source src="audio.ogg">
 <source src="audio.mp3">
 Download episode 42 of Learning to Love HTML5
</audio>

Preloading the Audio

audio has several attributes that allow you to configure your audio implementation.

For a full description of the attributes available for HTML5 media ele-
ments, see the WHATWG standard: http://www.whatwg.org/specs/web
-apps/current-work/multipage/video.html#media-element-attributes.

The preload attribute allows you to hint to the browser when it should begin buffering
the audio:

Adding HTML5 Audio | 87

http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#media-element-attributes
http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#media-element-attributes

<audio controls preload>

While preload currently has limited browser support, it seems useful for optimizing
the download process. You can simply specify preload and leave it to the browser to
decide the appropriate action, or you can choose from three defined preload values:

preload="auto"
Is the same as a Boolean preload, and suggests that the browser should begin
downloading the file, but leaves the ultimate action up to the browser. So, if it is a
mobile situation or a slow connection, the browser can decide not to preload in
order to save bandwidth.

preload="metadata"
Hints that the browser shouldn’t buffer the audio itself until the user activates the
controls, but metadata like duration and tracks should be preloaded.

preload="none"
Suggests that the audio shouldn’t be downloaded until the user activates the con-
trols.

Discussion
In addition to the browser inconsistencies with audio formats, there is a bit of incon-
sistency in the support for audio itself. There are browser bugs, quirks and oddities that
will hopefully be addressed by the browser makers, but until they are it is up to us
designers and developers to remain informed.

24Ways provides a list of some of these browser issues: http://24ways
.org/2010/the-state-of-html5-audio..

Creating Fallback Content

As you saw in the first example of this recipe, audio allows us to include fallback content.
Fallback simply means that if a user is on a browser that doesn’t support HTML5
audio, she instead sees the fallback content (see Figure 4-2).

The HTML5 specification says that all child elements of audio other than source should
be ignored. This means that your fallback content for users of older browsers won’t
adversely affect a user on an HTML5-capable browser.

For example, you could include fallback Flash:

Figure 4-2. Fallback content display in IE8, which lacks HTML5 audio support

88 | Chapter 4: Native Audio

http://24ways.org/2010/the-state-of-html5-audio
http://24ways.org/2010/the-state-of-html5-audio

<audio controls>
 <source src="audio.ogg">
 <source src="audio.mp3">
 <object data="player.swf?audio=audio.mp3">
 <param name="movie" value="player.swf?audio=audio.mp3">
 Video and Flash are not supported by your browser.
 </object>
</audio>

Or you could simply describe what the audio file contains and include a link to the file
for a user to download and play on his device’s media player (along with some gentle
encouragement to upgrade to a new browser):

<audio controls>
 <source src="audio.ogg">
 <source src="audio.mp3">
 Your browser doesn't support HTML5 audio. You should upgrade. In the meantime, download episode 42 of Learning to Love HTML5
</audio>

Accessible Alternatives

Another challenge with HTML5 audio is that alternative content for multimedia
doesn’t quite exist in practice. Theoretically, accessibility would be delivered through
two-steps:

• First, multimedia authors include a subtitles file in the container .ogv or .mp3.

• And then browsers would give the user an interface to access those subtitles and
captions.

Using the alt attribute with img isn’t a practical solution and it isn’t
what the HTML5 specification intends and, more importantly, assistive
technologies don’t process audio fallback content in that fashion.

For now, there’s not much more than a few experimental approaches you can try:

• Accessible HTML5 Video with JavaScripted captions: http://dev.opera.com/arti
cles/view/accessible-html5-video-with-javascripted-captions/

• HTML5 and Timed Media: http://www.bbc.co.uk/blogs/rad/2009/08/html5.html

• Demos of HTML5 Video and Audio Tag Accessibility: http://www.annodex.net/
~silvia/itext/

You may note that some of these resources reference video. That’s because audio and
video are so similar, the approaches described can be applied to both (as discussed in
Chapter 5).

Beyond issues with captioning, audio support in general is inconsistent among assistive
technologies. For example, some screen readers don’t recognize the element at all and
simply skip it.

Adding HTML5 Audio | 89

http://dev.opera.com/articles/view/accessible-html5-video-with-javascripted-captions/
http://dev.opera.com/articles/view/accessible-html5-video-with-javascripted-captions/
http://www.bbc.co.uk/blogs/rad/2009/08/html5.html
http://www.annodex.net/~silvia/itext/
http://www.annodex.net/~silvia/itext/

Further, audio accessibility like keyboard support, is inconsistent among browsers. As
this is the case for HTML5 across the board, we recommend staying updated at http://
html5accessibility.com.

Intellectual Property Rights

You may have already figured out that HTML5 audio isn’t a “one size fits all” solution.
But it isn’t just the need for multiple file formats or inconsistent browser support;
HTML5 does not offer any copy protection.

audio (and video, see Chapter 5) is as easy to save to a user’s hard drive as img and,
therefore, isn’t a good fit for all use cases. If Digital Rights Management (DRM) is
needed, then a plugin, not audio, is likely a better solution with how copy protection
stands today.

See Also
For more about HTML5 multimedia accessibility, the W3C wiki offers an in-depth
view of known issues and proposed solutions: http://www.w3.org/html/wg/wiki/Multi
mediaAccessibilty.

Manipulating the Audio Stream

Problem
You want to be able to control and manipulate how your HTML5 audio plays in the
browser.

Solution
As part of the specification, audio has a few attributes that give you simple and instant
control over your playback:

autoplay

Tells the browser to start playing the audio as soon as the page loads.

I hesitate to even mention this attribute because it does exactly what it
says and is one of the most annoying, non-user-friendly things on web
sites (http://www.punkchip.com/2009/04/autoplay-is-bad-for-all-users).
So, while autoplay is available, don’t use it. Seriously. Don’t.

90 | Chapter 4: Native Audio

http://html5accessibility.com
http://html5accessibility.com
http://www.w3.org/html/wg/wiki/MultimediaAccessibilty
http://www.w3.org/html/wg/wiki/MultimediaAccessibilty
http://www.punkchip.com/2009/04/autoplay-is-bad-for-all-users

loop

Another self-descriptive attribute, loop tells the browser to loop the audio when playing
forwards.

Less offensive than the autoplay attribute, but one that should be used
with discretion.

Like controls, both autoplay and loop are Boolean attributes, so you simply include
them in the opening audio tag when you want them:

<audio controls loop>

Discussion
But what if you want more control that these basic attributes provide? Fortunately,
audio and video have attributes, events and methods you can manipulate with Java-
Script to create custom controls, including:

canplaytype(type)
Whether the browser can play a particular type of media

currentTime
The current playback position denoted in seconds

duration
The length of the audio file in seconds

play();
Start playback at the current position

pause();
Pause playback if the audio is actively playing

For example, you want to include controls that allow the user to jump to a specific time
in the audio file. You can add this functionality with a button and a dash of JavaScript
to manipulate the play(); method based on the read/write property currentTime:

<audio>
 <source src="audio.ogg">
 <source src="audio.mp3">
</audio>
<button title="Play at 30 seconds" onclick="playAt(30);">30 seconds</button>
<script>
 function playAt(seconds){
 var audio = document.getElementsByTagName("audio")[0];
 audio.currentTime = seconds;
 audio.play();
 }
</script>

Manipulating the Audio Stream | 91

There is not a stop method.

However, by using the same approach as in the example above, the stop functionality
can be mimicked through the pause(); method to return to the beginning of the audio
file via currentTime:

<audio>
 <source src="audio.ogg">
 <source src="audio.mp3">
</audio>
<button title="Play at 30 seconds" onclick="playAt(30);">30 seconds</button>
<button title="Stop Audio" onclick="stopAudio();">Stop Audio</button>
<script>
 function playAt(seconds){
 var audio = document.getElementsByTagName("audio")[0];
 audio.currentTime = seconds;
 audio.play();
 }
 function stopAudio(){
 var audio = document.getElementsByTagName("audio")[0];
 audio.currentTime = 0;
 audio.pause();
 }
</script>

Note that when creating your own custom controls, you drop the con
trols Boolean attribute from audio.

For more information on creating custom controls, see “Sample Design: Custom Audio
Player” on page 96.

See Also
For a much less rudimentary approach to manipulating the audio playback with custom
controls, see Opera’s “Everything You Need to Know About HTML5 Video and Audio”
http://dev.opera.com/articles/view/everything-you-need-to-know-about-html5-video
-and-audio/.

Generating audio Using JavaScript

Problem
You want to generate real time audio on your web page.

92 | Chapter 4: Native Audio

http://dev.opera.com/articles/view/everything-you-need-to-know-about-html5-video-and-audio/
http://dev.opera.com/articles/view/everything-you-need-to-know-about-html5-video-and-audio/

Solution
You can generate audio on the browser without the src attribute or source elements
by using methods defined by the Mozilla Audio Data API (https://wiki.mozilla.org/Au
dio_Data_API#Writing_Audio):

mozSetup(channels, sampleRate)
Defines the channels and sample rate for the generated audio stream

mozWriteAudio(buffer)
Writes the samples, from an array, for the generated audio

mozCurrentSampleOffset()
Gets the current playback position of the audio, denoted in samples

Discussion
This particular implementation of audio has somewhat limited support. In fact, only
Firefox 4+ and Chrome Beta currently support it. As such, it is more an experimental
approach than something geared for mainstream use.

If you happen to be the experimental type, though, check out this short video presen-
tation of what is possible with the Mozilla Audio Data API: http://www.youtube.com/
watch?v=1Uw0CrQdYYg.

See Also
The transcript for the “jasmid – MIDI synthesis with Javascript and HTML5 audio”
talk from Barcamp London 8 provides a very high-level discussion about the challenges
and practical implications of generating audio on the fly, in the browser: http://matt
.west.co.tt/music/jasmid-midi-synthesis-with-javascript-and-html5-audio/.

Visualizing audio Using canvas

Problem
You want to create a visualization of your HTML5 audio using canvas.

Solution
<audio src="audio.ogg"></audio>
<canvas width="512" height="100"></canvas>
<button title="Generate Waveform" onclick="genWave();">Generate Waveform</button>

<script>
 function genWave(){
 var audio = document.getElementsByTagName("audio")[0];

Visualizing audio Using canvas | 93

https://wiki.mozilla.org/Audio_Data_API#Writing_Audio
https://wiki.mozilla.org/Audio_Data_API#Writing_Audio
http://www.youtube.com/watch?v=1Uw0CrQdYYg
http://www.youtube.com/watch?v=1Uw0CrQdYYg
http://matt.west.co.tt/music/jasmid-midi-synthesis-with-javascript-and-html5-audio/
http://matt.west.co.tt/music/jasmid-midi-synthesis-with-javascript-and-html5-audio/

 var canvas = document.getElementsByTagName("canvas")[0];
 var context = canvas.getContext('2d');
 audio.addEventListener("MozAudioAvailable", buildWave, false);
 function buildWave (event){
 var channels = audio.mozChannels;
 var frameBufferLength = audio.mozFrameBufferLength;
 var fbData = event.frameBuffer;
 var stepInc = (frameBufferLength / channels) / canvas.width;
 var waveAmp = canvas.height / 2;
 canvas.width = canvas.width;
 context.beginPath();
 context.moveTo(0, waveAmp - fbData[0] * waveAmp);
 for(var i=1; i < canvas.width; i++){
 context.lineTo(i, waveAmp - fbData[i*stepInc] * waveAmp);
 }
 context.strokeStyle = "#fff";
 context.stroke();
 }
 audio.play();
 }
</script>

This example delivers a rudimentary canvas implementation that visualizes audio with
waveforms (see Figure 4-3).

In this solution, we combine what you’ve already learned about canvas in Chapter 4
with some methods from the Mozilla Audio Data API. Let’s break it down piece-by-
piece, starting with the core audio element, canvas, and a button to trigger the visuali-
zation:

<audio src="audio.ogg"></audio>
<canvas width="512" height="100"></canvas>
<button title="Generate Waveform" onclick="genWave();">Generate Waveform</button>

For brevity’s sake, I’m using the src attribute for audio in this example,
but this would also work with multiple source elements.

Next, add a background color via CSS to indicate a simple presentation for the canvas:

<style>
 canvas {background: #000;}
</style>

Figure 4-3. Wave visualization of audio via canvas in Firefox 5

94 | Chapter 4: Native Audio

Note that the width and height values in canvas are DOM attributes,
not style attributes. As such, you need to specify them in the markup,
not the CSS, so that the browser knows the dimensions of its drawing
space. See Chapter 9 for more on canvas.

And now for the JavaScript. First, set up an overall function to generate the wave:

<script>
 function genWave(){

Inside that function, get both the audio and canvas elements:

var audio = document.getElementsByTagName("audio")[0];
var canvas = document.getElementsByTagName("canvas")[0];

Then set up canvas with its drawing context (see http://diveintohtml5.org/canvas.html
#shapes.):

var context = canvas.getContext('2d');

Next, add an event listener to gather data about the audio file using methods from the
Mozilla Audio Data API (https://developer.mozilla.org/en/Introducing_the_Audio_API
_Extension#section_2):

audio.addEventListener("MozAudioAvailable", buildWave, false);

Then, include a private function to build the canvas wave drawing, and get the number
of channels and frameBufferLength:

function buildWave (event){
 var channels = audio.mozChannels;
 var frameBufferLength = audio.mozFrameBufferLength;

Note that you need to divide frameBufferLength by channels because
frameBuffer contains an array of audio samples that are not separated
by channels, but are all delivered together.

Get frameBuffer data:

var fbData = event.frameBuffer;

Set step increment:

var stepInc = (frameBufferLength / channels) / canvas.width;

And set wave amplitude:

var waveAmp = canvas.height / 2;

Next, reset canvas so the strokes don’t build on top of each other:

canvas.width = canvas.width;

Finally, build the stroke and set stroke properties:

Visualizing audio Using canvas | 95

http://diveintohtml5.org/canvas.html#shapes
http://diveintohtml5.org/canvas.html#shapes
https://developer.mozilla.org/en/Introducing_the_Audio_API_Extension#section_2
https://developer.mozilla.org/en/Introducing_the_Audio_API_Extension#section_2

context.beginPath();
context.moveTo(0, waveAmp - fbData[0] * waveAmp);
for(var i=1; i < canvas.width; i++){
 context.lineTo(i, waveAmp - fbData[i*stepInc] * waveAmp);
}
context.strokeStyle = "#fff";

Add the stroke to canvas:

context.stroke();
}

And play the audio:

audio.play();
}
</script>

Discussion
Just as generating real time audio with JavaScript (“Generating audio Using Java-
Script” on page 92) is limited to Firefox 4+, so is this method of audio visualization
with canvas. This is because only the Mozilla Audio Data API allows you to access the
key audio data (in this example, frameBuffer) necessary to create the canvas drawing.

Further, this method of audio visualization must run on a web server, and requires that
the audio file reside on that same server due to Firefox security measures (https://wiki
.mozilla.org/Audio_Data_API#Security).

See Also
Check out a far more sophisticated and interactive use of audio and canvas from 9ele-
ments: http://9elements.com/io/projects/html5/canvas/.

Sample Design: Custom Audio Player
In this sample design, we’ll extend the concepts of “Manipulating the Audio
Stream” on page 90 to create a custom audio player (see Figure 4-4), rather than relying
on the default controls attribute.

Define audio and player structure
First the markup for our HTML5 audio and player controls:

<div id="player">
 <audio src="media/audio.mp3"></audio>

 <div class="playerControls">
 <button id="audioPlay" title="Play" onclick="playPause();">►</button>
 <button id="audioPause" class="hidden" title="Pause" onclick="playPause();">▐▐</button>

96 | Chapter 4: Native Audio

https://wiki.mozilla.org/Audio_Data_API#Security
https://wiki.mozilla.org/Audio_Data_API#Security
http://9elements.com/io/projects/html5/canvas/

 <button id="audioStop" title="Stop" onclick="playStop();">■</button>

 <div id="audioSeek">
 <div id="audioLoaded"></div>
 </div>

 <ul id="audioTimes">
 <li id="audioElapsed">00:00:00
 <li id="audioDuration">00:00:00

 </div>
</div>

For the purposes of simplicity, this example includes a play/pause toggle, stop and a
progress bar.

The choice of the button element for the player controls is simply a
semantic and accessibility preference, not a requirement.

JavaScript API
Next, we turn to the powerful DOM API to deliver functionality to the player markup.

For a more usable, accessible experience, you can also use detection (see
http://diveintohtml5.org/everything.html.) for HTML5 audio. Then,
only if it is supported, will the player markup and audio element be
inserted. In turn, browsers that don’t support HTML5 audio won’t see
a player they can’t use. Modernizr (see http://modernizr.com) can also
aid in this detection.

First, declare the audio element and player controls, making sure the script appears
after the audio element in the source:

<script>
 audio = document.getElementsByTagName("audio")[0];
 audioDuration = document.getElementById("audioDuration");

Figure 4-4. The final design for the custom audio player as displayed in Safari 5.

Sample Design: Custom Audio Player | 97

http://diveintohtml5.org/everything.html
http://modernizr.com

 audioElapsed = document.getElementById("audioElapsed");
 audioPlay = document.getElementById("audioPlay");
 audioPause = document.getElementById("audioPause");
 audioStop = document.getElementById("audioStop");
 audioLoaded = document.getElementById("audioLoaded");

Then determine eventful information about the audio file:

audio.addEventListener("loadedmetadata", setDuration, false);
audio.addEventListener("timeupdate", setElapsed, false);

Next, define the functions driving the progress bar:

function setDuration(event) {
 audioDuration.innerHTML = timeFormatter(audio.duration);
}

function setElapsed(event) {
 audioElapsed.innerHTML = timeFormatter(audio.currentTime);
 amountLoaded = (audio.currentTime/audio.duration)*100;
 audioLoaded.style.width = amountLoaded + 'px';
}

And the function to toggle play and pause:

function playPause() {
 if (audio.paused){
 audio.play();
 audioPlay.className = 'hidden';
 audioPause.className = '';
 } else {
 audio.pause();
 audioPlay.className = '';
 audioPause.className = 'hidden';
 }
}

Then the function for the stop, which is based on “Manipulating the Audio
Stream” on page 90:

function playStop() {
 audio.pause();
 audio.currentTime=0;
 audioPlay.className = '';
 audioPause.className = 'hidden';
}

And the function to format the time for the progress bar:

function timeFormatter(seconds){
 function zeroPad(str) {
 if (str.length > 2) return str;
 for (i=0; i<(2-str.length); i++) {
 str = "0" + str;
 }
 return str;
 }
 var minute = 60,

98 | Chapter 4: Native Audio

 hour = minute * 60,
 hStr = "",
 mStr = "",
 sStr = "";

 var h = Math.floor(seconds / hour);
 hStr = zeroPad(String(h));

 var m = Math.floor((seconds - (h * hour)) / minute);
 mStr = zeroPad(String(m));

 var s = Math.floor((seconds - (h * hour)) - (m * minute));
 sStr = zeroPad(String(s));

 return (hStr + ":" + mStr + ":" + sStr);
}
</script>

CSS for Style
Finally, we style our player so it doesn’t look quite so plain (see Figure 4-5). First, styles
for the dimensions of the player and how the buttons should appear:

#player {
 height: 50px;
 padding: 10px;
 position:relative;
 width: 300px;
}

button {
 background: #666;
 border:1px;
 -moz-border-radius: 5px;
 border-radius: 5px;
 bottom: 10px;
 color: #fff;
 padding: 5px;
 position:absolute;
 width:45px;
}

#audioStop {
 font-size:22px;
 left: 65px;
 line-height: 11px;
}

Then, styles that help with the play/pause toggle:

#audioPlay.hidden,
#audioPause.hidden { display:none; }

#audioSeek {
 background: #ccc;

Sample Design: Custom Audio Player | 99

 border: 1px solid #000;
 -moz-border-radius: 10px;
 border-radius: 10px;
 display:block;
 height:2px;
}

Next, styles for the green progress bar:

#audioLoaded {
 background: #0c0;
 border: 1px solid #0c0;
 -moz-border-radius: 10px;
 border-radius: 10px;
 display:block;
 height:1px;
}

And, finally, styles for the time counters:

#audioTimes {
 float:right;
 list-style:none;
 margin: 5px 0 0;
}

#audioTimes li {
 font:bold 13px Arial, Helvetica sans-serif;
 float: left;
}

#audioTimes li:first-child {
 border-right: 1px solid #000;
 margin-right: 15px;
 padding-right: 15px;
}

See Also
Not into rolling your own? There are a few pre-built solutions you can consider for
customized player controls, including playlist features:

Figure 4-5. Unstyled audio player as viewed in Safari 5.

100 | Chapter 4: Native Audio

• jPlayer jQuery plugin: http://www.jplayer.org

• MooTools HTML5 Audio Player: http://simulacre.org/mootools-html5-audio
-player

And be sure to check out the “Creating Your Own Accessible HTML5 Media Player”
tutorial: http://terrillthompson.blogspot.com/2010/08/creating-your-own-accessible
-html5.html.

Sample Design: Custom Audio Player | 101

http://www.jplayer.org
http://simulacre.org/mootools-html5-audio-player
http://simulacre.org/mootools-html5-audio-player
http://terrillthompson.blogspot.com/2010/08/creating-your-own-accessible-html5.html
http://terrillthompson.blogspot.com/2010/08/creating-your-own-accessible-html5.html

CHAPTER 5

Native Video

Emily Lewis

Introduction
HTML5’s new embedded content elements offers designers and developers more op-
tions for including media in our sites.

Similar in nature to audio, the video element shares many of the same attributes, have
a similar syntax and can be styled and manipulated with CSS and JavaScript. And just
like audio, video has some implementation challenges.

Adding HTML5 Video

Problem
You want to play native video on your web page.

Solution
Use the video element with the addition of a src attribute that references the location
of your video file:

<video src="video.ogv"></video>

To display default video player controls (see Figure 5-1) add the Boolean controls
attribute:

<video src="video.ogv" controls></video>

Native player controls look different in different browsers. Style your
own controls with JavaScript and CSS (see Sample Design 5.5).

103

Preloading

The preload attribute allows you to suggest to the browser whether and how it should
download the video.

<video src="video.ogv" controls preload></controls>

You can skip the attribute and let the browser decide or give browsers a “hint” with
specific values:

• preload="auto" or, simply, preload

• preload="metadata"

• preload="none"

Fallback Content

You should also make it standard practice to include fallback content with video:

<video src="video.ogv" controls>
 Your device does not support HTML5 video. Download the Learning to Love HTML5 introductory video.
</video>

Note that fallback content is not the same as accessibility or providing
accessible content.

Fallback content is content that display on browsers that don’t support
video and does two things: First, it informs the user their browser
doesn’t support HTML5 video and, secondly, provides a link to down-
load the video.

For a good overview of the state of HTML5 video accessibility: http://
john.foliot.ca/accessibility-and-html5-today/

Along with different video formats, Flash video can be inserted as a fallback alternative.

In fact, you can nest fallback content for lack of support for both the object and
video elements:

<video src="video.ogv" controls>
 <object type="application/x-shockwave-flash"
data="player.swf?file="video.mp4">

Figure 5-1. Default video player controls in Firefox 4

104 | Chapter 5: Native Video

http://john.foliot.ca/accessibility-and-html5-today/
http://john.foliot.ca/accessibility-and-html5-today/

 <param name="movie" value="player.swf?file="video.mp4">
 Download the Learning to Love HTML5
introductory video
 </object>
</video>

Discussion
Unfortunately, video is not as straightforward to implement as it would seem, because
not all browsers support the same set of video file formats.

Multiple Video Codecs

Like with audio, the HTML5 specification doesn’t specify which video codecs should
be supported.

Instead, the browser makers decide which format to support (see Table 5-1), which is
fine.

However, getting browser vendors to agree on any one thing is nearly impossible. Get-
ting them to agree on which video formats—much less a single video format—to sup-
port is going to be next to impossible.

While the blink element is almost universally disliked, it’s still suppor-
ted in browsers. Go figure.

To workaround this situation, video needs to be encoded and published in multiple
formats in order to display across the broadest range of browsers.

Table 5-1. Current browser support for video formats

Browser

H.264

(.mp4)

Ogg Theora

(.ogv)

VP8

(.webm)

Chrome 6+ R Y Y

Firefox 3.6+ Y Y

IE9+ Y D

Opera 10.5+ Y Y

Safari 5+ Y

As you can see from Table 5-1, if you want to reach all of the latest browsers you need
to include at least .mp4 and .ogv formats.

Adding HTML5 Video | 105

.mp4
The container format for the proprietary H.264 codec that encodes video for a full
range of devices, including high definition.

.ogv
The free, open source container format for the open source Theora codec. Results
in lower quality than H.264.

.webm
Another open source container format, which is used by the new, royalty-free VP8
codec from Google.

Google is pulling support for H.264 in Chrome (see http://blog.chro
mium.org/2011/01/html-video-codec-support-in-chrome.html) while
Microsoft’s IE9 supports VP8 with the installation of a decoder (see
http://windowsteamblog.com/windows/b/bloggingwindows/archive/
2010/05/19/another-follow-up-on-html5-video-in-ie9.aspx).

Why is there a messy situation with video codecs? A large factor is intellectual property
and licensing fees. To use certain formats (and, therefore, codecs) natively, browser
makers are subject to the intellectual property rights of the codecs and formats.

For H.264, Apple and Microsoft have paid the licensing fees to allow that video codec
play natively in their respective browsers.

Vendors that produce Firefox and Opera browsers, meanwhile, opt to support free,
open source formats.

For a more in-depth explanation of why there are so many codecs and
formats for video, Adobe TV has a great introductory video from Ste-
phanie Sullivan Rewis on HTML5 video: http://tv.adobe.com/watch/adc
-presents/videoandhtml5part2gettingstarted/ You will need Flash instal-
led on your Internet-enabled device in order to see it, though.

Browser Support

Aside from the challenges of dealing with multiple codecs and format containers,
video has full support in all of the latest browsers. However, video is not supported in
Internet Explorer 8 and below. For these earlier versions, you’ll need to rely on fallback
content.

See Also
For open source videos for developing and experimenting with HTML5 video support,
search the Internet Archive (see http://www.archive.org/details/movies).

106 | Chapter 5: Native Video

http://blog.chromium.org/2011/01/html-video-codec-support-in-chrome.html
http://blog.chromium.org/2011/01/html-video-codec-support-in-chrome.html
http://windowsteamblog.com/windows/b/bloggingwindows/archive/2010/05/19/another-follow-up-on-html5-video-in-ie9.aspx
http://windowsteamblog.com/windows/b/bloggingwindows/archive/2010/05/19/another-follow-up-on-html5-video-in-ie9.aspx
http://tv.adobe.com/watch/adc-presents/videoandhtml5part2gettingstarted/
http://tv.adobe.com/watch/adc-presents/videoandhtml5part2gettingstarted/
http://www.archive.org/details/movies

Ensuring Multi-Browser Video Support

Problem
You want to make sure your native video plays on the broadest range of browsers
possible.

Solution
Use the source child element of video to specify each of your video formats:

<video controls>
 <source src="video.mp4" />
 <source src="video.ogv" />
 Your device does not support HTML5 video.
</video>

Note that you must remove the src attribute and value from video ele-
ment as seen in “Adding HTML5 Video” on page 103.

As we saw in Table 5-1, using .mp4 and .ogv covers all browsers that support HTML5.
But order matters, too.

In terms of order, list your source formats from most to least desirable. Browsers will
play the first format they recognize. Note, though, in iOS 3, there is a bug that won’t
recognize anything but the first source element.

If you are targeting those users, put your .mp4 reference first. Otherwise, the free iOS
4 upgrade resolves this issue.

The Video for Everybody site provides comprehensive details about
bugs and device nuances with HTML5 video: http://camendesign.com/
code/video_for_everybody/

Discussion
Beyond specifying the audio files themselves, it is good practice to also specify the
MIME type for your video files.:

<source src="video.mp4" type="video/mp4" />
<source src="video.ogv" type="video/ogg" />

Ensuring Multi-Browser Video Support | 107

http://camendesign.com/code/video_for_everybody/
http://camendesign.com/code/video_for_everybody/

Firefox does not play Ogg video if the MIME type is wrong.

Since file formats are simply containers for different codecs, specify the compression
used:

<source src="video.ogv" type="video/ogg; codecs='theora'">

The MIME type speeds up rendering of the video since it indicates what kind of content
the browser is utilizing without the browser having to download a portion to make its
own determination.

Here are some examples of MIME types with codecs:

type="video/ogg; codecs='theora, vorbis'"
type="video/mp4; codecs='avc1.42E01E'"
type="video/webm; codecs='vp8, vorbis'"

Unfortunately, even if you declare your MIME types with the proper codec in your
HTML, there can also be challenges related to the MIME types supported by your
server. If your server isn’t configured to support the MIME types your video uses, there
will be playback issues.

You can, however, configure your server to support video MIME types. Information
about Ogg media from the Mozilla Developer Center (https://developer.mozilla.org/en/
Configuring_servers_for_Ogg_media) can be equally applied to .webm and .mp4.

See Also
If you have your own video, but want to convert it to other formats, check out these
tools:

• Miro VideoConverter: http://www.mirovideoconverter.com/

• WebM Tools: http://www.webmproject.org/tools/

• MPEG StreamClip: http://www.squared5.com/

• TinyOgg: http://tinyogg.com/

• OggConvert: http://oggconvert.tristanb.net/

Setting Video Dimensions

Problem
You want to specify the width and height of your video player:

108 | Chapter 5: Native Video

https://developer.mozilla.org/en/Configuring_servers_for_Ogg_media
https://developer.mozilla.org/en/Configuring_servers_for_Ogg_media
http://www.mirovideoconverter.com/
http://www.webmproject.org/tools/
http://www.squared5.com/
http://tinyogg.com/
http://oggconvert.tristanb.net/

Solution
Add the width and height attributes, and their corresponding values, to video:

<video controls width="640" height="360">
 <source src="video.mp4" type="video/mp4" />
 <source src="video.ogv" type="video/ogg" />
 Your device does not support HTML5 video.
</video>

Discussion
Browsers render the video player according to the dimensions you assign, not the res-
olution of your actual video.

Using different dimensions might lead to a loss in quality by expanding a video beyond
its native resolution; the same goes for scaling down a large video simply to fit into a
small space.

So, when possible, use the same dimension values for the video element as for the video
file itself, and don’t resize your video with width and height.

Technically speaking, the width and height of a video element does not need to be set
as browsers default to inheriting dimensions of the video file itself.

The drawback to this approach is that if the dimensions are not set, browsers won’t
know what space to reserve for your video and may have to redraw your page after it
downloads the video data.

The width and height values need to be set in CSS pixels as integers and not as per-
centages or other values.

Adding dimension values helps browsers more efficiently render your pages, which
usually results in a better user experience too.

Since you probably don’t want to use width and height to resize your video different
than its native dimensions, you can instead use encoding software to specify the reso-
lution.

Mark Pilgrim’s “Dive Into HTML5” (see http://diveintohtml5.org/video.html.) provides
very detailed instructions about using many of the encoding tools available.

See Also
CSS Pixel at http://www.emdpi.com/csspixel.html.

Setting Video Dimensions | 109

http://diveintohtml5.org/video.html
http://www.emdpi.com/csspixel.html

Displaying a Placeholder Image Before Video Plays

Problem
You want to display a still-frame, or poster image, before the user starts the video.

Solution
Add the poster attribute with the placeholder image file path as the value:

<video controls width="640" height="360" poster="video_still.png">
 <source src="video.mp4" type="video/mp4" />
 <source src="video.ogv" type="video/ogg" />
 Your device does not support HTML5 video.
</video>

Discussion
Poster images can be a nice user enhancement, especially when the video doesn’t load
or can’t be displayed.

Consider a single-source mp4 video viewed in Firefox as shown in Figure 5-2:

Unfortunately, different browsers handle poster images differently.

• Firefox stretches the image to fill the dimensions (see “Setting Video Dimen-
sions” on page 108) of the player.

• Chrome keeps the image its original size.

• Safari displays the poster image until the video data is loaded, at which point it
displays the first frame from the video. If the poster image is a different size from
the video, the video is resized to match the aspect ratio of poster image (see Fig-
ure 5-3).

Figure 5-2. Since Firefox doesn’t support .mp4 files, the browser displays a dark grey box if there is
no poster image specified.

110 | Chapter 5: Native Video

See Also
John Foliot points out the lack of accessibility of the poster attribute, so keep this
limitation in mind when using poster at http://john.foliot.ca/the-current-problem-with
-the-poster-attribute-of-the-video-element/.

Making Video Loop

Problem
You want your video playback to loop automatically.

Solution
Add the loop Boolean attribute to video:

<video controls width="640" height="360" loop>
 <source src="video.mp4" type="video/mp4" />
 <source src="video.ogv" type="video/ogg" />
 Your device does not support HTML5 video.
</video>

Discussion
As of this writing, Firefox does not support loop unless the user has the Media Loop
add-on (https://addons.mozilla.org/en-US/firefox/addon/media-loop-45730/) installed.
All other browsers will loop natively.

That said, use loop thoughtfully. Consider how your users experience a video that loops
and whether that experience is appropriate for your particular video and pleasant for
your audience.

Figure 5-3. Safari 5 resizes the video to match the aspect ratio of the poster image, making it important
to ensure your images are sized correctly.

Making Video Loop | 111

http://john.foliot.ca/the-current-problem-with-the-poster-attribute-of-the-video-element/
http://john.foliot.ca/the-current-problem-with-the-poster-attribute-of-the-video-element/
https://addons.mozilla.org/en-US/firefox/addon/media-loop-45730/

Autoplay

Another video attribute you should judiciously consider before implementing is the
Boolean autoplay. Just as with audio, autoplay starts playing the video as soon as the
page loads. And, just as with audio, it can be an extremely unpleasant user experience.

See Also
Not all Firefox users will know about the Media Loop add-on, much less have it in-
stalled. If you desperately need looping to work across all browsers, you can consider
a JavaScript-based solution: http://forestmist.org/2010/04/html5-audio-loops/.

Sample Design: Manipulating Video With canvas
Have you ever wanted to embed a video from YouTube, but wanted a better preview
of how your video might appear than their default selection key (see Figure 5-4)?

In this Sample Design, we use canvas (see Chapter 9) to create a better and more con-
textual preview of what video may look like at different sizes (see Figure 5-5).

Figure 5-4. When selecting which size video you want to embed, YouTube offers static illustrations
that lack context.

Figure 5-5. Using scaling, different sizes of the single video instance are drawn on the canvas in Firefox.

112 | Chapter 5: Native Video

http://forestmist.org/2010/04/html5-audio-loops/

Add video and canvas
To start, re-use the markup used in this chapter for video, and add a button to trigger
the drawing, as well as two canvas elements, one for a medium preview and one for a
small.

To each element, assign a unique id:

<video id="origVideo" width="640" height="360">
 <source src="video.mp4" type="video/mp4" />
 <source src="video.ogv" type="video/ogg" />
 Your device does not support HTML5 video.
</video>

<button title="Generate Preview" onclick="generatePreview();">Generate Preview</button>

<canvas id="previewMed"></canvas>
<canvas id="previewSm"></canvas>

Generate Preview
Next, create a function to generate the preview and set the JavaScript variables for our
video and canvas elements:

<script>
 function generatePreview(){
 var video = document.getElementById('origVideo');
 var canvas1 = document.getElementById('previewMed');
 var context1 = canvas1.getContext('2d');
 var canvas2 = document.getElementById('previewsSm');
 var context2 = canvas2.getContext('2d');

Note the variables to specify the 2D context for each canvas drawing state are also
declared.

Set Preview Dimensions
Next, define the dimensions for each of the canvas drawings in the function:

canvas1.width = 320;
canvas1.height = 180;
canvas2.width = 160;
canvas2.height = 90;

Add an Event Listener
Then add an event listener to trigger the canvas drawing upon video play:

video.addEventListener('play', function(){
 drawVideo(this,context1,context2);
},false);

Sample Design: Manipulating Video With canvas | 113

And close out the function:
 video.play();
}

Draw Previews
Lastly, add the function that draws each of the canvas previews:

 function drawVideo(video,canvas1,canvas2) {
 if(video.paused || video.ended) return false;
 canvas1.drawImage(video,0,0,320,180);
 canvas2.drawImage(video,0,0,160,90);
 setTimeout(drawVideos,25,video,canvas1,canvas2);
 }
</script>

This function first checks to see if the video is playing:

if(video.paused || video.ended) return false;

If so, use drawImage with scaling to draw a canvas image that is half the size of the original
video:

canvas1.drawImage(video,0,0,320,180);

And a second canvas that is half the size of previewMed:

canvas2.drawImage(video,0,0,160,90);

The scaling parameters in these examples are:

object.drawImage(source,x,y,width,height);

Where x and y represent the top left corner of the image on the target canvas, and
width and height are the image's size on the target canvas.

Finally, tell drawPreviews to call itself every 25 milliseconds, which roughly equals 40
frames per second (1000ms/40fps = 25):

setTimeout(drawVideos,25,video,canvas1,canvas2);

The Final Product
The complete markup and script for this example:

<video id="origVideo" width="640" height="360">
 <source src="video.mp4" type="video/mp4" />
 <source src="video.ogv" type="video/ogg" />
 Your device does not support HTML5 video.
</video>

<button title="Generate Preview" onclick="generatePreview();">Generate Preview</button>

<canvas id="previewMed"></canvas>
<canvas id="previewSm"></canvas>

114 | Chapter 5: Native Video

<script>
 function generatePreview(){
 var video = document.getElementById('origVideo');
 var canvas1 = document.getElementById('previewMed');
 var context1 = canvas1.getContext('2d');
 var canvas2 = document.getElementById('previewsSm');
 var context2 = canvas2.getContext('2d');

 canvas1.width = 320;
 canvas1.height = 180;
 canvas2.width = 160;
 canvas2.height = 90;

 video.addEventListener('play', function(){
 drawVideo(this,context1,context2);
 },false);

 video.play();
 }

 function drawVideo(video,canvas1,canvas2) {
 if(video.paused || video.ended) return false;
 canvas1.drawImage(video,0,0,320,180);
 canvas2.drawImage(video,0,0,160,90);
 setTimeout(drawVideos,25,video,canvas1,canvas2);
 }
</script>

See Also
HTML5 Doctor offers demos and detailed descriptions of other ways to use canvas and
video together at http://html5doctor.com/video-canvas-magic/.

Sample Design: Manipulating Video With canvas | 115

http://html5doctor.com/video-canvas-magic/

CHAPTER 6

Microdata and Custom Data

Kimberly Blessing

Introduction
One of the primary benefits of web standards, promoted for over 10 years by standards
evangelists, was that more semantic markup would provide greater context and mean-
ing to content.

By the mid 2000s, web standards were catching on, but the “standardistas” recognized
that semantic markup alone was not enough to convey all meaning related to content
– for example, that some content is personal data or that links may represent relation-
ships.

First came XFN (XHTML Friends Network) to solve for this problem (see http://gmpg
.org/xfn/), and then Microformats (see http://microformats.org/).

Both of these solutions relied on the class and rel attributes—both valid (X)HTML—
but, because those attributes had more appropriate uses, some web professionals felt
that using them to convey additional semantics was somewhat of a hack. At the same
time, the W3C XHTML 2 Working Group created the RDFa specification, based on
the Resource Description Framework, to enable reuse of existing XHTML attributes—
and the addition of some new ones—to support structured machine-readable data.

Microformats, in particular, caught on quickly with web professionals.

Web builders started using them to markup personal information, resumes, event data,
and even cooking recipes. Search engines picked up on this and began parsing the
additional data found in Microformats and RDFa to improve search results.

With HTML 5, the web community has a renewed focus on strictly adhering to the
specification, Rather than continue to extend—some would say abuse—the class and
rel attributes, HTML 5 (at least via the WHATWG spec) introduces microdata, which
gives us a new syntax for marking up these additional structured semantics.

117

http://gmpg.org/xfn/
http://gmpg.org/xfn/
http://microformats.org/

In addition, HTML 5 allows for custom data attributes, which further give web profes-
sionals a standards-compliant way for embedding additional data in their markup.

The markup aspects of these features work in browsers today, but the associated DOM
APIs to interact with them are not yet (microdata) or widely (custom data) supported
by user agents

Given that it is possible to write JavaScript to interact with the additional data, there’s
little reason not to use them.

When to use microdata versus custom data
Similar to microformats and RDFa, microdata is used to mark up structured data. It
introduces new attributes that can be applied to any element in order to identify scoped
name-value pairs. Like microformats, shared vocabularies are emerging to standardize
how data is marked up, so microdata can be used to share data across web sites and
applications.

Custom data attributes are just that: custom.

You, the programmer, create attributes using the data- prefix and assign them a value.
This name-value pair is related to the displayed content, but is not itself displayed.
Because you define the attributes according to the needs of your web site or application,
these are not to be used to exchange data with another site, nor do public search engines
consume them.

Should you use microdata or RDFa for your structured data? Ongoing
W3C discussions about whether or not two overlapping standards
should exist have some concerned about the future of these specifica-
tions. Google, Microsoft, and Yahoo, meanwhile, are promoting mi-
crodata, having teamed up to create Schema.org, a shared vocabulary
of data structures that allows their search engines to extract more mean-
ing from your data.

For an excellent comparison of microdata, RDFa, and microformats,
read Manu Sporny’s detailed analysis at http://manu.sporny.org/2011/
uber-comparison-rdfa-md-uf/.

Adding Microdata to Markup

Problem
You want to add microdata to convey additional meaning or semantics about your
content so that machine-parsing tools can access this information.

118 | Chapter 6: Microdata and Custom Data

http://schema.org/
http://manu.sporny.org/2011/uber-comparison-rdfa-md-uf/
http://manu.sporny.org/2011/uber-comparison-rdfa-md-uf/

Solution
Use the itemscope and itemprop attributes, along with descriptive property names, to
label your content.

<p itemscope>
 Tim Berners-Lee created the World Wide Web.
</p>

Discussion
The itemscope attribute is used to identify the scope of the microdata item—an item
being a set of name-value pairs. The itemprop attribute values define the property
names, and their associated values, in this case, are the contents of the span tags. Thus,
this example yields the following name value pairs:

• Inventor: Tim Berners-Lee

• Invention: World Wide Web

This is a very basic example. In the next section, we’ll look at an example that imple-
ments a standardized vocabulary.

See Also
The itemprop attribute in the HTML5 specification at http://www.w3.org/TR/html5/
microdata.html#names:-the-itemprop-attribute.

Using Microdata and Schema.org

Problem
You want to convey additional meaning about your content—for example, that the
content identifies a person—so that popular search engines can extrapolate this data.

Solution
In addition to using the itemscope and itemprop attributes, specify an itemtype and
apply the appropriate property names from the Schema.org vocabulary:

<section itemscope itemtype="http://schema.org/Person">
 <h1 itemprop="name">Tim Berners-Lee</h1>

 <p>
 Director,
 World Wide Web Consortium</p>
 <p itemprop="address" itemscope itemtype="http://schema.org/PostalAddress">
 Cambridge,

Using Microdata and Schema.org | 119

http://www.w3.org/TR/html5/microdata.html#names:-the-itemprop-attribute
http://www.w3.org/TR/html5/microdata.html#names:-the-itemprop-attribute

 MA
 </p>
 Web site at W3C
</section>

Discussion
The start of this microdata item is again indicated by the use of itemscope on the
section element, but also added to this element is the itemtype attribute. Use item
type with a URL in order to identify the item data type. In this case, we’re using the
Schema.org structure to identify a person.

Just as with the previous section, the itemprop attribute is applied with property names
to give meaning to the content in the markup. By looking at the properties and pairing
them with the content, we know that “Tim Berners-Lee” is a person’s name and that
his job title is “Director.”

The use of itemprop for both the image and URL properties works a bit differently–the
corresponding values in these cases are the src and href attribute values, respectively.
If you’ve worked with microformats in the past, this concept won’t be new to you.

A final special case in this example can be seen with the affiliation and address item
prop attributes—here, new items are nested inside of the main item. In both cases, the
itemprop identifies the property that is directly related to the person item but, within
the same tag, also establishes the property as an item itself with the itemscope attribute.
Going on step further, itemtype is also applied to indicate the URL that describes the
item data type.

While this might seem a bit complicated at first, realize that it’s not much different than
combining multiple microformats (like hCard and hCalendar on a resume) or creating
an XML object to represent nested data.

Whether you’ve worked on project like these before or not, there is an easy way to
check to see that you’re making progress in applying the Schema.org vocabularies. You
can use the Google Rich Snippets Testing Tool (available at http://www.google.com/
webmasters/tools/richsnippets) to validate that your structured data markup can be
parsed as shown in Figure 6-1.

Figure 6-1. Google Rich Snippets Testing Tool results.

120 | Chapter 6: Microdata and Custom Data

http://www.google.com/webmasters/tools/richsnippets
http://www.google.com/webmasters/tools/richsnippets

Before Schema.org was created by Google, Microsoft, and Yahoo, Goo-
gle was promoting Rich Snippets based on its own vocabulary at http://
data-vocabulary.org/. Google’s documentation for Rich Snippets is still
live, but every page features a link to Schema.org.

See Also
• For additional data types that are recognized by search engines, along with sample

code, see http://schema.org/.

• To learn more about microdata, see HTML5 Doctor’s Microdata article (http://
html5doctor.com/microdata/) and Mark Pilgrim’s chapter from Dive Into HTML5
(see http://diveintohtml5.org/extensibility.html), which also details Google Rich
Snippets.

Adding Custom Data to Markup

Problem
You want to attach additional data to your content that is not displayed to the user.

Solution
Define your own data- attributes to name and store the information:

<h1>My Volkswagens</h1>

 <li data-year="1996" data-color="white" data-engine="VR6">Cabrio
 <li data-year="1993" data-color="purple" data-engine="VR6">Corrado
 <li data-year="2008" data-color="red" data-engine="2.0T">Eos
 <li data-year="2003" data-color="blue" data-engine="W8">Passat

Discussion
Since not everyone cares about VWs or cars, and so there’s a lot of detail we need not
provide—like the year, color, and engine type of each VW.

With custom data attributes, extraneous data is included in the markup and it’s not
requiring my readers to look at it.

Since the data is now stored in the HTML, read the subsequent Recipes
in this chapter to learn what else you can do with the data.

Adding Custom Data to Markup | 121

http://data-vocabulary.org/
http://data-vocabulary.org/
http://schema.org/
http://html5doctor.com/microdata/
http://html5doctor.com/microdata/
http://diveintohtml5.org/extensibility.html

In order to store the year, color, and engine type of each car, we created three custom
data attributes: data-year, data-color, and data-engine.

As you can see, they all start with data- followed by at least one character. The name
you define may not include uppercase letters, but it can include hyphens. You could
have, for example, defined data-model-year, but data-modelYear would not be allowed.

If your custom data attributes have additional hyphens in the name, you
need to convert them to camel case names when using the dataset API
—for example, data-foo-bar would be referred to as dataset.fooBar.
But if using getAttribute or setAttribute, you still reference it as data-
foo-bar.

Even though we use the three custom attributes consistently in the example above, we
haven’t created any special relationships by using them together—for example, you
could list another car and only apply a data-color attribute.

Or you could go on to list airplanes that you’ve flown, and reuse the data-engine at-
tribute. It’s up to you, the programmer, to maintain structure or define the name space
you need for your web site or application.

See Also
More discussion about HTMl5 custom data attributes at http://html5doctor.com/html5
-custom-data-attributes/.

Accessing Custom Data with JavaScript

Problem
You want to access the custom data in your page and perform execute some logic based
on the data.

Solution
Start with the same markup as “Adding Custom Data to Markup” on page 121 but add
a paragraph for JavaScript output:

<h1>My Volkswagens</h1>

 <li data-year="1996" data-color="white" data-engine="VR6">Cabrio
 <li data-year="1993" data-color="purple" data-engine="VR6">Corrado
 <li data-year="2008" data-color="red" data-engine="2.0T">Eos
 <li data-year="2003" data-color="blue" data-engine="W8">Passat

<p></p>

122 | Chapter 6: Microdata and Custom Data

http://html5doctor.com/html5-custom-data-attributes/
http://html5doctor.com/html5-custom-data-attributes/

Access the custom data using the dataset API:

<script>
 var cars = document.getElementsByTagName("li");
 var output = "What color are Kimberly's cars? ";

 for (var i=0; i < cars.length; i++) {
 output += cars[i].dataset.color;
 if (i != (cars.length-1)) {
 output += ", "
 }
 }

 document.getElementsByTagName("p")[0].innerHTML = output;
</script>

Discussion
With the introduction of custom data attributes, HTML5 also defines the dataset DOM
API. It is a simple and easy way of accessing any custom data associated with any
element.

The JavaScript is straightforward: we create an array of all list items (cars) and we create
a string that is inserted into the paragraph (output). As we iterate over the cars array,
we use dataset.color to access the value of each data-color attribute, and we append
it to the output variable. The end result is the phrase “What color are Kimberly's cars?
White, purple, red, blue” being added to the paragraph at the end of the list.

Not all browsers yet support the dataset API (see Table 6-1), but accessing custom data
attributes in all browsers is easy. Where dataset is not supported, simply use getAttri-
bute.

Here’s the for loop using fallback logic and getAttribute when necessary:

 for (i=0; i < cars.length; i++) {
 if (cars[i].dataset) {
 output += cars[i].dataset.color;
 } else {
 output += cars[i].getAttribute("data-color");
 }
 if (i != (cars.length-1)) {
 output += ", "
 }
 }

Table 6-1. Dataset API support.

IE Firefox Chrome Safari Opera iOS Android

- 6+ 7+ 5.1+ 11.1+ - -

To keep up with dataset API support, check http://caniuse.com/dataset regularly.

Accessing Custom Data with JavaScript | 123

http://caniuse.com/dataset

See Also
The itemprop attribute in the HTML5 specification at http://www.w3.org/TR/html5/
microdata.html#names:-the-itemprop-attribute.

Manipulating Custom Data

Problem
You want to manipulate existing custom data in your page or add custom data to your
page.

Solution
Let’s build on the code from “Accessing Custom Data with JavaScript” on page 122.
Use the same markup to start:

<h1>My Volkswagens</h1>

 <li data-year="1996" data-color="white" data-engine="VR6">Cabrio
 <li data-year="1993" data-color="purple" data-engine="VR6">Corrado
 <li data-year="2008" data-color="red" data-engine="2.0T">Eos
 <li data-year="2003" data-color="blue" data-engine="W8">Passat

<p></p>

Use the dataset API to modify and create custom data, along with setAttribute for
fallback support:

<script>
 var cars = document.getElementsByTagName("li");
 for (var i=0; i < cars.length; i++) {
 if (cars[i].dataset) {
 cars[i].dataset.color = "yellow";
 cars[i].dataset.rating = "awesome";
 } else {
 cars[i].setAttribute("data-color", "yellow");
 cars[i].setAttribute("data-rating", "awesome");
 }
 }

 var output = "What color are Kimberly's cars? ";

 for (var i=0; i < cars.length; i++) {
 if (cars[i].dataset) {
 output += cars[i].dataset.color;
 } else {
 output += cars[i].getAttribute("data-color");
 }
 if (i != (cars.length-1)) {
 output += ", "

124 | Chapter 6: Microdata and Custom Data

http://www.w3.org/TR/html5/microdata.html#names:-the-itemprop-attribute
http://www.w3.org/TR/html5/microdata.html#names:-the-itemprop-attribute

 }
 }

 document.getElementsByTagName("p")[0].innerHTML = output;
</script>

Discussion
Once you know how to access custom data, manipulating it is pretty easy. If you can
use the dataset API, just assign the new value to the desired attribute; otherwise fallback
to using setAttribute. This same method allows you to add new custom data attributes,
as well.

In this example, we’ve decided to repaint all of the cars yellow using JavaScript. Looping
through the list items, we access dataset.color (or use setAttribute to access data-
color) and assign a new value of “yellow.”

Then you can use JavaScript to add a rating for each of the cars. In that same loop,,
create data-rating by applying a value of “awesome” to dataset.rating (or use setAt
tribute to do the same).

If you need to remove a custom data attribute, you can do so by setting its value to
null. Verify that the DOM is being manipulated by verifying in a tool such as Opera
Dragonfly as shown in Figure 6-2.

See Also
The dataset specification at http://dev.w3.org/html5/spec/Overview.html#dom-dataset.

Example: Creating a Map Application Using Custom Data

Problem
You want to generate markers on a map using custom data attributes.

Figure 6-2. Dataset modification in Opera 11.1 with Dragonfly.

Example: Creating a Map Application Using Custom Data | 125

http://dev.w3.org/html5/spec/Overview.html#dom-dataset

Solution
Store the latitudes and longitudes of the locations you wish to show on the map in
separate custom data attributes. Then write JavaScript to access those datasets and
render markers on the map:

<!DOCTYPE html>
<html>
<head>
<title>Map example</title>
<script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=false"></script>
<style type="text/css">
#map { height:500px; width:500px; border:1px solid #000; }
</style>
</head>
<body>
<h1>Ice Cream in Philadelphia</h1>

 <a data-lat="39.9530255" data-long="-75.1596066" href="http://www.bassettsicecream.com/">Bassetts Ice Cream
 <a data-lat="39.949888" data-long="-75.161717" href="http://www.capogirogelato.com/">Capogiro Gelateria
 <a data-lat="39.949556" data-long="-75.1428795" href="http://www.franklinfountain.com/">Franklin Fountain

<div id="map"></div>

<script>
 var map_options = {
 zoom: 15,
 center: new google.maps.LatLng(39.95, −75.152),
 mapTypeId: google.maps.MapTypeId.HYBRID
 };

 var map = new google.maps.Map(document.getElementById("map"), map_options);

 var locations = document.getElementsByTagName("a");
 for (var i=0; i < locations.length; i++) {
 var latitude, longitude;
 if (locations[i].dataset) {
 latitude = locations[i].dataset.lat;
 longitude = locations[i].dataset.long;
 } else {
 latitude = locations[i].getAttribute("data-lat");
 longitude = locations[i].getAttribute("data-long");
 }
 locations[i][i] = new google.maps.Marker({
 position: new google.maps.LatLng(latitude, longitude),
 title: locations[i].innerHTML,
 map: map
 });
 }
</script>
</body>
</html>

126 | Chapter 6: Microdata and Custom Data

Discussion
You already know how to define custom data, so the list of anchors containing data-
latitude and data-longitude attributes should be old hat by now.

Creating a Google Map using their APIs is very easy–call their API in the document
head, create an element to house the map in the body, then call a script that defines
your map options and triggers its rendering.

After the script triggers the drawing of the map, it then accesses the latitude-longitude
positions and uses them to render markers on the map.

Example: The jQuery data() method

The jQuery library has provided support for accessing and manipulating custom data
since version 1.4.3. This support was updated in jQuery 1.6 to conform to changes in
the HTML5 specification; use this version of jQuery if it all possible (see http://www
.webmonkey.com/2011/05/jquery-update-improves-html5-data-tools/).

Using the jQuery data() method is straightforward. Let’s return to an earlier example
to see how it works.

 <li data-year="1996" data-color="white" data-engine="VR6">Cabrio

<script>
alert($("li").data("year")); // alerts "1996"
alert($("li").data("engine")); // alerts "VR6"

// let's repaint the car again
$("li").data("color", "yellow");

//let's add the rating data
$("li").data("rating", "awesome");
</script>

The jQuery data method successfully reads the data-year and data-engine attributes
defined in the markup, but if you access data-color via the dataset API or examine the
DOM object, you neither see its value turn yellow nor find a data-rating attribute as
you did in section 6.5.

<script>
alert($("li").data("color")); // alerts "yellow"
alert(document.getElementsByTagName("li")[0].dataset.color); // alerts "white"
</script>

While jQuery reads in the data from the custom data attributes, it does not write this
data back to the DOM; instead it stores the data in a JavaScript object. This speeds up
applications where a lot of data access or manipulation is performed.

However, if you forget this difference and try to also use the dataset API in your appli-
cation, you will encounter some unexpected results.

Example: Creating a Map Application Using Custom Data | 127

http://www.webmonkey.com/2011/05/jquery-update-improves-html5-data-tools/
http://www.webmonkey.com/2011/05/jquery-update-improves-html5-data-tools/

See Also
A small sampling of applications utilizing microdata:

• PaintbrushJS by Dave Shea: http://mezzoblue.github.com/PaintbrushJS/demo/inde7
.html.

• Dynamic Google Analytics Tagging by Jason Karns: http://jasonkarns.com/blog/
2010/03/10/google-analytics-tagging/.

• SXSW 2010 Parties site by Christopher Schmitt, Kyle Simpson, Stephanie Sullivan,
and Zoe Gillenwater: http://www.sxswcss3.com/.

128 | Chapter 6: Microdata and Custom Data

http://mezzoblue.github.com/PaintbrushJS/demo/inde7.html
http://mezzoblue.github.com/PaintbrushJS/demo/inde7.html
http://jasonkarns.com/blog/2010/03/10/google-analytics-tagging/
http://jasonkarns.com/blog/2010/03/10/google-analytics-tagging/
http://www.sxswcss3.com/

CHAPTER 7

Accessibility

Anitra Pavka

Introduction
Disability is a broad term.

Major categories of disabilities that affect use of the web include visual, hearing, cog-
nitive, and motor. A single category of disability may manifest in many forms. For
example, visual disability includes, but is not limited to, red-green color blindness.
About 7 to 10% of all men have trouble differentiating between red and green colors.

People may have varying degrees of disability and even multiple disabilities. Like a
broken wrist or an amputation, disabilities can be temporary or permanent. And per-
manent disabilities may be from birth or start later in life.

In short, anyone can become disabled.

The Purpose of Accessibility
Web accessibility is about removing barriers that prevent people from using the web.
In fact, one could say accessibility is at the heart of the Web in that its goal is to break-
down barriers of communication.

According to the Worldwide Web Consortium (see http://www.w3.org/standards/web
design/accessibility.):

“The Web is fundamentally designed to work for all people, whatever their hardware,
software, language, culture, location, or physical or mental ability. When the Web meets
this goal, it is accessible to people with a diverse range of hearing, movement, sight, and
cognitive ability.”

Web coding and markup is a critical part of removing barriers. But done incorrectly, it
can erect more barriers.

The hardware and software used to access web content constitute the rest of the solu-
tion. The user agent, such as a browser, and any assistive technology, such as a screen

129

http://www.w3.org/standards/webdesign/accessibility
http://www.w3.org/standards/webdesign/accessibility

reader that reads aloud web content, must be able to accurately interpret and present
to users the web content or functionality that you coded.

Accessibility Guidelines
Fortunately, there are published guidelines to provide direction to web designers and
developers. If you work on government or publicly funded web sites, you may imple-
ment local or federal guidelines such as U.S. Section 508.

Or you may be familiar with phrases like the W3C Web Accessibility Initiative (WAI)
or W3C Web Content Accessibility Guidelines (WCAG). The W3C WAI updated the
original WCAG. WCAG 2.0 became a W3C recommendation in December 2008, nine
years after the first version. These guidelines provide an international set of recom-
mendations on how to make web content more accessible and usable to people with a
variety of disabilities.

The WCAG 2.0 uses the acronym POUR to summarize the four principles of web
accessibility. POUR stands for Perceivable, Operable, Understandable, and Robust:

Perceivable
Means available to the senses, usually sight or hearing. That means you’ve done
things like provide text alternatives for images, provide captions for audio and
video, and include sufficient contrast between the text and the background.

Operable
Ensures that people can use or interact with the web site, including navigation,
content, forms, and dynamic controls.

Understandable
Means that text is legible and the site behaves in consistent, predictable ways.

Robust
Defines the page’s markup and coding as working in a variety of user agents and
assistive technologies.

The W3C WAI also authored WAI-ARIA 1.0 (Accessible Rich Internet Applications).
ARIA provides a way to add semantic meaning to Ajax-like, dynamic web content and
custom widgets by defining a set of roles and the states and properties of those roles.

In other words, ARIA allows you to programmatically communicate to assistive tech-
nology what is displayed to sighted users as the page changes in response to user actions,
rather than just what is present in the original page markup.

This is increasingly important because as of Jan 2010, SecuritySpace Technology Pen-
etration Report found that over 64% of web sites included JavaScript (see http://www
.securityspace.com/s_survey/data/man.200912/techpen.html).

The work of ARIA specification is still being done and while support is fairly robust
and always improving, there are bugs and incomplete support in user agents to contend.

130 | Chapter 7: Accessibility

http://www.securityspace.com/s_survey/data/man.200912/techpen.html
http://www.securityspace.com/s_survey/data/man.200912/techpen.html

The good thing is that implementing ARIA doesn’t have to be hard. It’s definitely not
harder than building cross-browser, custom JavaScript widgets.

And you’re already doing that, right?

Writing Appropriate ALT Text Descriptions

Problem
You want to add a text alternative for an image.

Solution
Add the text alternative programmatically using the alt attribute of the image.

If an image deserves a text alternative that can be summed up in one to two sentences
or about 75 words or less, then set that text as the value of the alt attribute.

How do you know how well the alternative text works? A good rule of thumb is “if you
can replace every image on the page with its text alternative, the page conveys the same
meaning as when the images are displayed:”

If the image is complex like a chart or diagram and cannot be simply summarized,
include the additional information adjacent to the image or link the image to a longer,
more detailed text alternative.

If providing additional information beyond an alt attribute, ensure that
the text is updated whenever changes are made to the associated image.

Multiple Images

If you need to reference multiple text alternative sources for an image to make sense
and all of that content is on the same web page, use the ARIA aria-labelledby or aria-
describedby attributes to reference text alternatives as these ARIA attributes can accept
multiple references.

In this example, the aria-describedby attributes in the img element reference its asso-
ciated values to id attributes in the descriptive h1 and p elements:

<h1 id="johnny1">Johnny throwing cake at his Mom while Dad ducks behind her</h1>
<p id="johnny2">Johnny's poor Mom is smeared with cake. Well, that shirt is ruined!</p>

Writing Appropriate ALT Text Descriptions | 131

 ...

Until figure and figcaption elements are better supported by user agents and assistive
technology, use the aria-labelledby attribute to associate an image enclosed in the
figure element with its caption.

Add the aria-labelledby attribute to the img element and add its associated value to
an id attribute of the figcaption element:

<figure>

 <figcaption id="figcaption123">
 Opening ceremony for the new library building at the state university.
 </figcaption>
</figure>

Discussion
A text alternative for a non-text element such as an image is not necessarily a description.

Instead, a text alternative should strive to present the same purpose and information,
serving as a replacement for the non-text element.

Providing a text alternative for non-text elements is required to comply with WCAG
2.0. However, the alt attribute is not technically required in HTML5 (as of the printing
of this book).

Regardless, it’s recommended to use the alt attribute whenever possible for images.
Any decision to remove it, make it a null value, or use another method of providing
text alternatives must be a conscious decision.

Apply these best practices when writing the text alternatives for images:

• Include all content (text) that appears in the image.

• Consider the context of the image to help determine what is important about it.

• If it is relevant, convey the purpose or function of the image.

• Avoid including information that is available as text near the image.

• Avoid including phrases such as “image of” or “picture of”.

• Be concise.

Null alt Attribute

A null alt attribute is an alt attribute that contains no spaces or content. It is not the
same as omitting the alt attribute.

Adding a null or empty alt attribute to the image is appropriate in the following sit-
uations:

132 | Chapter 7: Accessibility

• The image is purely decorative

• A text alternative is available immediately adjacent to the image

• The image is one of a group of images that form a larger picture, and one of the
other images already has the text alternative for the entire picture

• The image is not meant to be seen by users like a 1-pixel image that counts page
views

Or use background-image CSS properties to add a purely decorative image to the web
page instead of using an img element.

The following CSS rule associates an image with a custom class, but the CSS could be
associated with an HTML element, such as the div or body element.

.border {
 background-image: url(border_decoration.jpg);
 background-repeat: repeat-x;
}

Since assistive technology may completely ignore images that have a null alt attribute,
assistive technology users will not be made aware of the existence of the image. Which
might be exactly what you want since an image might be, as discussed, purely decorative
without any substance to the web page’s message.

However, if you omit the alt attribute altogether, the same assistive technologies an-
nounce that an image actually exists on the page and do their best to provide informa-
tion about it, even if that information is only the file name.

Keep this in mind when considering whether to use a null alt attribute or omit the
alt attribute. There is a difference in how some assistive technologies handle them.

Be advised that the longdesc attribute (see http://www.w3.org/TR/REC
-html40/struct/objects.html#adef-longdesc-IMG) will likely be cut from
HTML5.

In its place, either link to a page with a longer text alternative or provide
that content adjacent to the image, as described in “Getting Basic Ge-
oLocation Data” on page 149.

Using figcaption

In HTML5 an image may be enclosed in a figure element and the figcaption element
may provide the entire text alternative or may supplement the text alternative provided
in the image’s alt attribute.

Some assistive technologies completely ignore images with an empty alt attribute.

To make the image discoverable, omit the alt attribute if you do not plan to include a
value for it:

Writing Appropriate ALT Text Descriptions | 133

http://www.w3.org/TR/REC-html40/struct/objects.html#adef-longdesc-IMG
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-longdesc-IMG

<figure>

 <figcaption>
 Opening ceremony for the new library building at the state university.
 </figcaption>
</figure>

See Also
“HTML5: Techniques for providing useful text alternatives” at http://dev.w3.org/html5/
alt-techniques/.

Identifying Abbreviations and Acronyms

Problem
You want to identify to users what an abbreviation or an acronym represents.

Solution
Include the full expansion of the abbreviation in the page content.

Usually, one encloses the abbreviation in parentheses after the full expansion.

Include this at least the first time that the abbreviation appears on the page:

Web Content Accessibility Guidelines (WCAG) 2.0 was released as a World Wide Web Consortium (W3C) recommendation in December 2008.

Using abbr

Use the abbr element to programmatically associate the full expansion with the abbre-
viation. The abbr element is an inline element that can be used within block elements
or other inline elements.:

<p><abbr title="Web Content Accessibility Guidelines">WCAG</abbr> 2.0 was released as a <abbr title="World Wide Web Consortium">W3C</abbr> recommendation in December 2008.</p>

If the abbreviation is plural or possessive, ensure that the content within the abbr ele-
ment matches what is included in the title attribute as shown in Figure 7-1.

<p><abbr title="National Aeronautics and Space Administration">NASA</abbr>'s mission <abbr title="Space Transportation System">STS</abbr>−133 is the last flight scheduled for Space Shuttle Discovery.</p>

Figure 7-1. Abbreviations with a bottom border.

134 | Chapter 7: Accessibility

http://dev.w3.org/html5/alt-techniques/
http://dev.w3.org/html5/alt-techniques/

Discussion
The acronym element was deprecated in HTML5. This eliminated the XHTML quan-
dary of when it was appropriate to use the abbr or the acronym element.

Now the abbr element simply covers both.

Styling abbr

It’s recommended to style the abbr element so that sighted users have a visual cue that
there is additional content available to them.

The default styling for abbr in the Opera and Firefox browsers displays an underline,
a dotted bottom border, beneath the text.

You can add this effect in Safari, Chrome, and Internet Explorer 8 with a single line of
CSS.

abbr { border-bottom: 1px dotted black;}

Once user hovers their mouse over the abbreviation, most browsers display the full
expansion of the abbreviation.

Abbreviation vs. Acronym

An abbreviation is the shortened form of a word or phrase, such as CSS
or etc. An acronym is a type of abbreviation. It’s a new word that’s
formed from the initial letters of a series of words. You pronounce those
letters as a single word, such as NASA or NATO.

See Also
For IE8 and below, see the WHATWG Blog’s “Supporting New Elements in IE” work-
around at http://blog.whatwg.org/supporting-new-elements-in-ie.

Identifying Sections of a Page Using ARIA Landmark Roles

Problem
You need a way to distinguish common sections of web content.

Solution
Add ARIA “landmarks” to enhance recognition of HTML5 elements in assistive tech-
nology.

Identifying Sections of a Page Using ARIA Landmark Roles | 135

http://blog.whatwg.org/supporting-new-elements-in-ie

Since HTML5 is not supported by most assistive technology (as of the printing of this
book), you can add ARIA landmark roles to help provide meaning to these new HTML
elements.

The ARIA roles and HTML5 elements that are often associated together are listed be-
low.

These are not hard and fast rules, but helpful suggestions. Use your best judgment.

ARIA Roles

Add the banner role to the page header (logo, name, and other site-specific information).
Use this role once only per document or web application.

<header role="banner">

Add the complementary role to the aside element. Both are designed to markup content
that is somewhat related to the main content. Do not use this role or element for content
that is completely separate and unrelated.

<aside role="complementary">

Add the navigation role to each navigation element.

<nav role="navigation">

Add the form role to any form element, unless the form contains search functionality.

<form role="form">

Add the search role to a site’s search form.

<form role="search">

The contentinfo role identifies information about the page content, such as copyright
and privacy terms. Use this role once only per document or web application. If your
footer contains only this type of information, associate the role with the footer element.

<footer role="contentinfo">
 <p>Copyright 2011</p>
</footer>

If you have a “fat footer” with lots of other content or links, enclose the contentinfo
material in a container element (like a div or a p) and assign the contentinfo role to the
container.

<footer>
...
 <p role="contentInfo">Copyright 2011</p>
...
 </footer>

Roles for Web Apps

Some ARIA landmark roles such as application and main are unique and do not map
directly to specific HTML5 elements.

136 | Chapter 7: Accessibility

Add the application role to an HTML element that contains a web application instead
of normal web content.

Ensure that the HTML element associated with this role encompasses the entire web
application. This role may instruct assistive technology to enter a mode that is more
appropriate for interacting with web application functionality. You may add the docu
ment role to the page after the application to indicate where non-application web con-
tent resumes.

<div role="application">
...
</div>

Add the main role to an HTML element that contains the primary content of the docu-
ment such as article, div, etc.

<div role="main">

In the future, this solution might provide an alternative to “skip to main content” or
“skip navigation” links.

In other words, this role may provide a way for assistive technology users to jump
directly to the page’s primary content and avoid going through long lists of links and
content that are repeated on every page in the site.

If an article is the central content on a page, add the main role to the article element.

<article role="main">

Discussion
ARIA extends the accessibility of HTML.

Assistive technologies can use ARIA landmark roles to identify and navigate to sections
of content.

This may eventually replace the primitive “skip to main content” link technique used
on some sites. These roles help provide a more reliable and consistent user experience.

While you are allowed to have more than one nav element per page, only main blocks
of navigational links should be enclosed in a nav element. The footer element is an
example of where links may exist that do not need a nav element. The footer element
alone may be sufficient. Of course, if you create a “fat footer” like on the W3C site, it
would be appropriate to use the nav element in the footer.

For more information about “fat footer” design, see the UI Patterns web
site at http://ui-patterns.com/patterns/FatFooter.

Identifying Sections of a Page Using ARIA Landmark Roles | 137

http://ui-patterns.com/patterns/FatFooter

See Also
Summary of screen reader bugs with HTML5 elements combined with ARIA landmark
roles at http://www.accessibleculture.org/research/html5-aria; workarounds for some
assistive technology bugs at http://www.accessibleculture.org/blog/2010/11/html5-plus
-aria-sanity-check/.

Creating More Accessible Navigation Links

Problem
You want to markup your navigational links in a way that will benefit the most users.

Solution
Enclose the list of navigational links inside the HTML5 nav element.

Use an unordered list for the links if they can be visited in any order:

<nav role="navigation">

 Home
 About
 Blog
 Portfolio

</nav>

If the sequence of the links is important, use an ordered list to markup the navigational
links:

<nav role="navigation">

 Chapter 1
 Chapter 2
 Chapter 3

</nav>

Next, add a “skip navigation” link:

<div id="offscreen">Skip to the main content</div>
...
<nav role="navigation">

 Home
 About
 Blog
 Portfolio

</nav>
...

138 | Chapter 7: Accessibility

http://www.accessibleculture.org/research/html5-aria
http://www.accessibleculture.org/blog/2010/11/html5-plus-aria-sanity-check/
http://www.accessibleculture.org/blog/2010/11/html5-plus-aria-sanity-check/

<article id="maincontent" role="main">
...

This link may be placed before the navigation or closer to the top of the page, depending
on how much content appears before the navigation. Its purpose is to provide keyboard
and assistive technology users a way to go directly to the main content on the page.

Discussion
A list, whether unordered or ordered, is generally considered the most appropriate
HTML element to use for groups of navigational links ever since Christopher Schmitt
first did it (see http://www.alistapart.com/articles/practicalcss/).

This markup can convey to assistive technology users how many navigational items are
in the list and how far down the list the user is.

In the future, you might not need to add an ARIA role or skip links.

The user agent and assistive technology should recognize each section element and
allow users to jump between page sections. In that future, all you would need is this:

<nav role="navigation">

 Home
 About
 Blog
 Portfolio

</nav>
...
<article>

Purpose of Skipping Links

The skip links prevent users from repeatedly going through the content and links that
are listed on every page of a site. This is a critical addition to sites with long lists of
links, such as news or ecommerce sites.

The easiest way to add a skip link is to add an anchor text link. The exact location on
the screen doesn’t matter, as long as the link is the first element in the page’s tab order
and that the link anchor is placed where the main content of the page begins.

Hiding Skip to Main Content Links

If you need to “hide” the skip link from sighted users, use CSS to position the text off
the screen. Before you do this, consider that sighted keyboard users may be confused
because the text for the link will not be visible but the user will be able to tab to the link.

.offscreen {
 left: −9999em;
 position: absolute;
 top: auto;

Creating More Accessible Navigation Links | 139

http://www.alistapart.com/articles/practicalcss/

 overflow: hidden;
 width: 1px;
 height: 1px;
}

Avoid using display:none for hiding skip links as screen readers might
ignore the link altogether.

Instead of hiding the skip link, consider using CSS to stylize the link to match your
design.

See Also
• “Identifying Sections of a Page Using ARIA Landmark Roles” on page 135 for

identifying sections of a page using ARIA Landmark roles.

• Article on using “skip navigation” links at http://webaim.org/techniques/skipnav/.

Associating Form Fields with their Labels

Problem
You need to identify the text label associated with each form field.

Solution
Use the label element to programmatically associate text with its form field. The value
of the label’s for attribute must match the value of the form field’s id attribute. This
id value must be unique on each page:

<label for="fName">First Name</label>
<input type="text" id="fname">

Do not include label elements for form fields of the type “hidden.”

Multiple labels

Add the ARIA labeledby or describedby attributes if the form field needs multiple labels
or descriptions for it to make sense. Both of these attributes can accept references to
multiple values. Add a space between each value:

<form>
 <fieldset>
 <legend>Account Logout</legend>
 Automatically log out after
 <input id="autoLogout" type="text" value="30" aria-labelledby="labelAutoLogout autoLogout labelAutoLogoutTime" aria-describedby="autoLogoutDesc">

140 | Chapter 7: Accessibility

http://webaim.org/techniques/skipnav/

 minutes of inactivity
 <p id="autoLogoutDesc">Allows you to customize the timeout period for each of your accounts.</p>
 </fieldset>
</form>

Discussion
The label element provides a caption for the associated form field. The label element
is best for simple forms. ARIA is best suited for form fields that need multiple labels or
whenever the label element isn’t an option.

Keep in mind that a main difference between aria-labelledby and aria-describedby is
that labels are intended to be concise while descriptions may be wordier and include
more detail.

See Also
HTML5 label specification at http://dev.w3.org/html5/markup/label.html.

Grouping Form Fields Logically

Problem
You need to group related fields within a form.

Solution
Add the fieldset element around each group of related form fields. Add a legend as
the first element within the fieldset. The legend represents a caption or title for the
group of fields:

<form>
 <fieldset>
 <legend>Movie Rating</legend>
 <p><input type="radio" name="rating" id="rating1'>
 <label for="rating1">Excellent</label></p>
 <p><input type="radio" name="rating" id="rating2">
 <label for="rating2">Good</label></p>
 <p><input type="radio" name="rating" id="rating3">
 <label for="rating3">Fair</label></p>
 <p><input type="radio" name="rating" id="rating4">
 <label for="rating4">Poor</label></p>
 </fieldset>
</form>

Also, do your best to keep the legend text brief.

Grouping Form Fields Logically | 141

http://dev.w3.org/html5/markup/label.html

Some assistive technologies announce the legend before the label for
every field in the fieldset. That could get quite repetitive.

Discussion
Using the fieldset element to organize form fields helps users understand the purpose
of the form and what’s related, as shown in Figure 7-2. A fieldset may also be used to
group sets of radio buttons or checkboxes.

The legend and fieldset can both be styled using CSS. By default, most browsers dis-
play a solid one-pixel border around the fieldset and the legend appears in the upper
left of the container, overlaying the border.

Another benefit of grouping the form fields using the fieldset element is that the flow,
or ordering, of the form should make sense to keyboard users.

Unless you do something like modify the tabindex values, the tab order of a form usually
follows the order that the fields appear in the source code.

The field order used to be more of a problem when tables were used for form layout.
The use of CSS for layout has greatly mitigated this problem because the fields can be
listed in a logical order in the source code and then positioned on the screen, inde-
pendent of the code order.

See Also
• “Making Elements Focusable with Tabindex” at http://snook.ca/archives/accessibil

ity_and_usability/elements_focusable_with_tabindex.

• HTML5 fieldset specification at http://dev.w3.org/html5/markup/fieldset.html.

Figure 7-2. The default appearance of fieldset and legend in Opera 11.

142 | Chapter 7: Accessibility

http://snook.ca/archives/accessibility_and_usability/elements_focusable_with_tabindex
http://snook.ca/archives/accessibility_and_usability/elements_focusable_with_tabindex
http://dev.w3.org/html5/markup/fieldset.html

Enabling a fieldset Dynamically

Problem
You want to disable the fields in a fieldset and dynamically enable them when some
other condition is met, such as the user selecting a radio button or checkbox.

Solution
Add the fieldset and legend elements around a group of related form fields that will
be hidden.

Add the disabled attribute on the two nested fieldset elements. Add an onchange event
to each radio button to trigger the change.

<form>
 <fieldset>
 <legend>Store Credit Card</legend>
 <p><label>Name displayed on your card:<input name="fullName" required></label></p>
 <fieldset name="accountNum" disabled>
 <legend>
 <label>
 <input type="radio" name="accountType" onchange="form.accountNum.disabled = !checked; form.accountLetters.disabled=checked">My account is a 12 digit number
 </label>
 </legend>
 <p><label>Store card number: <input name="cardNum" required></label></p>
 </fieldset>
 <fieldset name="accountLetters" disabled>
 <legend>
 <label>
 <input type="radio" name="accountType" onchange="form.accountLetters.disabled = !checked; form.accountNum.disabled=checked">My account includes letters and numbers
 </label>
 </legend>
 <p><label>Store card code: <input name="cardLetters"></label></p>
 </fieldset>
 </fieldset>
</form>

If the radio button is not selected, everything inside the nested fieldset will be disabled.

Selecting a radio button removes the disabled attribute on that fieldset to make the
associated input field editable and adds the disabled attribute to the fieldset associ-
ated with the other radio button.

Note that fieldsets can be nested.

Enabling a fieldset Dynamically | 143

Discussion
While there are other ways to dynamically enable form fields, this method is one future
possibility that takes advantage of the new disabled attribute added for fieldsets in
HTML5.

Depending on how user agents support the disabled attribute, you may need to add
scripts that dynamically set the disabled attribute on the fieldset instead of hard cod-
ing the attribute.

See Also
The W3C's HTML5 Edition for Web Authors draft on forms at

http://dev.w3.org/html5/spec-author-view/forms.html.

Identifying Required Form Fields

Problem
You want to indicate to users visually and programmatically which form fields are
required.

Solution
If every field is required, include text instructions at the top of the form informing users
that everything’s required. This works fine if the form is short.

Write Out Required

If you need to accommodate internationalization (IL8N) or users with low vision, place
the label on a separate line. Include “(Required)” within each label element for required
fields:

<p><label for="fName">First Name (Required)</label></p>
<p><input type="text" id="fname"></p>

If the design dictates that the label and field must be on the same line, add an image
icon within the label element. Set the value of the image alt attribute as “Required”:

<label for="fName">

 First Name
</label>
<input type="text" id="fname">

144 | Chapter 7: Accessibility

http://dev.w3.org/html5/spec-author-view/forms.html

Using ARIA

If the design dictates that the label and field must be on the same line, add an image
icon within the label element.

Set the value of the image alt attribute as “Required.” Set the value of the image role
attribute as “presentation.” Add the aria-required=“true” attribute to the input field.

Newer assistive technology that supports ARIA ignores the image icon because ele-
ments with the presentation role are intentionally ignored by (and not mapped to)
accessibility APIs.

However, the newer assistive technology should recognize the aria-required attribute
and announce that the field is required. This solution also works for older assistive
technology that does not support ARIA because it ignores all of the ARIA attributes,
and instead provide the alt attribute of “Required” on the icon image. The required
icon images can be left aligned to make visual scanning easier for sighted users:

<label for="fName">

 First Name
</label>
<input type="text" id="fname" aria-required="true">

Discussion
It may take a while until browsers and assistive technologies support the HTML5
required attribute on the input element.

The meaning of the strong element is changing in HTML5, though not substantially.
It would still be appropriate to use it around the asterisk that represents a required field
because typically required fields must contain values before the user proceeds.

The required attribute

What you probably wanted to see was the HTML5 required attribute on the input
element. It may take a while until browsers and assistive technologies support this. For
sighted users, you could use CSS to style the appearance of the field or you could add
a styled asterisk so they can visually scan the screen for required fields:

<label for="fName">
 *
 First Name
</label>
<input type="text" id="fname" required>Discussion

See Also
• “ARIA and Progressive Enhancement” by Derek Featherstone at http://www.alis

tapart.com/articles/aria-and-progressive-enhancement.

Identifying Required Form Fields | 145

http://www.alistapart.com/articles/aria-and-progressive-enhancement
http://www.alistapart.com/articles/aria-and-progressive-enhancement

• “Future Web Accessibility: HTML5 input Extensions” at http://webaim.org/blog/
future-web-accessibility-html5-input-extensions.

Using ARIA Live Regions to Announce When Dynamic Content
Is Updating

Problem
You want to notify users when parts of the web page that do not have focus, but are
dynamically updating.

Solution
First, assign the aria-live attribute to the HTML element where a content change or
update may occur and decide the urgency of communicating the update.

Then, select a standard live region role. Assign the role to the parent HTML element
that contains the content that may change. If the default behaviors for the role are
appropriate, you won’t need to specify attributes.

<div role="alert">

The standard live regions roles include:

alert
Use it for a single, time-sensitive notification. It will be handled as an assertive live
region and the update will appear immediately. An alert cannot receive focus, and
therefore, cannot be closed by the user.

alertdialog
This type of alert message can receive focus. When the alert appears, you must
automatically set focus on an active element in the alert dialog, such as an “OK”
button. Include the aria-describedby attribute on that active element to point to
the message in the dialog.

log
Use it for things like message history or error logs. New information is added to
the end of the log and the oldest information may disappear.

marquee
Use it for things like stock tickers or ad banners. This is similar to a log because
information may change frequently.

status
Use it for a minor notification that does not warrant use of an alert. It will be
handled as an assertive live region. A status should not receive focus. If a different

146 | Chapter 7: Accessibility

http://webaim.org/blog/future-web-accessibility-html5-input-extensions
http://webaim.org/blog/future-web-accessibility-html5-input-extensions

part of the page drives the status changes, use the aria-controls attribute to identify
the relationship.

timer
Use it to display time elapsed or remaining. Update the timer at fixed intervals
unless the timer is paused or reached the end of its count.

If you need something other than the standard ARIA live region roles and behaviors,
you can create a custom live region.

Custom Live Regions

First, identify where a content change or update may occur and decide how urgently
the update needs to be communicated.

Next, assign the aria-live attribute to the parent HTML element that contains the
content that may change. The value for the aria-live attribute will reflect how quickly
the update will be communicated to users. The available values are:

• aria-live=“off” where the update is not announced

• aria-live=“polite” where the update is announced when the user is idle or finishes
with their current activity

• aria-live=“assertive” where the update is announced as soon as possible, even if
it means interrupting the user’s current task

Avoid using aria-live=“assertive” unless it’s critical to communicate the change im-
mediately. Users may consider the disruption jarring and rude.

<div aria-live="polite">

Then, decide how much context is required for the user to understand the update. If
the entire live region must be presented for the change to make sense, assign the aria-
atomic attribute with the value of true to the HTML element.

Repeating unchanged information may become redundant or make it harder to distin-
guish what portion changed. If you want to communicate only the change and that
change makes sense on its own, assign the aria-atomic attribute with the value of
false to the HTML element.

<div aria-live="polite" aria-atomic="false">

Finally, identify the type of update. Assign the relevant attribute to the HTML element.
The types of update are:

• relevant=“additions” where new nodes are added to the DOM

• relevant=“removals” where nodes are removed from the DOM

• relevant=“text” where changes occur to the text within existing nodes

Using ARIA Live Regions to Announce When Dynamic Content Is Updating | 147

You may assign multiple values to the relevant attribute by adding a space between
values. In fact, the default behavior should be relevant=“additions text”. This reflects
the most common type of changes.

<div aria-live="polite" aria-atomic="false" relevant="additions removals text">

Discussion
ARIA Live Regions provides a standardized way to alert assistive technology that a
DOM change has occurred and how to handle the change.

You may also prevent updates from being announced until all of the changes in a live
region finish updating by changing the live region’s state. This is done by dynamically
setting the attribute state aria-busy=“true” and then clearing it when the updates are
ready to be announced. This might be useful when multiple updates in a live region
need to be announced together to make sense.

See Also
• The WAI-ARIA 1.0 Roles Model at http://www.w3.org/WAI/PF/aria/roles

• ARIA Live Regions test examples: http://test.cita.illinois.edu/aria/live/live1.php

• The Juicy Studio Accessibility toolbar for Firefox to examine ARIA live regions:
https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/

148 | Chapter 7: Accessibility

http://www.w3.org/WAI/PF/aria/roles
http://test.cita.illinois.edu/aria/live/live1.php
https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/

CHAPTER 8

GeoLocation

Christopher Deutsch and Marc Grabanski

Introduction
The HTML5 specification includes a new Geolocation API, which allows for scripted
access to geographical location information associated with the a device's browser.
We're going to cover how to access this API and then dive into some examples of what
you can do with this data using Google Maps and other 3rd party libraries like Sim-
pleGeo.

All of the examples in this chapter use jQuery (see http://jquery.com/), which can easily
be included using a script tag in one of two ways.

There is no need to download the jquery.js file, your web page can use the version
hosted on Google's Content DeliveryNetwork (CDN):

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.5.2/jquery.js"></script>

Just in case a call to the file across the Internet isn’t available, a fallback to a local copy
of the jQuery file can come right afterwards in a second script element that checks for
the previous copy’s successful inclusion:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.5.1/jquery.js"></script>
<script>window.jQuery || document.write("<script src='js/libs/jquery-1.5.2.min.js'>\x3C/script>")</script>

Getting Basic GeoLocation Data

Problem
You want to find the location of the user’s Internet device.

149

http://jquery.com/

Solution
Use the new HTML5 GeoLocation API to get the user's location when they click a
button and output the values to the web page as shown in Figure 8-1.

Start by adding an input button to the page.

<input type="button" id="go"
 value="Click Me To View Your Location" />

Next add the following JavaScript to handle the button's click event, access the Geo-
location API, and output the results.

<script>
$(document).ready(function () {
 //wire up button click.
 $('#go').click(function () {
 //test for pressence of geolocation.
 if (navigator && navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(geo_success, geo_error);
 } else {
 error('GeoLocation is not supported.');
 }
 });
});

function geo_success(position) {
 printLatLong(position.coords.latitude, position.coords.longitude);
}

// The PositionError object returned contains the following attributes:
// code: a numeric response code.
// PERMISSION_DENIED = 1
// POSITION_UNAVAILABLE = 2
// TIMEOUT = 3
//message: Primarily for debugging. It's recommended not to show this error to users.
function geo_error(err) {
 if (err.code == 1) {
 error('The user denied the request for location information.')
 } else if (err.code == 2) {
 error('Your location information is unavailable.')
 } else if (err.code == 3) {
 error('The request to get your location timed out.')
 } else {
 error('An unknown error occurred while requesting your location.')

Figure 8-1. The latitude and longitude coordinates determined natively through the browser.

150 | Chapter 8: GeoLocation

 }
}

//output lat and long .
function printLatLong(lat, long) {
 $('body').append('<p>Lat: ' + lat + '</p>');
 $('body').append('<p>Long: ' + long + '</p>');
}

function error(msg) {
 alert(msg);
}
</script>

Discussion
The navigator object gives us access to the new geolocation object. The geolocation
object has the following methods:

• getCurrentPosition returns the user's current position.

• watchPosition returns the user's current position, but also continues to monitor
the position and invoke the appropriate callback every time the position changes.

• clearWatch this method ends the watchPosition method's monitoring of the current
position.

When determining the location of the Internet device, first check that the user's browser
supports the GeoLocation feature natively. If it does, call the getCurrentPosition
method:

if (navigator && navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(geo_success, geo_error);
 } else {
 error('GeoLocation is not supported.');
 }

Since this method executes asynchronously, pass it two callback functions: geo_suc
cess and geo_error. The error callback is passed a position error object that contains
a code and a message property. The code can be one of the following:

• 0 - Unknown

• 1 - Permission Denied

• 2 - Position Unavailable

• 3 - Timeout

The success callback is passed a position object that contains a coordinates object and
a timestamp. The coordinates object contains the following:

• latitude, which is specified in decimal degrees.

• longitude, which is specified in decimal degrees.

Getting Basic GeoLocation Data | 151

• altitude, which is specified in meters above the ellipsoid.

• accuracy, which is specified in meters.

• altitudeAccuracy, which is specified in meters.

• heading, which is direction of travel specified in degrees.

• speed, which is specified in meters per second.

Of those 7, only 3 are guaranteed to be there: latitude, longitude, and accuracy.

For the Solution, take the latitude and longitude and append them to the body of our
web page using jQuery:

function printLatLong(lat, long) {
 $('body').append('<p>Lat: ' + lat + '</p>');
 $('body').append('<p>Long: ' + long + '</p>');
}

See Also
W3C Geolocation Specification at http://dev.w3.org/geo/api/spec-source.html.

Basic GeoLocation Data with Fallback

Problem
You want to determine a user’s Internet location when a browser does not support the
HTML5 GeoLocation API natively.

Solution
Perform an IP to Location lookup as a fallback. It’s certainly not as accurate as latitude
and longitude coordinates, but it’s far better than not having any location data at all.

Google vs MaxMind

Google offers the google.loader.ClientLocation object in its Google Maps API v3 li-
brary, but it does not work for many U.S. IP addresses.

The MaxMind GeoIP JavaScript Web Service seems more accurate and up to date. Also,
it's free as long as you link back to the http://www.maxmind.com. web site. Alternatively
they offer a JavaScript attribution-free license that can be purchased for $250/year.

Coding the Solution

Modify our previous example to use MaxMind as a fallback.

Start by adding the JavaScript library to the page:

152 | Chapter 8: GeoLocation

http://dev.w3.org/geo/api/spec-source.html
http://www.maxmind.com

<script src="http://j.maxmind.com/app/geoip.js"></script>

Now let's modify the previous example to fallback to MaxMind:

$(document).ready(function () {
 //wire up button click.
 $('#go').click(function () {
 //test for pressence of geolocation.
 if (navigator && navigator.geolocation) {
 //make the request for the user's position.
 navigator.geolocation.getCurrentPosition(geo_success, geo_error);
 } else {
 //use MaxMind IP to location API fallback.
 printLatLong(geoip_latitude(), geoip_longitude(), true);
 }
 });
});

//output lat and long .
function printLatLong(latitude, longitude, isMaxMind) {
 $('body').append('<p>Lat: ' + latitude + '</p>');
 $('body').append('<p>Long: ' + longitude + '</p>');
 //if we used MaxMind for location add attribution link.
 if (isMaxMind) {
 $('body').append('<p>IP to Location Service Provided by MaxMind</p>');
 }
}

function geo_error(err) {
 //instead of displaying an error, fallback to MaxMind IP to location library.
 printLatLong(geoip_latitude(), geoip_longitude(), true);
}

Discussion
Instead of showing an error if navigator or navigator.geolocation are undefined, use
the geoip_latitude()and geoip_longitude() functions that the MaxMind JavaScript
library provides us to retrieve the user's latitude and longitude.

Looking at the source of the MaxMind geoip.js file, they've already translated your IP
address into location data. MaxMind creates a dynamic JavaScript file by reading the
IP address that made the HTTP request and doing the IP to Location translation server
side and then outputting the results.

In addition to latitude and longitude, the following location data is available as shown
in Table 8-1:

Table 8-1. Location data examples from MaxMind geoip.js

Method Description Example Data

geoip_country_code() Country Code US

geoip_country_name() Country Name United States

Basic GeoLocation Data with Fallback | 153

Method Description Example Data

geoip_city() City Minneapolis

geoip_region_name() Region MN

geoip_region_name() Region Name Minnesota

geoip_postal_code() Postal Code 55401

geoip_area_code() Telephone Area Code 612

geoip_metro_code() Metro Code 613

When calling printLatLong using MaxMind, pass in an extra true parameter.

The free version of MaxMind requires attribution in the form of a link back to their
site, so the isMaxMind parameter has been added to the printLatLong function to in-
dicate that MaxMind was used to get the Location:

function printLatLong(latitude, longitude, isMaxMind) {
 $('body').append('<p>Lat: ' + latitude + '</p>');
 $('body').append('<p>Long: ' + longitude + '</p>');
 //if we used MaxMind for location add attribution link.
 if (isMaxMind) {
 $('body').append('<p>IP to Location Service Provided by MaxMind</p>');
 }
}

Another scenario to be mindful of is if the user denies our request for location infor-
mation or something else goes wrong. That's why the geo_error() handler is changed
to also fallback to using IP to Location.

Because we’ve added MaxMind as a fallback, the solution is able to handle a larger
percentage of browsers and devices without having to rely on native GeoLocation sup-
port in the browser.

See Also
MaxMind provides free/open source Geolocation solutions for city, country, and IP
lookups at http://www.maxmind.com/app/ip-location.

Reverse Geocoding an Address with Latitude and Longitude

Problem
You want to convert latitude and longitude coordinates into a human-friendly address.

154 | Chapter 8: GeoLocation

http://www.maxmind.com/app/ip-location

Solution
Use the Google Maps JavaScript API to turn latitude and longitude into an address as
shown in Figure 8-2.

The process of turning geographic data like street address and zip code into geographic
coordinates such as latitude and longitude is called geocoding (we’ll get to this in the
next recipe). Doing the opposite, turning coordinates into an address, is called reverse
geocoding.

Begin by adding the needed scripts to our web page:

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.js"></script>
<script src="http://j.maxmind.com/app/geoip.js"></script>
<script src="http://maps.google.com/maps/api/js?sensor=false"></script>

Add a button to trigger getting the user's coordinates and looking up the address:

<input type="button" id="go" value="Click Me To Find Your Address" />

Next add the JavaScript to handle the button click and getCurrentPosition success
callback:

$(document).ready(function () {

 //wire up button click.
 $('#go').click(function () {
 //test for pressence of geolocation.
 if (navigator && navigator.geolocation) {
 //make the request for the user's position.
 navigator.geolocation.getCurrentPosition(geo_success, geo_error);
 } else {
 //use MaxMind IP to location API fallback.
 printAddress(geoip_latitude(), geoip_longitude(), true);
 }
 });

function geo_success(position) {
 printAddress(position.coords.latitude, position.coords.longitude);
}

function geo_error(err) {

Figure 8-2. Determining a user’s address.

Reverse Geocoding an Address with Latitude and Longitude | 155

 //instead of displaying an error, fallback to MaxMind IP to location library.
 printAddress(geoip_latitude(), geoip_longitude(), true);
}

////use google maps API to revers Geocode our location.
function printAddress(latitude, longitude, isMaxMind) {
 //setup the Geocoder object.
 var geocoder = new google.maps.Geocoder();

 //turn coordicates into an object.
 var yourLocation = new google.maps.LatLng(latitude, longitude);

 //find out info about our location.
 geocoder.geocode({ 'latLng': yourLocation }, function (results, status) {
 if (status == google.maps.GeocoderStatus.OK) {
 if (results[0]) {
 $('body').append('<p>Your Address:
' + results[0].formatted_address + '</p>');
 } else {
 error('Google did not return any results.');
 }
 } else {
 error("Reverse Geocoding failed due to: " + status);
 }
 });

 //if we used MaxMind for location add attribution link.
 if (isMaxMind) {
 $('body').append('<p>IP to Location Service Provided by MaxMind</p>');
 }
}

function error(msg) {
 alert(msg);
}

Discussion
Get the coordinates from getCurrentPosition and pass them to a printAddress func-
tion, which uses the Google Maps API to do the reverse geocoding.

The printAddress function begins by creating a new Google Geocoder object. The Geo
coder object gives us access to the geocode method, which can take in a variety of options
and return information based on them.

In our case, use the google.maps.LatLng method to create a new Google LatLng object
that is passed into geocode in order to get the address. The geocode method is asyn-
chronous just like getCurrentPosition, so define an inline JavaScript function to handle
the callback.

The callback's response contains two parameters, one for the results and the other for
the status code. If the status is Ok then it's safe to parse the array of GeocoderResults

156 | Chapter 8: GeoLocation

objects stored in the results variable. The results variable is an array since Geocoder
may return more than one entry.

Next, check for a GeocoderResults object in the first position of the array and, if it exists,
append the formatted_address property to the web page's body.

See Also
More information about reverse geocoding, see http://code.google.com/apis/maps/docu
mentation/javascript/services.html#ReverseGeocoding.

Convert an Address into Latitude and Longitude

Problem
You want to turn an address into latitude and longitude coordinates.

Solution
Use the Google Maps JavaScript API V3 to turn an address into latitude and longitude
as shown in Figure 8-3. This is called geocoding.

Include jQuery and Google Maps JavaScript API V3 in the Web page:

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.js"></script>
<script src="http://maps.google.com/maps/api/js?sensor=false"></script>

The HTML5 GeoLocation API can only return the user's location in coordinates so let
the user enter their address via an input text field:

<div>
 <label for="address">Enter an Address:</label>
 <input type="text" id="address" />
</div>
<div>
 <input type="button" id="go" value="Click Me To Find Latitude And Longitude" />
</div>

Figure 8-3. Determining an address based on human-friendly address

Convert an Address into Latitude and Longitude | 157

http://code.google.com/apis/maps/documentation/javascript/services.html#ReverseGeocoding
http://code.google.com/apis/maps/documentation/javascript/services.html#ReverseGeocoding

The JavaScript below handles the button click, reading the input from the user, and
calls the Google API to geocode the address:

$(document).ready(function () {

 //wire up button click.
 $('#go').click(function () {
 //get the address the user entered.
 var address = $('#address').val();
 if (address) {
 ////use google maps API to Geocode the address.
 //setup the Geocoder object.
 var geocoder = new google.maps.Geocoder();
 //return the coordinates.
 geocoder.geocode({ 'address': address }, function (results, status) {
 if (status == google.maps.GeocoderStatus.OK) {
 if (results[0]) {
 //print results
 printLatLong(results[0].geometry.location.lat(), results[0].geometry.location.lng());
 } else {
 error('Google did not return any results.');
 }

 } else {
 error("Reverse Geocoding failed due to: " + status);
 }
 });
 }
 else {
 error('Please enter an address');
 }
 });

});

//output lat and long .
function printLatLong(lat, long) {
 $('body').append('<p>Lat: ' + lat + '</p>');
 $('body').append('<p>Long: ' + long + '</p>');
}

function error(msg) {
 alert(msg);
}

Discussion
When the user clicks the button, use jQuery to read the value and validate it's not blank.

Next, create an instance of the Geocoder object. In order to do so call the geocode
method, but pass an address option instead of latitude and longitude:

//setup the Geocoder object.
var geocoder = new google.maps.Geocoder();

158 | Chapter 8: GeoLocation

//return the coordinates.
geocoder.geocode({ 'address': address }, function (results, status) {
...

Then access the geometry property of the GeocoderResults object. The geometry prop-
erty contains a location property that can then be used to call the lat and lng methods
to get our address's coordinates, which then is appended to the web page body in our
printLatLong function:

//print results
printLatLong(results[0].geometry.location.lat(), results[0].geometry.location.lng());

See Also
More information about geocoding, see http://code.google.com/apis/maps/documenta
tion/geocoding/.

Directions From Current Location

Problem
You want to get directions from the user’s current location to a specific address.

Solution
Use the Google Maps API to display the route the same way the Google Maps website
would, and give the user the option to output the distance in miles or kilometers as
shown in Figure 8-4.

Use the jQuery and Google Maps JavaScript API V3 libraries:

Figure 8-4. Determining the directions from a location.

Directions From Current Location | 159

http://code.google.com/apis/maps/documentation/geocoding/
http://code.google.com/apis/maps/documentation/geocoding/

<script src="http://maps.google.com/maps/api/js?sensor=false"></script>
<script src="http://j.maxmind.com/app/geoip.js"></script>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.js"></script>

The HTML is similar to the geocoding example with the addition of a dropdown box
to select miles or kilometers, and instead of appending our results to the page body,
we’ll add a div to hold the calculated distance and a div to hold the Google Map:

<div class="field">
 <label for="address">Enter a Destination Address:</label>
 <input type="text" id="address" />
</div>

<div class="field">
 <label for="units">Units:</label>
 <select id="units">
 <option value="IMPERIAL">Miles</option>
 <option value="METRIC">Kilometers</option>
 </select>
</div>

<div>
 <input type="button" id="go" value="Get Directions" />
</div>

<div id="distance"></div>

<div id="map"></div>

The JavaScript below does the following:

• Display a map of the United States on page load.

• Handle the button click.

• Get the user's current location.

• Read the address input.

• Pass the current location and address to the Google API to get the driving distance
between the two locations.

• Update the Google Map with the suggested driving route.

//google maps globals:
var directionRenderer;
var directionsService = new google.maps.DirectionsService();
var map;

$(document).ready(function () {

 ////setup map starting point for Google Maps
 //set initial coords to latitude −92 and longitude 32 which is somewhere around Kansas City in the center of the US,
 // and then set the zoom to 4 so the entire US is visible and centered.
 var kansas = new google.maps.LatLng(32, −92);
 var myOptions = {
 zoom: 4,
 mapTypeId: google.maps.MapTypeId.ROADMAP,

160 | Chapter 8: GeoLocation

 center: kansas
 }
 map = new google.maps.Map(document.getElementById("map"), myOptions);
 directionsRenderer = new google.maps.DirectionsRenderer();
 directionsRenderer.setMap(map);

 //wire up button click.
 $('#go').click(function () {
 //use our new getLatLng with fallback and define an inline function to handle the callback.
 getLatLng(function (latitude, longitude, isMaxMind) {
 //set the starting point.
 var start = new google.maps.LatLng(latitude, longitude);

 //get the address the user entered.
 var address = $('#address').val();
 if (address) {
 //set end point.
 var end = $('#address').val();

 //set the request options:
 var request = {
 origin: start,
 destination: end,
 travelMode: google.maps.DirectionsTravelMode.DRIVING
 };

 //make the directions request.
 directionsService.route(request, function (result, status) {
 if (status == google.maps.DirectionsStatus.OK) {

 //display the directions using Google's Directions Renderer
 directionsRenderer.setDirections(result);

 ////output total distance seperately.
 var distance = getTotalDistance(result);
 //output either miles or km
 var units = $('#units').val();
 if (units == 'IMPERIAL') {
 $('#distance').html('Total Distance: ' + metersToMiles(distance) + ' miles');
 } else {
 $('#distance').html('Total Distance: ' + metersToKilometers(distance) + ' km');
 }

 } else {
 error("Directions failed due to: " + status);
 }
 });

 }
 else {
 error('Please enter an address');
 }

 //if we used MaxMind for location add attribution link.
 if (isMaxMind) {

Directions From Current Location | 161

 $('body').append('<p>IP to Location Service Provided by MaxMind</p>');
 }
 });
 });

});

function getLatLng(callback) {
 //test for pressence of geolocation.
 if (navigator && navigator.geolocation) {
 //make the request for the user's position.
 navigator.geolocation.getCurrentPosition(function (position) {
 //success handler
 callback(position.coords.latitude, position.coords.longitude);
 },
 function (err) {
 //hanlde the error by passing the callback the location from MaxMind.
 callback(geoip_latitude(), geoip_longitude(), true);
 });
 } else {
 //gelocation not available so pass the callback the location from MaxMind.
 callback(geoip_latitude(), geoip_longitude(), true);
 }
}

//returns total distance in meters.
function getTotalDistance(result) {
 var meters = 0;
 var route = result.routes[0];
 for (ii = 0; ii < route.legs.length; ii++) {
 //google stores distance value in meters.
 meters += route.legs[ii].distance.value;
 }
 return meters;
}

function metersToKilometers(meters) {
 return Math.round(meters / 1000);
}

function metersToMiles(meters) {
 //1 Mile = 1609.344 Meters
 return Math.round(meters / 1609.344);
}

function error(msg) {
 alert(msg);
}

Discussion
To build out the solution, start by defining three global variables that are used to com-
municate with the Google API and to update our #map div.

162 | Chapter 8: GeoLocation

When the document loads, set the map of the U.S. to be displayed. The Google Map
object represents a map on your web page (you can have more than one).

Create a Map object by calling new google.maps.Map(document.getElementById("map"),
myOptions), and passing in the HTML element where we want to display the map and
a Map options object.

There are many options that can be set, but the three used for this Solution are zoom,
mapTypeId, and center. The options are fairly descriptive as to their purpose. Set zoom
to 4 to allow the user to see the entire U.S. For the mapTypeId, use ROADMAP, which displays
the normal, default 2D tiles of Google Maps. The other options are SATELLITE,
HYBRID, and TERRAIN. The center option indicates the location that is displayed in the
center of the map.

The latitude and longitude of Kansas, which is a central location in the U.S., are hard-
coded to create a LatLng object that can be used to set the center parameter. When the
Map object is created using the new keyword it, automatically updates our map div.

The next line, directionsRenderer = new google.maps.DirectionsRenderer(); creates
a new DirectionsRenderer object that can automatically update Maps for us. The line
directionsRenderer.setMap(map); doesn't do anything yet, but it tells user to enter an
address and click the button.

In this example, re-factored logic does a GeoLocation fallback in order to be a little
more compact and re-usable:

function getLatLng(callback) {
 //test for pressence of geolocation.
 if (navigator && navigator.geolocation) {
 //make the request for the user's position.
 navigator.geolocation.getCurrentPosition(function (position) {
 //success handler
 callback(position.coords.latitude, position.coords.longitude);
 },
 function (err) {
 //hanlde the error by passing the callback the location from MaxMind.
 callback(geoip_latitude(), geoip_longitude(), true);
 });
 } else {
 //gelocation not available so pass the callback the location from MaxMind.
 callback(geoip_latitude(), geoip_longitude(), true);
 }
}

The function takes a single callback parameter that returns the latitude, longitude,
and isMaxMind variables.

Check for the existence of navigator.geolocation just like before, but this time define
the navigator.geolocation callback handlers inline to call our common callback func-
tion. That returns either the results of getCurrentPosition or the MaxMind latitude
and longitude.

Directions From Current Location | 163

For the button click handler in the main example, start off by using the new get
LatLng function to collect the user's current location, which then is used to create a new
LatLng object and store it in the start variable.

Next, collect the address and store the text as a string in the end variable.

To get the directions, use the DirectionsService object that was created and stored into
the global variable directionsService. The route method of the DirectionsService ob-
ject takes a DirectionsRequest object parameter and a callback method. The Direc
tionsRequest object supports many options, but the Solution only needs to set the
origin, destination, and travelMode options.

We could make an API request to geocode the address and get its co-
ordinates, but the Google API handles that automatically in the next
step.

The origin and destination options can be either strings like the end variable or the
LatLng values. For the travelMode option, set it to DRIVING. (The other options are
WALKING or BICYCLING.)

The route method executes asynchronously, so define a callback function that is passed
a DirectionsResult object and a status code. Check the status variable to make sure
the route method finished successfully and then pass the result object to the Direc
tionsRenderer object that updates the map with a highlighted driving route between
our start and end locations.

To give you an idea of what is contained in the result variable, pass it to the getTotal
Distance function, which is responsible for totaling the distance of the driving route.
The result object contains a routes property, which is an array of DirectionsRoute
objects. Each route indicates a way to get from the start to the end location. Usually
only one route is returned unless you set the provideRouteAlternatives option to true.

Our getTotalDistance function only looks at the first route. Each DirectionsRoute ob-
ject contains multiple properties, but the property needed is legs, which is an array of
DirectionsLeg objects that defines a single leg of the journey between the start and end
location.

If the route does not contain any waypoints the route only has a single leg. Since way-
points were not defined, the results should have a single leg, but for good measure loop
through each leg anyway.

Like the route object, the leg object also contains multiple properties, but the only one
necessary to access is the distance property, which contains a DirectionsDistance ob-
ject. The value property of the DirectionsDistance object gives the total distance of the
leg in meters. The loop adds up the distance of each leg and returns the total in meters.

164 | Chapter 8: GeoLocation

Finally, check the value of the units’ dropdown to find out if the user wanted the total
distance in miles or kilometers.

Then call one of our helper functions metersToKilometers or metersToMiles to convert
meters into kilometers of miles respectively, and output the value to the distance div
element.

See Also
More about directions from Google Maps API, see http://code.google.com/apis/maps/
documentation/javascript/services.html#Directions.

Starbucks to Starbucks

Problem
You want to get directions from the nearest Starbucks to the next closest Starbucks.

Solution
Use SimpleGeo's Places API to find the closest Starbucks to the user's current location
and then once that location is set, make a second API call to SimpleGeo to find the next
closest Starbucks location.

Then use the Google Maps API to give directions from the first Starbucks to the second
Starbucks.

Add the SimpleGeo API to the collection of JavaScript libraries:

<script src="http://maps.google.com/maps/api/js?sensor=false"></script>
<script src="http://j.maxmind.com/app/geoip.js"></script>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.js"></script>
<script src="http://cdn.simplegeo.com/js/1.2/simplegeo.places.jq.min.js"></script>

SimpleGeo is free but it does require you to sign up to get an API key (see http://simplegeo
.com/).

Once you've signed up, find the API Key by clicking the Tokens menu and then the
JSONP TOKENS sub menu as shown in Figure 8-5.

Add your website domain(s) to the allowed domains list. This prevents other people
from using your API Key. Now copy the Key and replace the placeholder at the top of
our sample's JavaScript:

//simplegeo globals:
var geoclient = new simplegeo.PlacesClient('REPLACE WITH YOUR API KEY');

//google maps globals:
var directionRenderer;

Starbucks to Starbucks | 165

http://code.google.com/apis/maps/documentation/javascript/services.html#Directions
http://code.google.com/apis/maps/documentation/javascript/services.html#Directions
http://simplegeo.com/
http://simplegeo.com/

var directionsService = new google.maps.DirectionsService();
var map;

$(document).ready(function () {

 ////setup map starting point for Google Maps
 //set initial coords to latitude −92 and longitude 32 which is somewhere around Kansas City in the center of the US,
 // and then set the zoom to 4 so the entire US is visible and centered.
 var kansas = new google.maps.LatLng(32, −92);
 var myOptions = {
 zoom: 4,
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 center: kansas
 }
 map = new google.maps.Map(document.getElementById("map"), myOptions);
 directionsRenderer = new google.maps.DirectionsRenderer();
 directionsRenderer.setMap(map);

 //wire up button click.
 $('#go').click(function () {
 //use our new getLatLng with fallback and define an inline function to handle the callback.
 getLatLng(function (latitude, longitude, isMaxMind) {
 //use simplegeo to get closest starbucks.
 var query = "Starbucks";
 geoclient.search(latitude, longitude, { q: query, radius: 20, num: 1 }, function (err, dataStart) {
 if (err) {
 error(err);
 } else {
 //we only asked for one result and SimpleGeo returns results based on distance so the closest is first,
 // so make sure we got a result.
 if (dataStart.features.length == 1) {
 //save start coordinates and address.
 var startLat = dataStart.features[0].geometry.coordinates[1];
 var startLng = dataStart.features[0].geometry.coordinates[0];
 var startAddress = dataStart.features[0].properties['address'];
 //save in google LatLng as well.
 var start = new google.maps.LatLng(startLat, startLng);

 //look up the closest Starbucks to the one we just found.
 geoclient.search(startLat, startLng, { q: query, radius: 20, num: 2 }, function (err, dataEnd) {
 if (err) {

Figure 8-5. Simple Geo API Key.

166 | Chapter 8: GeoLocation

 error(err);
 } else {
 //this time we asked for two results. The first result should be the starting starbucks,
 // so this time access the second result.
 if (dataEnd.features.length == 2) {
 //save end coordinates and address.
 var endLat = dataEnd.features[1].geometry.coordinates[1];
 var endLng = dataEnd.features[1].geometry.coordinates[0];
 var endAddress = dataEnd.features[1].properties['address'];
 //save in google LatLng as well.
 var end = new google.maps.LatLng(endLat, endLng);

 //now add directions from starting Starbucks to ending one.
 //set the request options:
 var request = {
 origin: start,
 destination: end,
 travelMode: google.maps.DirectionsTravelMode.DRIVING
 };

 //make the directions request.
 directionsService.route(request, function (result, status) {
 if (status == google.maps.DirectionsStatus.OK) {

 //display the directions using Google's Directions Renderer
 directionsRenderer.setDirections(result);

 ////output info seperately.
 $('#info').html('Closest Starbucks: ' + startAddress + '
' +
 'Next Starbucks: ' + endAddress + '');

 } else {
 error("Directions failed due to: " + status);
 }
 });
 }
 else {
 error('Could not find a Starbucks near ' + startAddress);
 }
 }
 });

 }
 else {
 error('Could not find a Starbucks near you.');
 }
 }
 });

 //if we used MaxMind for location add attribution link.
 if (isMaxMind) {
 $('body').append('<p>IP to Location Service Provided by MaxMind</p>');
 }
 });

Starbucks to Starbucks | 167

 });

});

function getLatLng(callback) {
 //test for pressence of geolocation.
 if (navigator && navigator.geolocation) {
 //make the request for the user's position.
 navigator.geolocation.getCurrentPosition(function (position) {
 //success handler
 callback(position.coords.latitude, position.coords.longitude);
 },
 function (err) {
 //hanlde the error by passing the callback the location from MaxMind.
 callback(geoip_latitude(), geoip_longitude(), true);
 });
 } else {
 //gelocation not available so pass the callback the location from MaxMind.
 callback(geoip_latitude(), geoip_longitude(), true);
 }
}

function error(msg) {
 alert(msg);
}

Discussion
Other than the call to simplegeo.PlacesClient to setup SimpleGeo, the code starts off
the same as the previous example.

In the click handler, get the user's current location using the getLatLng function and
use the resulting latitude and longitude to call the SimpleGeo geoclient.search func-
tion to find the closest Starbucks to us.

The geoclient.search function takes in latitude and longitude parameters, our query
options, and a callback function.

Set the query options to a search term (q param) of Starbucks within a 20 kilometer
radius (radius param), and indicate that only one result (num param) is required.

The callback returns a features collection, which contains various information includ-
ing latitude and longitude about each search result.

In the callback save the latitude, longitude, and address in variables as our starting
location.

Then make a second geoclient.search call using the starting location as the reference
point. This time return two results, since the first result is still the starting location.
Store the second feature item's latitude, longitude, and address in the ending location
variables.

168 | Chapter 8: GeoLocation

Now that the start and end locations are set, use the same Google Maps API call as the
last example to display the driving directions between the two locations. To finish off
the example, display the address of the starting and ending addresses above the map.

See Also
Create dynamic maps with datasets with a free JavaScript library at http://polymaps
.org/.

Starbucks to Starbucks | 169

http://polymaps.org/
http://polymaps.org/

CHAPTER 9

Canvas

Kyle Simpson

Introduction
One of the most exciting additions to web pages to be standardized by HTML5 is the
canvas element:

<canvas id="mycanvas"></canvas>

This simple element allows users to draw graphics such as lines, circles, fills, etc. directly
into a rectangle-shaped block element that appears on the web page.

There are numerous features associated with the canvas element.

For example, in addition to drawing images manually, browsers can take raw image
data from an external image file and “draw” it onto the canvas element.

With the ability to draw an image comes the ability to erase and re-draw all or a portion
of the canvas image. Editing canvas images then lends itself to the creation of animations
where you appear to move elements around by drawing and re-drawing them in varying
positions.

In addition, canvas elements can have transparency, which means they can be layered
or stacked on top of each other to create more sophisticated graphical images/effects.

There are also a number of transformations and effects that you can apply to your
canvas drawing.

In essence, canvas is a dynamic image and not simply a static PNG or JPEG file.

In much the same way that you might draw an image using a graphics program like
Adobe Photoshop, save it to a file, and load it onto a web page, with canvas you can
automate through code that the drawing commands, and immediately see the results
on the page, without the need for an loading an external file.

This capability allows you to do many sophisticated things that were once difficult or
impossible to do, such as dynamically creating preview images.

171

While it is very helpful to understand the nuts and bolts of working with
the canvas API, which this chapter will help expose you to, most prac-
tical projects use libraries that automate the usage of canvas for various
tasks. As you will see, some of the tasks can be quite tedious, so using
a helper library can be the key to keeping you productive and sane.

Drawing on a canvas

Problem
You want to draw graphic elements on your page rather than including them in as an
external image with the img element.

Solution
Use the canvas element in your markup:

<canvas id="mycanvas"></canvas>

The canvas element can have “fallback” content inside the tag, which
the browser will only render if canvas itself is not supported.

While not a strong feature for Accessibility purposes, this does provide
a modest mechanism for alternate content that screen readers can make
available to the user. (For more on Accessibility, see Chapter 7.)

Alternatively, you can always create a canvas element dynamically and append it to the
page and then use CSS to position it where you need it:

var mycanvas = document.createElement("canvas");
mycanvas.id = "mycanvas";
document.body.appendChild(mycanvas);

To draw into the canvas element, first get a reference to the canvas element’s context,
and then issue drawing commands against that reference, as shown in Figure 9-1.

var mycanvas = document.getElementById("mycanvas");
var mycontext = mycanvas.getContext("2d");

mycontext.beginPath();
mycontext.moveTo(10, 10);
mycontext.lineTo(35, 35); // draws a line path from (10,10) to (35,35)

mycontext.strokeStyle = "#000";
mycontext.stroke(); // draw the line

mycontext.beginPath();
mycontext.arc(35, 35, 10, 0, Math.PI * 2, true); // draw a circle

172 | Chapter 9: Canvas

mycontext.fillStyle = "#f00";
mycontext.fill(); // fill the circle solid

In canvas, the order of how you draw things is important—here we drew
the line first and the circle second—as the last drawing operation for
any pixel is the one that is visible.

canvas API

Here are some commonly used drawing commands in the canvas API:

beginPath()
Start a path segment definition, to be used by a rendering operation, like stroke()
or fill()

closePath()
Close the path by adding a line segment from the end of the path back to the
beginning of the path

moveTo(x, y)
Move the registration point for the next relative drawing operation

lineTo(x, y)
Create a line path from the current registration point to (x,y)

rect(x, y, width, height)
Create a rectangle path where (x,y) is one corner, and the diagonally opposite
corner is (x+width,y+height)

arc(x, y, radius, startAngleRadians, endAngleRadians, antiClockwiseDirection)
Create a circular arc path (up to a full circle), where (x,y) is the center of the arc,
and the arc starts and ends at the given angles (in radians), and moves in either the
clockwise or counter-clockwise direction

fill()
Fill in the most recently defined path segment

stroke()
Stroke (render, make visible) the most recent path segment

Figure 9-1. A canvas element on the page, with a black line and red circle drawn on it.

Drawing on a canvas | 173

drawImage(image, ...)
Draw an image into the canvas area

strokeText(text,...)
fillText(text,...)

Add text to the canvas

clearRect(x, y, width, height)
Clear a rectangular portion of the canvas from (x,y) to (x+width,y+height)

strokeStyle=[string|object]
fillStyle=[string|object]

Set the color/style attributes for strokes or fills, respectively

Discussion
The canvas API for 2D drawing is standardized in HTML5 (see http://dev.w3.org/html5/
2dcontext/).

In large part, canvas works the same way across all the modern browsers—which all
now support it. However, be aware that there are some quirks that are different between
browsers, in subtle ways.

Because these quirks in behavior between different browsers/versions
are generally outside the specification, and more implementation spe-
cific, detailing or predicting such differences is futile.

As such, we do not cover those quirks in-depth, but instead the reader
is implored to carefully test the usage of canvas and its API in all relevant
browsers to catch such pitfalls.

The canvas element is specified to have a couple of rendering contexts, which is basically
a fancy way of saying “coordinate system.”

At this time, the only useful or implemented rendering context is “2d”, which defines
a flat two-dimensional Cartesian coordinate system with (0,0) at the top-left corner
(thereby matching the coordinate system style in web pages). Practically all canvas API
calls are made against the context, rather than the canvas itself.

Assuming you have a reference to a canvas element, to get a reference to its 2d con
text, use:

var mycontext = mycanvas.getContext("2d");

Once you have the context, the canvas API commands listed above are all available to
be called. The shape drawing commands in the canvas API are all path based. This
means that you first “draw”—or define, but not visibly—a path (one or more straight
or curved edges) which represents the shape (line, arc/curve, rectangle, etc), and then
you specify what you want done to the path.

174 | Chapter 9: Canvas

http://dev.w3.org/html5/2dcontext/
http://dev.w3.org/html5/2dcontext/

Commonly, you either stroke the path—meaning, draw a line along the boundary edges
of the path—and/or fill the path—which fills the interior of the path with a color or
pattern.

Because you essentially render a path only after that path is defined, it is quite common
that you end up needing to create many separate path segments in your drawing, where
you apply different strokes/fills/etc. to render each segment as you define them.

So, always call beginPath() before you start defining a path segment:

mycontext.beginPath();
mycontext.moveTo(10, 10);
mycontext.lineTo(30, 30);

If you call closePath() before you call a rendering command like stroke()
or fill(), the path literally is “closed”, in that the beginning point of the
path is automatically joined with the end point of the path, with a final
line segment.

After defining a path segment, call a rendering command, such as stroke() or fill().
Those commands act upon that most recently defined path segment—whatever has
been defined since the most recent beginPath() call—and then subsequently that path
is no longer active or available:

mycontext.beginPath();
mycontext.moveTo(10, 10);
mycontext.lineTo(30, 30);
mycontext.stroke();

Keep in mind that if you draw more than one shape in the same path segment, generally
speaking the canvas interprets the paths as being connected.

In this sense, “connected” means that there is an edge from the end of one shape to the
beginning of the next. This is not always true—some shape definition commands imply
their own independent or not-relative segments.

Again, it’s best practice to explicitly define your path segments, to avoid such pitfalls.

One explicit way to avoid segments being connected is to use beginPath(...), which
conceptually “picks up the pen” and moves it to a new location before setting it down,
rather than acting like the pen drew a connection from the previous location to the new
location.

Vectors vs. Bitmaps

You may be familiar with the concept of vector drawing as opposed to bitmap drawing.
Vector drawing is essentially describing an image as a series of shapes which are de-
scribed by equations, such that the shapes (the vectors) can be modified (rotated,
scaled, transformed, etc) without any loss of quality.

Drawing on a canvas | 175

Bitmap drawing, on the other hand, is specifically constrained to painting a color into
one or more individual pixel locations. Transformations against bitmaps are “lossy” in
that you get some fuzzy or blurry artifacts along color boundaries as you make the
transformations, because what might have been a clear color boundary from one pixel
to the adjacent pixel in the original orientation of the drawing is now not a clear boun-
dary between two pixels, but a mix of colors between the two pixels.

It is important to keep vector and bitmap ideas clear and separate in your mind as you
work with the canvas element. The paths that you draw with API commands like
lineTo(...) are like vectors. They can be defined and then modified using various
transformations, without any loss of quality. Once you have the path in the correct
state that you want, you then render that path, which creates visible pixels in the bitmap
output of your canvas element. If you were to then apply more transformations to your
bitmap, such as rotating the entire element, you would be subject to potentially “lossy”
transformations, as described above.

To put it more plainly, think of your path definitions as vector equations—which are
invisible, and until rendered, can be changed at will—and think of the stroke and fill
operations that you perform against a path as pixel bitmap rendering. In principle, this
is no different than how a vector image editor program would operate.

If you draw a shape (or modify a shape’s location or dimensions) where
it overlaps only part of a pixel, such as a line from (10.5,20) to (10.5,50),
then each half pixel is partially rendered (anti-aliasing), which may pro-
duce fuzzy line effects.

There are of course operations that you explicitly want to perform only against the final
rendered output (such as color mutations), but these operations are bitmap based, as
opposed to the geometric transformations you perform against paths.

See Also
For more information on how to use canvas, see this canvas tutorial on MDC: https://
developer.mozilla.org/en/Canvas_tutorial.

Using Transparency

Problem
You want to leave part of the canvas element transparent to show through content from
beneath.

176 | Chapter 9: Canvas

https://developer.mozilla.org/en/Canvas_tutorial
https://developer.mozilla.org/en/Canvas_tutorial

Solution
The canvas element is, by default, transparent, which means that it will show through
any content that is stacked beneath it. This means that you can control what pixels are
transparent or not simply by what you draw onto the canvas element.

If we position a red circle drawing (like from the previous recipe) over the top of some
text, the portions of the canvas element not drawn on by the circle are transparent,
showing the text from beneath, as shown in Figure 9-2.

In addition to the transparency of any pixel that has not yet been drawn into on the
canvas element, a pixel can have partial transparency using the alpha channel of the
color used to draw the pixel. Partial transparency means that what the user sees for
each pixel is the combination of what color is at that location below the canvas element,
combined with the partial color shown for that pixel in the canvas element.

If the red circle over the page text from above were drawn with partially transparent
color, it would appear as shown in Figure 9-3.

The partially transparent color is not only useful for content that appears on the page
beneath the canvas element, but also for content that is already drawn onto the can
vas element itself:

mycontext.beginPath();
mycontext.arc(40, 40, 25, 0, Math.PI * 2, true); // draw a circle
mycontext.closePath();

Figure 9-2. Drawing a circle on top of text in a page, with transparency showing the not-covered text
from beneath.

Figure 9-3. Partial transparency of the red circle showing through text from underneath.

Using Transparency | 177

mycontext.fillStyle = "#f00";
mycontext.fill(); // fill the circle solid

mycontext.beginPath();
mycontext.arc(70, 40, 25, 0, Math.PI * 2, true); // draw a circle
mycontext.closePath();

mycontext.fillStyle = "rgba(0,0,255,0.75)";
mycontext.fill(); // fill the circle solid;

In the above code snippet, we draw a partially transparent blue circle overlapping part
of a red circle. The portion of the circles that overlap will produce the color purple from
the mixing of the blue with the red, as seen in Figure 9-4.

Discussion
In general, a canvas element starts out with all pixels being completely transparent. Any
pixel which is drawn with a fully opaque color will no longer have any transparency,
whereas any pixel that is drawn with a partially opaque color will retain partial trans-
parency.

When you render shapes as pixels into the bitmap of the 2d context, each pixel can
also have a definition of how opaque or transparent that pixel should be rendered
(default is fully opaque with no transparency). You define the transparency (alpha) of
a color generally with “rgba”, which is specified as identical to CSS3 color values (http:
//www.w3.org/TR/2003/CR-css3-color-20030514/#numerical), like so:

mycontext.fillStyle = "rgba(255,0,0,0.5)";

In that code snippet, the “0.5” specifies a 50% opacity for the red color, meaning all
pixels that are drawn with that color style have only 50% opacity, and thus 50% trans-
parency to show through from beneath as shown in Figure 9-5.

The other way to affect the transparency of rendered pixels is to set the globalAlpha
property, with a value from 0.0 to 1.0. When a pixel is drawn where it has some trans-
parency to its color, the default composite operation is to take that pixel’s existing
rendered color definition, if any, and combine it with this new color definition, to

Figure 9-4. Applying partial transparency to the blue color circle, mixing with the red circle in the
overlap.

178 | Chapter 9: Canvas

http://www.w3.org/TR/2003/CR-css3-color-20030514/#numerical
http://www.w3.org/TR/2003/CR-css3-color-20030514/#numerical

produce the new pixel color. That’s how the black line appears to be below the partially
transparent red dot.

Keep in mind, though, there’s not two actual layers of shapes here (as you might be
used to with digital imaging software), even though it appears that way. The pixels that
were rendered were composited together, combining what was already there in the first
path with what’s drawn by the second path. The final result is still one single-layer
bitmap rendering in your canvas element. This means that once these two shapes have
been rendered on top of each other, they cannot be moved or changed independently,
since there’s just one bitmap.

However, since pixels in a canvas element can have transparency, it is possible to em-
ulate separate layers by simply having more than one canvas element, each stacked on
top of each other, and drawing different shapes into the different respective canvas
elements. In this case, there is not really canvas-level compositing going on between
the two independent layers (separate elements, although obviously your browser, op-
erating system, and computer screen are doing the compositing), so the two elements
can be moved, modified, erased, etc, independently of each other. (See “Animating
canvas Drawings” on page 193 for more detail.)

See Also
For more information on transparency, see this canvas “styles and colors” tutorial on
MDC: https://developer.mozilla.org/En/Canvas_tutorial/Applying_styles_and_colors.

Setting canvas Dimensions

Problem
You want to explicitly specify the width and height of your canvas element to be dif-
ferent than the default dimensions.

Figure 9-5. Applying 50% transparency to the color used to fill the red circle, partially revealing the
prior drawn black line below it.

Setting canvas Dimensions | 179

https://developer.mozilla.org/En/Canvas_tutorial/Applying_styles_and_colors

Solution
Add the width and height attributes, and their corresponding values, to your canvas
element:

<canvas id="mycanvas" width="200" height="200"></canvas>

You may also want to change width and/or height of your canvas element with Java-
Script. If you want to change how much width or height (pixels for rendering) is avail-
able in your canvas element, then you must change the attributes of the canvas element
(not the CSS style properties of width and height, as you might assume):

mycanvas.setAttribute("width", "200"); // will change the bitmap dimensions
mycanvas.setAttribute("height", "200");

You can also set the width and height properties directly on the element:

mycanvas.width = 200; // will change the bitmap dimensions
mycanvas.height = 200;

Either approach will allow your canvas element to use 200 pixels in the horizontal
direction, and 200 pixels in the vertical direction.

By contrast, controlling the size of your canvas element with CSS–either with CSS rules
or by directly setting CSS properties in JavaScript– does not affect the bitmap dimen-
sions of your canvas element, but takes the existing canvas element (at its existing bit-
map dimensions) and stretch or shrink its physical dimensions, as necessary:

mycanvas.style.width = "200px"; // will shrink the horizontal rendering
mycanvas.style.height = "200px"; // will stretch the vertical rendering

Discussion
By specification, the default dimensions of a canvas element are 300 pixels by 150
pixels. In practice, you’ll usually want to define a different dimension for your canvas
element.

As with all block-level HTML elements, if you make your <canvas>
absolutely positioned, it does not necessarily default to having any
physical dimensions to render. You need to explicitly define the physical
rendering dimensions via CSS, in addition to the bitmap pixel dimen-
sions. To keep a consistent rendering ratio, make sure the physical di-
mensions match the bitmap pixel dimensions.

You can specify the bitmap pixel dimensions using attributes on the canvas element,
either in the markup or with a setAttribute(...) call. You can also resize the canvas
element by using CSS styling on the width/height, but this has the effect of shrinking
or stretching the canvas element while keeping the existing pixel dimensions, rather
than actually changing them.

180 | Chapter 9: Canvas

For instance, let’s say you wanted a full-page canvas element that resized itself with the
window. If you want that sizing to be stretching or shrinking the canvas element while
maintaining the same pixel dimensions, then use CSS, like this:

#mycanvas { width:100%; height:100%; }

However, if you want a canvas element that keeps resizing its bitmap pixel dimensions
along with the dimensions of the browser window, you need to use JavaScript:

window.onresize = function() {
 mycanvas.width = document.documentElement.clientWidth;
 mycanvas.height = document.documentElement.clientHeight;
};

The canvas element can be resized as often as you like. However, each time you resize
it, the drawing space will be cleared. This is actually a useful trick, which you can use
to quickly clear the canvas, by simply setting its width to be the same as its current
width:

function clear(mycanvas) {
 mycanvas.width = mycanvas.width;
}

Creating a Gradient

Problem
You want to create gradients and other drawing styles.

Solution
Each time you render a path to the canvas element, the color and style for that drawing
are picked up from the currently set stroke and fill styles.

For instance, to vary the way that line segments are drawn on paths, you can control
the stroke styles with lineWidth, lineCap, and lineJoin, as shown in Figure 9-6.

mycontext.lineWidth = "12";
mycontext.lineJoin = "round";
mycontext.moveTo(20, 20);
mycontext.lineTo(50, 50);
mycontext.lineTo(20, 70);
mycontext.stroke();

To vary what is painted inside the paths you draw, you can control the fill styles to
create gradients or image patterns, as shown in Figure 9-7.

var lingrad = mycontext.createLinearGradient(20,20,40,60);
lingrad.addColorStop(0.3, "#0f0");
lingrad.addColorStop(1, "#fff");
mycontext.fillStyle = lingrad;

Creating a Gradient | 181

mycontext.moveTo(20, 20);
mycontext.lineTo(50, 50);
mycontext.lineTo(20, 70);
mycontext.closePath();
mycontext.fill();

Discussion
There are several different ways to control the style of how your paths are rendered.
For instance, for lines (strokes), you can set the lineWidth property to vary the width
of lines used to stroke. In addition, the lineCap property controls how the cap/end of
a line segment is rendered (squared off, rounded, etc), and the lineJoin property con-
trols how the connection (or joint) between two line segments is drawn. Figure 9-8
shows a few different line styles.

Figure 9-6. lineWidth and lineJoin stroke styles.

Figure 9-7. Linear gradient filling a shape.

Figure 9-8. Various line styles.

182 | Chapter 9: Canvas

In addition to line styles, you can define custom color styles for both lines and fills.
There are two options: gradients and patterns.

Gradients are a gradual progression from one color to another color (or colors). They
can be linear (progresses in a straight line) or radial (progresses radially/circularly from
a central point). To use them, you create a gradient object, next set one or more color
stops on it, and then use that object as the strokeStyle or fillStyle.

Patterns are essentially taking an existing image (even another canvas element) and
using that as the “color” for a line or fill, where the image in question is repeated as
necessary to fill the space required of the color. To use them, you create a pattern object,
telling it which image to use and how to repeat, and then use that object as the stro
keStyle or fillStyle. Figure 9-9 shows the results of a few different fill gradients and
patterns.

Pattern fills also allow you to tile (or repeat) an image. The canvas API command
createPattern(...) takes as its second parameter a string value to control the tiling.
For no tiling, use “no-repeat.” Currently, the only tiling value supported consistently
is “repeat”, which defaults to repeating the image both horizontally and vertically, as
shown in Figure 9-10.

var img = document.getElementById("my_fish_image");
var imgfill = mycontext.createPattern(img, "repeat");
mycontext.fillStyle = imgfill;
mycontext.fillRect(0, 0, 200, 200);

Figure 9-9. Various fill gradients and patterns.

Figure 9-10. Tiling an image using a fill pattern.

Creating a Gradient | 183

See Also
For more information on line styles, gradients, and pattern fills, see this canvas “styles
and colors” tutorial on MDC: https://developer.mozilla.org/En/Canvas_tutorial/Apply
ing_styles_and_colors.

Pulling External Images Into a canvas Drawing

Problem
You have an existing image (graphic, icon, photo, etc.) in an external file that you want
to put into a canvas element, so that you can then manipulate or embellish it with
canvas API drawing commands.

Solution
First, load the image in question using either an img tag in your markup, and get a
reference to it, or create an Image element dynamically in your JavaScript code:

var img = new Image();
img.src = "http://somewhere/to/my/image.jpg";

Next, once the image is loaded, draw the image onto a canvas element:

var img = new Image();
img.onload = function() {
 // note: we're calling against the "2d" context here
 mycontext.drawImage(img, 0, 0); // draw the image at (0,0)
};
img.src = "http://somewhere/to/my/image.jpg";

The image object you pass as the first parameter to drawImage(...) can
actually be a real image, another element, or a video element by cap-
turing a frame of video into your canvas).

This assumes that your canvas element is already properly sized to be able to handle
the image that you’re trying to draw into it. Otherwise, if it’s too small (in either di-
mension), clipping occurs, where the image will be cut off on the right or bottom edge,
respectively.

Discussion
The canvas API gives you the drawImage(...) command to let you capture image bitmap
data from another source (an image, another canvas element, or a video element) and
draw it directly into your canvas element.

184 | Chapter 9: Canvas

https://developer.mozilla.org/En/Canvas_tutorial/Applying_styles_and_colors
https://developer.mozilla.org/En/Canvas_tutorial/Applying_styles_and_colors

drawImage(...) has three different ways it can be called. The simplest form, shown
above, takes an element to capture the bitmap image data from, and two coordinates,
the (X,Y) location inside your canvas element to start the top-left corner of the image at.

The second form takes an additional two parameters (dw,dh), which are the width and
height of the area from the original image that you want to capture and copy to your
canvas element.

Lastly, the third form of the call takes quite a few more parameters than the second
form, where the first four numeric parameters (sx,sy,sw,sh) are the top-left location
and width/height from the original source image data to capture, and the last four
parameters (dx,dy,dw,dh) represent the top-left location and width/height of where
the image data is copied to in your canvas element, as shown in Figure 9-11.

function createCanvas(id, width, height) {
 var canvas = document.createElement("canvas");
 canvas.id = id;
 canvas.setAttribute("width", width);
 canvas.setAttribute("height", height);
 document.body.appendChild(canvas);
 return canvas;
}

var small_canvas = createCanvas("small", 100, 100);
var large_canvas = createCanvas("large", 300, 300);
var small_context = small_canvas.getContext("2d");
var large_context = large_canvas.getContext("2d");

var img = new Image();
img.onload = function() {
 // note: using different (sw,sh) and (dw,dh) dimensions here shrinks the image
 small_context.drawImage(img, 0, 0, 300, 300, 0, 0, 100, 100);
 // just grab the top-left 300×300 area from the image
 large_context.drawImage(img, 0, 0, 300, 300);
};
img.src = "http://somewhere/to/my/image.jpg";

Once you’ve drawn an image into your element, that image data is no different from
any other bitmap image data that you could draw. This means that you can easily draw
over the top of your drawn image, using all the same capabilities as previously dis-
cussed.

Setting Color Transformations

Problem
You have an existing canvas drawing that you want to apply a color transformation
(like grayscale or invert) to.

Setting Color Transformations | 185

Solution
The canvas API provides a command getImageData(...), which grabs all the pixel color
data from the canvas element, handing it to you in one long array:

var drawing = mycontext.getImageData(0, 0, 200, 200);

The array you get from getImageData(...) is not in quite the format you’d
generally expect. Firstly, it’s not a two-dimensional array, with width
and height dimensions. Instead, it is a linear single-dimension array,
where the values wrap from one line to the next, like a big long string
of text that you paste into a text editor.

Secondly, there are four consecutive entries in the array for each pixel,
each entry corresponding to a color component for a pixel. So, each
pixel takes up four entries in the array, in the form of [..., red, green,
blue, alpha, ...].

Once you have the image data captured, you can manipulate that data using any trans-
formations you please, and then write that image data back to the canvas element.

To grayscale the drawing, the simplest algorithm is to take the average of the red, green,
and blue color components, and set all 3 to that average value:

var avg;
// skip 4 entries (1 px) at a time
for (var i = 0; i < drawing.data.length; i = i + 4) {
 avg = (drawing.data[i] + drawing.data[i+1] + drawing.data[i+2]) / 3;
 drawing.data[i] = drawing.data[i+1] = drawing.data[i+2] = avg;
}

To color invert the drawing, the simplest algorithm is to take each color component
value, subtract it from 255, and set that color value back:

Figure 9-11. Explaining the (dx,dy,dw,dh) and (sx,sy,sw,sh) parameters of drawImage(...).

186 | Chapter 9: Canvas

// skip 4 entries (1 px) at a time
for (var i = 0; i < drawing.data.length; i = i + 4) {
 drawing.data[i] = 255 - drawing.data[i]; // invert red
 drawing.data[i+1] = 255 - drawing.data[i+1]; // invert green
 drawing.data[i+2] = 255 - drawing.data[i+2]; // invert blue
}

Now that the data has been modified, we simply write the data back to the canvas
element, using the putImageData(...) command:

mycontext.putImageData(drawing, 0, 0); // put the image data back at (0,0)

Discussion
As we discussed in a previous recipe in this chapter, the image that is rendered visible
on the page is the bitmap data rendering of the paths and styles (or vectors) that you
defined while drawing your image.

Fortunately, the canvas element allows us to access and modify some or all of the pixel
color data in the element. This means that any manner of sophisticated bitmap trans-
formations can be accomplished.

Not only can you apply color transformations, as we did here, you could also apply
algorithms to blur the image, pixelate it, zoom it, etc. Those various algorithms are
beyond the scope of this chapter and book, but the process would always be the same
as in this recipe: first get the bitmap image data array, process the individual color
components (red, green, blue, alpha) entries for each pixel, then write some or all of
that data back to your canvas element.

If you write an external image to a <canvas> element that comes from
a different domain than the page’s domain, the <canvas> is marked as
“unclean” (meaning it’s not abiding by the Same-origin security policy),
and thus you are not able to call getImageData(...) to retrieve that data.

You can always write to the <canvas> element, but you can only read
data from it if all the data in the <canvas> originated from the page’s
domain.

See Also
This recipe only briefly touched on basic ways to manipulate the colors in your can
vas images and drawings. For much more complex effects that you can apply to your
canvas element, check out PaintbrushJS: http://mezzoblue.github.com/PaintbrushJS/
demo/.

Setting Color Transformations | 187

http://mezzoblue.github.com/PaintbrushJS/demo/
http://mezzoblue.github.com/PaintbrushJS/demo/

Working with Geometric Transformations

Problem
You want to apply some transformations to your drawing commands, such as scaling,
rotation, skewing, etc.

Solution
The canvas API provides several commands for transforming your canvas drawing ac-
tions:

translate(x, y)
Move/skew the location of the origin point for the coordinate system from (0,0) to
(x,y)

scale(x, y)
Scales the units of the coordinate system in the x and y directions, independently

rotate(angle)
Rotate the coordinate system, about the origin point (0,0), the angle (clockwise
direction) as specified in radians

When you start combining multiple transformations, it is often easier to manage the
state of the canvas element on a stack, where you can simply revert back one level to
undo all transformations (and other state, like style/color settings) with one command.
The canvas API provides two commands for managing your state stack: save() and
restore():

mycontext.save(); // save the current state of the canvas
mycontext.translate(10, 10); // move the origin point to (10,10)
mycontext.arc(0, 0, 10, 0, Math.PI * 2, true); // draw a circle
mycontext.stroke();
mycontext.restore();

mycontext.save();
mycontext.rotate(Math.PI / 4); // rotate 45 degrees clockwise
mycontext.moveTo(0, 0);
mycontext.lineTo(10, 0);
mycontext.stroke();
mycontext.restore();

In both these transformations, the simple nature of the transformation could have been
inversed. We could have easily translated back to our original origin point with trans
late(−10, −10), or back to our original rotation with rotate(Math.PI / −2).

However, as soon as you combine multiple translations at once, or if you start nesting
translations into multiple steps or layers, then stack management becomes quite nec-
essary. It is best practice to always use stack management for your canvas element’s
state as you make style changes or transformations.

188 | Chapter 9: Canvas

Discussion
The concept of using transformations to adjust your drawing commands is probably
going to be a bit strange to you at first. Most developers are initially a little confused
by this concept. Don’t worry, after you do it a few times, you’ll get more comfortable
with this new mindset, and it won’t seem quite so foreign.

To get started, here’s what you need to know: transformations do not actually affect
your drawing commands or what’s currently in the canvas element. Instead, transfor-
mations affect the coordinate system, so that all the coordinates that you use in your
subsequent drawing commands are automatically interpreted in the transformed co-
ordinate system, instead of the original coordinate system.

Say what!?! Ok, let’s try a different approach: think of these transformations as keeping
your pen in the same location, but (without the pen touching the paper) moving the
paper underneath your pen to a different location or rotated at an angle, drawing what
you planned as if the paper hadn’t moved, and then moving the paper back to a normal
position on the desk.

If you translate (or move) the coordinate system 10 pixels to the right, and you draw a
shape at (0,0) relative to the now-moved coordinate system, the shape actually appears
at (10,0) in the absolute coordinates relative to your canvas element container.

So, translating the coordinate system 10 pixels to the right, and drawing a shape at (0,0)
is basically the same thing as not translating the coordinate system at all, and simply
drawing the shape at (10,0):

mycontext.save();
mycontext.translate(10, 0); // move coordinate system 10 pixels right
mycontext.moveTo(0, 0);
mycontext.lineTo(50, 0); // line actually appears from (10,0) to (60,0)
mycontext.stroke();
mycontext.restore();

mycontext.moveTo(10, 0);
mycontext.lineTo(60, 0); // same line, basically
mycontext.stroke();

The same goes for rotation, although the math is a little trickier. If you rotate the canvas
by 30 degrees clockwise, and draw a shape at (50,0), it’s actually drawn at a relative
location that appears to be ():

mycontext.save();
mycontext.rotate(Math.PI / 6); // rotate 30 degrees clockwise
mycontext.moveTo(0, 0);
mycontext.lineTo(50, 0); // line actually angles 30 degrees down from horizontal
mycontext.stroke();
mycontext.restore();

At first, you may wonder why translations and rotations are even necessary transfor-
mations. After all, can’t you just draw your line or circle at the proper location and in
the proper orientation, and not worry about complexity of the transformations?

Working with Geometric Transformations | 189

For some tasks, yes. But again, for more complicated tasks, it’s almost imperative that
you transform your coordinate system so that your use of the drawing commands (and,
in particular, which numbers you use for the parameters) is more sensible and semantic.

How would you draw a rectangle at an angle? Well, you could calculate the vertices
using geometric calculations, and then manually draw the four sides as individual lines.
But who wants to do it that way!? Instead, rotate the coordinate system and call the
rect(...) command; simple as that.

Scaling is another example of something that almost always requires transformations
to work properly, specifically because scaling can be done independently in both the
X and Y directions. What scaling amounts to is saying that if you scale the X direction
of your coordinate system to twice as large, and you draw a line that is supposed to be
50 units (pixels) long, it actually is rendered as twice as long (100 pixels):

mycontext.save();
mycontext.scale(2, 1); // scale X direction units by a factor of 2
mycontext.moveTo(0, 0);
mycontext.lineTo(50, 0); // line actually appears to extend to (100,0)
mycontext.stroke();
mycontext.restore();

mycontext.moveTo(0, 0);
mycontext.lineTo(100, 0); // same line, basically
mycontext.stroke();

Other tasks—rotating an image, for instance—beg for transformations, because it
would be very difficult (and certainly performance-wise, impractical) to manually
transform the raw bitmap image data array yourself. Instead, you simply rotate the
coordinate system, draw the image into it, and then the canvas element does the hard
work for you.

mycontext.save();
mycontext.rotate(Math.Pi / 4); // 45 degrees clockwise
mycontext.drawImage(img, 0, 0); // draw the image at (0,0)
 // in the rotated coordinate system
mycontext.restore();

Finally, let’s take a look at nesting transformations, to reinforce why transformations
and stack management of the canvas element’s state are helpful (as shown in Fig-
ure 9-12).

mycontext.beginPath();
mycontext.strokeStyle = "#f00"; // red color
mycontext.translate(20, 20); // move the coordinate system to (20,20) origin
mycontext.moveTo(0, 0); // actually (20,20)
mycontext.lineTo(80, 10); // actually (100,30)
mycontext.stroke();

mycontext.save(); // save <canvas> state

mycontext.beginPath();
mycontext.strokeStyle = "#00f"; // now blue color

190 | Chapter 9: Canvas

mycontext.rotate(Math.PI / 4);
mycontext.moveTo(0, 0);
mycontext.arc(0, 0, 52, Math.PI / 3, Math.PI / 6, true);
mycontext.closePath(); // connects back to the start of the path
mycontext.stroke();

mycontext.restore(); // back to previous <canvas> state

mycontext.beginPath();
mycontext.moveTo(80, 10);
mycontext.lineTo(14, 50);
mycontext.stroke();

Placing Text on canvas

Problem
You want to include text directly in your canvas drawing.

Solution
The canvas API provides two commands for rendering text in your drawing: fill
Text(...) and strokeText(...). Both commands take the same parameters: (stringTo-
Render, x, y, [optional: maxWidth]). The only difference is whether the text is filled
in, or simply outlined.

To set the font style (font-face, size, etc), use the font property:

mycontext.font = "25pt Arial";

Now, simply call the appropriate text command (as shown in Figure 9-13):

mycontext.fillText("Hello World", 0, 25);
mycontext.strokeText("Hello World", 0, 75);

Figure 9-12. Coordinate system transformations and the stack management of the canvas state.

Placing Text on canvas | 191

Discussion
The fillText(...) and strokeText(...) commands use the font styling specified in the
font property. The available font-face, style, size, etc settings are defined to be the same
as what would be available to CSS font style rules. The colors used are of course con-
trolled by the fillStyle and strokeStyle properties, respectively. The same goes for
the stroke line width.

See Also
Drawing text on a canvas at https://developer.mozilla.org/en/drawing_text_using_a_can
vas.

Clipping canvas Drawings

Problem
You want to use a drawing command (like text) but you want to clip the drawing by
some other shape that you define.

Solution
The canvas API provides the command clip(...), which will take the currently defined
path and use that as a clipping mask for subsequent drawing commands. This means
the canvas element will only draw inside the defined clipping mask boundaries, and
discard any drawing outside the path.

To add the text of the letter “H”, but clip it by a circle, you would do this:

mycontext.beginPath();
mycontext.arc(50, 50, 25, 0, Math.PI * 2, true); // circle path
mycontext.clip(); // make the path our clipping mask

mycontext.fillStyle = "#f00";

Figure 9-13. Filled and stroked text.

192 | Chapter 9: Canvas

https://developer.mozilla.org/en/drawing_text_using_a_canvas
https://developer.mozilla.org/en/drawing_text_using_a_canvas

mycontext.font = "50pt Arial";
mycontext.fillText("H", 25, 75);

The result of the circle-clipped “H” is shown in Figure 9-14.

As you can see, the circle itself was not drawn; instead it was used as the clipping path
for the subsequent fillText drawing command.

Discussion
The canvas element’s state defaults to a clipping mask that comprises the entire visible
area of the canvas element. Once you define a clipping mask using the clip(...) com-
mand, that clipping mask will remain in effect for all future drawing commands, until
you change or reset it.

Just as we saw in “Working with Geometric Transformations” on page 188, you can
use stack management of the element’s state to make a temporary clipping mask
change, and then roll it back to the default (entire element) as shown in Figure 9-15.

mycontext.save();
mycontext.beginPath();
mycontext.arc(50, 50, 25, 0, Math.PI * 2, true); // circle path
mycontext.clip(); // make the path our clipping mask

mycontext.fillStyle = "#f00";
mycontext.font = "50pt Arial";
mycontext.fillText("H", 25, 75);
mycontext.restore(); // back to default canvas state (including clipping)

mycontext.font = "25pt Arial";
mycontext.fillText("ello World", 70, 70); // black text, not clipped

Animating canvas Drawings

Problem
Drawing static shapes into the canvas element is fine, but now you want to make the
shapes move around.

Figure 9-14. Clipping a text command with a circle path.

Animating canvas Drawings | 193

Solution
Animation with the canvas element boils down to drawing a frame of your animation,
then a few milliseconds later, erasing that drawing and re-drawing the next frame,
probably with some elements slightly moved or otherwise changed. If you animate by
showing the frames fast enough—around 20-30 frames per second—it generally looks
like a smooth animation of your shapes.

In this chapter, we’ve already covered how to draw various things into your canvas
element. We also briefly mentioned one way to clear your canvas element (resetting the
width). To fire up some animation, all we need to do is put those two concepts together.

Here’s a basic example of a moving red dot (which is shown in Figure 9-16):

function draw_circle(x, y) {
 mycontext.fillStyle = "#f00";
 mycontext.beginPath();
 mycontext.arc(x, y, 10, 0, Math.PI * 2, true);
 mycontext.fill();
}

function erase_frame() {
 mycanvas.width = mycanvas.width;
}

var ball_x = 50;
var ball_y = 50;
var delta = 3;

draw_circle(ball_x, ball_y);

setInterval(function(){
 if (ball_x > 100 || ball_y < 15 || ball_x < 15 || ball_y > 100) {
 delta *= −1;
 }
 ball_x += delta;
 ball_y += delta;
 erase_frame();
 draw_circle(ball_x, ball_y);
}, 35);

Figure 9-15. Rolling back to previous clipping mask state.

194 | Chapter 9: Canvas

Discussion
Depending on the setup of your animation frame, you may need to employ various
different methods to get the most efficient drawing (and erasing) of your shapes and/
or images. We’ll now cover several different approaches to drawing and erasing to
accomplish animations with the canvas element.

First, as in the example code above, if you have a transparent background, and one
shape (like a circle) bouncing around, to erase the frame before drawing the next frame,
you don’t need to erase the whole canvas element—only a small portion of the element
has anything drawn in it (the circle) at any given time.

All you need to do is erase the part of the canvas element that you drew onto in the
previous frame. Especially for larger dimensions, this technique can be significantly
better for performance.

The way to do that is to use the canvas API command clearRect(...) to erase only part
of the canvas element:

function draw_circle(x, y) {
 mycontext.fillStyle = "#f00";
 mycontext.beginPath();
 mycontext.arc(x, y, 10, 0, Math.PI * 2, true);
 mycontext.fill();
}

function erase_circle(x, y) {
 mycontext.clearRect(x-10, y-10, 20, 20);
}

var ball_x = 50;
var ball_y = 50;
var delta = 3;

draw_circle(ball_x, ball_y);

setInterval(function(){
 if (ball_x > 100 || ball_y < 15 || ball_x < 15 || ball_y > 100) {
 delta *= −1;
 }

Figure 9-16. Animating a red circle in the canvas.

Animating canvas Drawings | 195

 erase_circle(ball_x, ball_y);
 ball_x += delta;
 ball_y += delta;
 draw_circle(ball_x, ball_y);
}, 35);

This technique of drawing the entire frame, then erasing it and re-drawing it with some
things moved or changed works fine, but in certain circumstances, it’s not ideal. For
instance, if you are animating a shape like our red circle on top of a static drawing (or
an image/photo/etc.), it’s quite a waste of resources to re-draw the unchanging back-
ground image 30 times per second, simply because the foreground shape (red circle)
moved and needs to be re-drawn.

One solution to this is to use two canvas elements, stacked on top of each other. In the
background canvas element, draw your static scene image, and in the foreground can
vas element, do your animation of your red circle as above. This way, the background
image is only drawn once, not every time you re-draw the layer with the moving red
circle, as shown in Figure 9-17.

In this example, drawing and re-drawing the same red circle in different positions
doesn’t seem strictly necessary. However, in practical cases, you may be animating
more than just the position. For instance, you may animate an object by moving its
position and by rotating it at the same time. In such cases, the draw-redraw method of
animation is most appropriate.

For this simple case, however, another option would have been to have a canvas element
in the foreground that was only big enough just for the red circle (20×20), and simply
moving that element itself around, using CSS positioning on the page.

Especially for that case, having the red circle separate from the background image is
quite helpful, so that the two elements can be positioned independently.

Figure 9-17. Background canvas with an image, and stacked on top of it, a foreground canvas with
the animated red circle.

196 | Chapter 9: Canvas

Drawing Graphs with canvas

Problem
You have some data that you want to plot in a graph using a canvas element.

Solution
All of the canvas API commands discussed in this chapter, plus other advanced com-
mands (for complex curves, etc), can be combined to create very nice looking graphs
that visualize data, either as line, pie, or other types of charts.

As you can probably imagine, the complexity of such a task is quite high. So, we will
not discuss specifically how to draw your own graphs, but will instead show how to
use a simple, free graphing library (which does the hard work for you!) called flot.

The flot library uses jQuery, so you need to load a recent version of jQuery first, and
then the latest release of the flot library:

<script src="jquery.js"></script>
<script src="jquery.flot.js"></script>

Next, you need to create a placeholder element in your page, which flot will render the
canvas graph into. The flot library will automatically match the bitmap rendered di-
mensions of the canvas element to the size of the placeholder element that you specify:

<div id="my_graph" style="width:600px; height:300px"></div>

Now, you need to set up the data that you will plot onto your graph. You can either
load this data dynamically, using Ajax, or you can include the data inline in your script
code, as shown here:

var graph_data = [[0, 3], [4, 8], [8, 5], [9, 13]];

The format of the data is an array of [X,Y] pairs for each data point, representing values
for the X and Y axes for each point, respectively.

Once you have the graph data, if the default graphing options are acceptable, simply
call the flot graphing API directly, passing it your data:

var my_graph = $("#my_graph"); // get a reference to the placeholder
$.plot(my_graph, [graph_data]); // pass the graph data as one data-series

You will notice that we passed the graph data inside [], meaning we actually passed
an array wrapped around our graph data. The flot graphing API supports graphing
multiple data-series at a time on one graph. In our example, our graph data was only
one such data-series, but you could have passed other data-series as desired. The default
options and styles will result in a nice looking graph, as shown in Figure 9-18.

Drawing Graphs with canvas | 197

You can see that with just a few lines of code, we were able to leverage the power of
the flot library to generate a professional looking graph, instead of having to write
hundreds of lines of our own canvas API code.

As an interesting exercise, take your knowledge of the canvas API from
this chapter’s recipes and see if you can reproduce the same graph with-
out using the flot library.

The flot library API allows you to manually generate and display labels for the X and
Y axes, control the minimum and maximum range for each axis, manually define the
grid step size for each axis, control colors and line styles, and much more.

Discussion
The flot library is very flexbile and powerful. It has a multitude of different options for
controlling how graphs are drawn. We will not cover the details of the flot API here,
but you’re encouraged to explore the flot API and configuration options here: http://
people.iola.dk/olau/flot/API.txt.

In addition to the built in graph options, flot features a plugin system which allows
others to create extensions to its capability. This makes flot a very capable browser
graphing solution for your sites. Several useful plugins are included with the flot dis-
tribution, and many others are available for optional usage.

There are of course dozens of other canvas graphing libraries available, some free and
some for license. These options have a wide range of capabilities, so be sure to explore
what’s available.

See Also
For more information on using flot to plot graphs in a canvas element, see the flot
homepage: http://code.google.com/p/flot.

Figure 9-18. Using flot to graph some data with a canvas element.

198 | Chapter 9: Canvas

http://people.iola.dk/olau/flot/API.txt
http://people.iola.dk/olau/flot/API.txt
http://code.google.com/p/flot

Saving a canvas Drawing to a File

Problem
You want to save the current drawing in a canvas element to a file.

Solution
The canvas API provides the command toDataURL(...), which will extract the image
data from the canvas element into the specified image format. For instance, to extract
the image data for a graph generated by flot (see “Drawing Graphs with can-
vas” on page 197) as a PNG format file, you would do this:

var canvas = $("canvas", my_graph)[0];
var image_data = canvas.toDataURL("image/png");

Now that you have the raw image data, you can save the image data as you please.

For instance, to send the image data to a server via Ajax, using jQuery, you might use:

$.post("http://location/path/to/upload", {data: image_data});

Discussion
The easy part is extracting the raw image data from the element. The hard part is saving
that raw data to an actual file.

If you want to save the file back to a server, you can easily send the data as a string value
to the server using Ajax. Once the data arrives on the server, you have to parse out the
dataURI format, and then base64 decode the image data, finally saving that information
to a file.

If you wanted to then let a user save that file to their computer, you could tell the
browser to download that file you just created, which would then prompt the user to
save the file on their system.

Some very recent releases of browsers are supporting local file access, so that you can
(in theory) allow a user to save the image to their own computer without needing to
first upload it to a server and then re-download it.

Because the process of actually handling these files in this way is rather complex (and
beyond the scope of this chapter), you can explore Canvas2Image, which takes care of
much of this difficult stuff for you: http://www.nihilogic.dk/labs/canvas2image/.

Saving a canvas Drawing to a File | 199

http://www.nihilogic.dk/labs/canvas2image/

See Also
For more information on saving canvas images to a server (using PHP) and then making
them available for users to download and save, see this blog post: http://blog.kevinsoo
kocheff.com/saving-canvas-data-to-an-image-file-with-java-61171.

200 | Chapter 9: Canvas

http://blog.kevinsookocheff.com/saving-canvas-data-to-an-image-file-with-java-61171
http://blog.kevinsookocheff.com/saving-canvas-data-to-an-image-file-with-java-61171

CHAPTER 10

Advanced HTML5 JavaScript

Kyle Simpson

Introduction
HTML5 has dramatically broadened its scope from previous revisions. Whereas
HTML4 was primarily focused on markup, HTML5 is focused not only on markup but
also on a variety of advanced JavaScript APIs that help bring new features to life.

However, most of these new technologies actually have their own specifications, work-
ing groups, etc. So while there is a clear relationship between the new markup that
HTML5 brings to the table (pun intended!), it can be confusing to refer to the entire
group of technologies under one umbrella term like “HTML5.”

It is for this reason that the trend has become to discuss such APIs as companions to
HTML5, as a way of being more precise, or as some have put it, “HTML5 and friends.”
So in this chapter, we get familiar with several friends of HTML5.

We’ve already covered the JavaScript APIs behind several markup-anchored elements,
such as canvas, audio, and video. Here, our focus is on some other companion APIs,
which notably are not necessarily tied to a particular markup element.

You can think of the recipes in this chapter as being the meat on the bones of what it
takes to create a truly interactive web application.

It’s important to note that the technologies discussed in this chapter are all in varying
degrees of standardization and implementation. They are not universally agreed upon
or built into browsers yet, and so using them must be done with some degree of caution
and planning. For some things, there are ways to fallback to older or less-capable func-
tionality in non-supporting browsers, but in other cases, you have to build a workflow
into your application that will handle when certain features are simply not present.

201

Because work on these particular sets of technologies is happening so
rapidly, and what we know at the time of writing may be outdated by
the time of reading, this chapter does not cover directly what things are
supported where. You are encouraged to test these features in your tar-
get browser environments to get the most updated information on sup-
port.

Local Storage

Problem
You want to store some data (like user preferences or partially entered form data) per-
sistently on a user’s system, so that it’s available on a subsequent visit.

Solution
HTML5 introduced two new APIs for in-browser persistent data storage: sessionStor
age, which stores data only for the lifetime of the browser instance/session, and local
Storage, which stores data persistently “forever.”

“Forever” in this case means: “until either the code or the user clears it out.”

Both interfaces have the same API. The difference between the two is basically how
long the browser persists the data.

Data stored in these containers must be strings, so if you need to store
complex data objects, one good option is to serialize the object into
JSON, using JSON.stringify().

To test if a browser supports either of the Storage APIs, use the following feature-detect:

var storage_support = window.sessionStorage || window.localStorage;

To store some data for only the current browser instance (goes away when the user
closes the browser), use sessionStorage:

var user_id = "A1B2C3D4";
var user_data = {
 name: "Tom Hanks",
 occupation: "Actor",
 favorite_color: "Blue"
 // ...
};

sessionStorage.setItem(user_id, JSON.stringify(user_data));

To store some data for a longer period of time, use localStorage:

202 | Chapter 10: Advanced HTML5 JavaScript

var user_id = "A1B2C3D4";
var user_prefs = {
 keep_me_logged_in: true,
 start_page: "daily news"
 // ...
};

localStorage.setItem(user_id, JSON.stringify(user_prefs));

You can see that both code snippets look almost identical, because the APIs are iden-
tical.

To pull data (if available) from the storage container:

var user_id = "A1B2C3D4";
var user_data = { /* defaults */ };
var user_prefs = { /* defaults */ };

if (sessionStorage.getItem(user_id)) {
 user_data = JSON.parse(sessionStorage.getItem(user_id));
}
if (localStorage.getItem(user_id)) {
 user_prefs = JSON.parse(localStorage.getItem(user_id));
}

These Storage APIs allow you to very simply set and retrieve key/value data, where the
value is a string, but can represent anything you want, including the string serialization
of a complex data object.

Discussion
At first thought, the most likely solution for storing data client-side that popped into
your head is cookies. However, cookies have a number of problems that make them
less than ideal for storing user data. In this chapter we explore a new alternative: the
HTML5 Storage (also known as “DOM Storage”) APIs.

Both the sessionStorage and localStorage APIs share the same API, but the difference
—as belied by their names—is in how long they persist the data.

For data that you only need to persist for the lifetime of a browser session –things such
as user login data, shopping cart contents, etc.–the sessionStorage API is probably your
best option. For more long-lived data–things such as application preferences–local
Storage may be a better option.

Many browsers even persist sessionStorage data across browser
crashes. This makes a great container to temporarily mirror data being
entered into form fields. For example, just in case the browser crashes,
you can restore what they were typing.

The APIs for both sessionStorage and localStorage are identical:

Local Storage | 203

getItem(key)
Returns an item of data from the storage container, referenced by its key

setItem(key, item)
Adds an item of data to the storage container, referenced by its key

key(index)
Returns the key for an item of data at the numerical index specified

removeItem(key)
Removes an item from the storage container, referenced by its key

clear()
Clears out all data in the current storage container

length
Identifies how many items of data are in the storage container

Most browsers give up to 5MB of space for these storage containers. For most practical
applications, this is far more than enough. Be prepared to detect and handle errors
though if you are writing more data than the browser allows.

Unlike cookies (which have explicit expirations) and sessionStorage (which has im-
plicit expiration at the end of the browser instance/session), the localStorage API has
no expiration at all. This has both good and bad consequences.

The benefit is that data stays around as long as you need it to unless the user explicitly
clears it themselves, but the downside is that the 5MB limit may be reached more
quickly than anticipated, especially if old data is abandoned and left forever to sit idle
in the storage container.

One common solution is to implement a custom expiration mechanism, by storing a
timestamp with each piece of data, and then checking each piece of data manually on
each page-load to see if any old data needs to be removed.

For instance, your e-commerce site might keep a record of all items the user has viewed
across various visits, so it can display that in a “Previously Viewed” area. But, you don’t
want the application to remember those items forever. So, you might manually expire
entries that are older than 21 days:

// first, store the currently viewed item in the history
var current_item = {
 id: "ABCD0123",
 data: "Mens' Running Shoes",
 ts: new Date() // current timestamp, used for expiration check later
};
localStorage.setItem(current_item.id, JSON.stringify(current_item));

// now, manually "expire" all old entries
var key, data;

for (var i=0; i<localStorage.length; i++) {
 key = localStorage.key(i);
 data = localStorage.getItem(key);

204 | Chapter 10: Advanced HTML5 JavaScript

 if (data.ts < ((new Date()) - 60*60*24*21)) { // more than 21 days old
 localStorage.removeItem(key);
 }
}

Both APIs restrict access to reading and writing data to the exact page domain (domain,
sub-domain, schema, port, etc.) as the hosting page, meaning that you cannot share
data across different domains with either of them. This is both a helpful and frustrat-
ingly restrictive reality.

The benefit is that data is well protected privacy-wise (from other snooping sites), but
the downside is that your application’s different services on different domains cannot
share their data through this interface.

See Also
For more information on the DOM Storage APIs, see this MDC entry: https://developer
.mozilla.org/en/dom/storage.

Application Caching

Problem
You want to make your web application (including all its resources) available to users
even in an offline state, without relying on the normal browser cache.

Solution
HTML5 defines a special application cache, commonly called “appcache”, that allows
you to instruct the browser to cache certain resources—like images, CSS, JS, and others
—in a way that makes them available to the application even if the user’s browser is
offline and not connected to the public internet.

To test if the browser supports appcache functionality, use the following feature-detect:

var appcache_support = !!window.applicationCache;

To utilize appcache in your application, first you need to create a manifest file, which
lists the resources you want in the appcache. This file might look like:

CACHE MANIFEST

CACHE:
index.html
help.html
style/default.css
images/logo.png
images/backgound.png

Application Caching | 205

https://developer.mozilla.org/en/dom/storage
https://developer.mozilla.org/en/dom/storage

The appcache manifest file should include a “CACHE” section for listing the resources
you want to include in the appcache. You can also specify a “NETWORK” section for
URLs that need to be dynamically called (e.g. via Ajax), and which should never be
cached. A “FALLBACK” section can also be specified, which lists local (cached) file
fallbacks for any remote URL request that fails (such as default content in an offline
scenario for a normally online call to a server API).

Applications executing in the appcache context are not allowed to con-
nect to remove URLs unless those URLs are listed within the “NET-
WORK” section of the manifest. This is to provide an additional layer
of security to applications, preventing them from contacting servers that
aren’t known and whitelisted.

Once you have the manifest file—in this example we’ve named it “cache.manifest”—
tell the browser about the file by adding a property to the html element in your markup,
like so:

<html manifest="cache.manifest">

The cache manifest file must be served with the mime-type “text/cache-
manifest.”

That’s it! Now your application is offline-capable via appcache. The browser persistently
caches these listed resources and does not re-request them on subsequent page loads,
unless the cache manifest file changes.

Updating the appcache

Simply changing a file that is stored in a user’s appcache is not enough to get that new
version of the file delivered to the user. The only way a browser checks for updated
versions of files in its appcache (and subsequently downloads any changes), is if the
manifest file changes.

However, you may not have any changes to make to the manifest file itself if, for ex-
ample, there are no new resources to list and none to remove.

So, one easy approach is to include a comment in your file, which you can update with
a new value when you change one or more files and want the browser to update its
appcache:

CACHE MANIFEST
cache version: 1257

CACHE:
index.html

206 | Chapter 10: Advanced HTML5 JavaScript

help.html
style/default.css
images/logo.png
images/backgound.png

Each time you update a resource that is in the appcache, simply bump up the version
number in the comment. The next time a user loads the page, the browser sees this new
cache manifest file and updates the appcache contents.

There’s a catch, however.

Even if the browser sees during page load that the manifest file has changed, it still lets
the current page load continue immediately, with the now out-of-date appcache con-
tents, and then asks for the updated files to be loaded in the background, to be ready
for the next page load.

Fortunately, the browser provides a JavaScript API to help: the applicationCache in-
terface. Using this interface, you can detect that a new set of appcache contents has been
fetched and is now available, and force them to be applied to the appcache right away,
rather than on the next page load:

var cache = applicationCache;
cache.addEventListener("updateready", function(){
 if (cache.stats == cache.UPDATEREADY) {
 cache.swapCache(); // swap in the new cache items
 }
}, false);

This makes the new appcache items available for any further uses during the current
page lifetime.

However, any places where the resources were already used on the page are not upda-
ted. That can be a strange user experience depending on the situation.

The cleanest way to force the entire page to be updated with the new resource versions
is to simply reload the page. But, be kind to the user, and first ask them if they want to
reload the page, like this:

var cache = applicationCache;
cache.addEventListener("updateready", function(){
 if (cache.stats == cache.UPDATEREADY) {
 if (confirm("This site has been updated. Do you want to reload?")) {
 location.reload();
 }
 }
}, false);

So far, we’ve only seen how to respond to cases where the appcache is marked for
updating during a page load. However, some sites are designed to be long-lived, with
little or no page reloads, in which case, getting updates requires special handling.

Application Caching | 207

To force the browser to do a check for an updated “cache.manifest” file, which if
modified then force fetching of any new appcache contents, you can call the update()
API method:

function updateAppcache(){
 var cache = applicationCache;
 cache.update(); // check to see if the cache manifest file has been updated

 cache.addEventListener("updateready", function(){
 if (cache.stats == cache.UPDATEREADY) {
 if (confirm("This site has been updated. Do you want to reload?")) {
 location.reload();
 }
 }
 }, false);
}

Typically, you would wire up such a check to happen either on an automatic time
interval such as every 24 hours, or in response to a specific application action, such as
the user clicking a button in your page.

If you perform appcache updates on an automatic time interval, prompt-
ing the user before a reload is probably the friendliest approach. How-
ever, if the user initiates the update, you can probably safely reload the
page without prompting, as soon as the appcache is updated.

Discussion
We mentioned that the appcache is special, and the reason for that assertion is that
unlike the browser cache, resources that are in the appcache never expire (similar to the
localStorage interface we discussed in “Local Storage” on page 202).

Practically speaking, this means any resources listed in the cache manifest are cached
rather permanently, and more specifically, the browser does not re-request any of those
resources on subsequent page loads.

The persistent caching of resources definitely improves performance on subsequent
page views, especially on bandwidth-limited mobile devices.

However, it’s sometimes necessary to be able to update one or more items in that
persistent cache.

There are two ways to go about forcing the browser to discard its cache and update the
resources listed in the manifest.

One technique is useful for subsequent page loads, while the other is useful for updates
during the lifetime of a single page view.

It’s important to understand that if an appcache already exists for a page at the time of
page load, even if it’s determined to be out of date by virtue of finding an updated cache

208 | Chapter 10: Advanced HTML5 JavaScript

manifest file, the browser immediately uses the current appcache to render the page,
and any updates to appcache contents are available only on the next page load.

Using JavaScript via the UPDATEREADY event as shown above, you can detect that the
current page was rendered with out-of-date cache items, and force update the appc
ache during that page view. This allows any subsequent uses of resources in the page
lifetime to use the updated versions of the files. You can also just reload the entire page
to use the new appcache contents everywhere, as long as this is okay with the user!

The appcache is considered to be more reliable for offline application resource caching
than the normal browser cache. It also provides a JavaScript API for interacting with
updates–something the regular browser cache doesn’t provide.

See Also
This beginner’s guide provides an introduction to applicationCache functionality: http:
//www.html5rocks.com/en/tutorials/appcache/beginner/.

For more i-depth information on the applicationCache API, see this MDC entry: https:
//developer.mozilla.org/en/offline_resources_in_firefox.

In addition, http://appcachefacts.info has a great discussion of important nuances of
appcache behavior.

Drag and Drop

Problem
You want to implement native drag and drop functionality without managing mouse
events manually or using a complex library.

Solution
Recognizing how common drag and drop interaction is in today’s complex web appli-
cations, HTML5 now defines a direct API for handling drag and drop (“D&D”).

To test if the browser supports native D&D functionality, use the following feature-
detect:

var dnd_support = 'draggable' in document.createElement('span');

Now, let’s build a simple D&D demo. Let’s begin by setting up some visual styles for
our D&D elements:

<style>
#foobar { background-color:yellow; width:100px; height:100px; cursor:move; }
#catcher { background-color:blue; width:150px; height:150px; padding:5px; margin-bottom:5px; }
</style>

Drag and Drop | 209

http://www.html5rocks.com/en/tutorials/appcache/beginner/
http://www.html5rocks.com/en/tutorials/appcache/beginner/
https://developer.mozilla.org/en/offline_resources_in_firefox
https://developer.mozilla.org/en/offline_resources_in_firefox
http://appcachefacts.info

The first step in enabling native D&D is to put the draggable attribute on the element
you want to be drag-enabled:

<div id="catcher">...</div>
<div id="foobar" draggable="true">...</div>

Next, we need to use the JavaScript API and D&D events to tell the browser where the
element can be dragged to, and what to do once it’s dropped there.

For example, we can listen for the dragstart event, and style the element differently
when it’s being dragged (like putting a border around it or making it partially trans-
parent).

var foobar = document.getElementById("foobar");
foobar.addEventListener("dragstart", function(evt) {
 this.style.border = "3px dotted #000"; // black dotted-line border
}, false);

Now, let’s style an element that can receive the drop, so that when the dragged item is
over it, it makes it obvious that you can drop the element there (as opposed to just
dropping it in any location):

var catcher = document.getElementById("catcher"); // will catch the dropped element
catcher.addEventListener("dragenter", function(evt) {
 this.style.border = "3px solid red"; // make the catcher have a red border
}, false);

catcher.addEventListener("dragleave", function(evt) {
 this.style.border = ""; // remove the border from the catcher
}, false);

catcher.addEventListener("dragover", function(evt) {
 if (evt.preventDefault) evt.preventDefault();
 return false;
}, false);

In the preceding snippet, we added event listeners to the element that catch our dropped
element for the dragover, dragenter, and dragleave events. The dragenter and dra
gleave events simply toggle on a red border to our target element to make it clear that
you can drop the element there, as shown in Figure 10-1.

The dragover event is fired continuously while dragging around on top of the target.
So we would not want to toggle on the red border in that handler, as that would create
unnecessary work for the browser. However, we do need to prevent that event from
various default behavior, depending on the type of element being dragged. This is why
we use preventDefault() and return false.

Lastly, we need to wire up a dataTransfer object with data that the browser needs for
handling the D&D actions. So, we’ll modify our dragstart event handler like so:

foobar.addEventListener("dragstart", function(evt) {
 this.style.border = "3px dotted #000"; // black dotted-line border

 evt.dataTransfer.effectAllowed = "move";

210 | Chapter 10: Advanced HTML5 JavaScript

 evt.dataTransfer.setData("Text", this.id);
}, false);

The effectAllowed property controls what visual feedback—generally the mouse cur-
sor—the browser gives on the type of drag event that is occurring (move, copy, etc.).

The setData(...) method tells the D&D mechanism in the browser which data from
the element being dragged should be dropped into the target element, otherwise known
as the drop catcher. Here we specify that only the id property of the original element
is transferred, which is used later to actually move the element.

Now, we need to define a dragend event handler to clear up the visuals, and a drop event
handler, to actually do the moving of our element:

foobar.addEventListener("dragend", function(evt) {
 this.style.border = ""; // remove the border
}, false);

catcher.addEventListener("drop", function(evt) {
 if (evt.preventDefault) evt.preventDefault();
 if (evt.stopPropagation) evt.stopPropagation();

 this.style.border = ""; // remove the border from the catcher

 var id = evt.dataTransfer.getData("Text"); // get the id
 var elem = document.getElementById(id);
 elem.parentNode.removeChild(elem); // remove the element
 this.appendChild(elem); // add the element back into our catcher

 return false;
}, false);

In the drop event handler, we first get the data that was transferred in the drop, which
in this case was the id property of the original source element that we dragged. Next,
we remove that element from its current location, and finally add it back into the new
location inside our catcher container. The result is shown in Figure 10-2.

Figure 10-1. Showing the drag event in progress, dragging the yellow box into the blue box.

Drag and Drop | 211

Discussion
The native HTML5 drag and drop API is both useful and quite complex. As you can
see from the previous code snippets, it doesn’t require an entire complex library to
enable D&D on your site, but it’s not particularly trivial either. But with complexity
comes lots of flexibility.

The first most obvious thing you’ll notice when attempting to run the above code
yourself (not entirely obvious just from the screenshots) is that the yellow box itself
doesn’t move while you are holding down the mouse button and moving the mouse.

Different browsers render this experience slightly differently, but in general, the yellow
box stays put during the drag, and what shows is a different icon for the mouse cursor,
to let the user know that a D&D event is in progress.

This may seem a bit counter-intuitive: dragging an element doesn’t actually move the
element itself while dragging.

You might expect it to work the same as if you drag a window around on your desktop
—the window tracks along directly under the mouse cursor as you move.

On the other hand, if you drag an icon around on the Windows OS desktop, the icon
doesn’t move with the mouse—it only moves once you let go of the mouse button and
stop the drag (this is the drop). This latter experience is more closely aligned with how
native D&D works in HTML5.

Consider that native D&D is designed so you can drag all sorts of different things, not
all of which have visual representations like our yellow box does.

As such, native D&D does not necessarily imply actually visually moving any element
on the page. Instead, D&D is about dragging a reference from one object to another
and connecting the two in a D&D event, whereby you can then decide what that con-
nection means and how to respond.

The events associated with native D&D are:

dragstart
called when the “draggable” element first starts being dragged

Figure 10-2. Showing the results of dragging the yellow box into the blue box.

212 | Chapter 10: Advanced HTML5 JavaScript

dragend
called at the end of a drag event, successful or canceled.

dragenter
called on a target drop container when the drag first moves over the target

dragleave
called when the drag moves off the target

dragover
called continuously while the drag is over the target

drop
called when the drag event is completed by dropping the element onto the target
drop container

Sometimes, you might just be copying invisible attributes from one element to another.
Other times, you might be initiating some action like deleting, by moving an element
onto a trash icon. In our example, we are re-positioning the yellow box inside the blue
box, so once the D&D event finishes, we actually move of the yellow box.

Since the yellow box is visible, it seems to make sense that we might want to move it
around as we drag (like when dragging a window). However, the typical JavaScript
approach to this does not work, because the mousemove event does not fire during a
D&D action. The global drag event does fire on the document, but cross-browser it
doesn’t reliably have coordinates we can use to position the element.

If you need to actually move an element around during the drag, it’s best not to use
native D&D... for now, anyway. Hopefully this shortcoming is addressed eventually.
Until then, use established patterns and/or libraries for emulating D&D with mouse
events.

Another very advanced usage of the native D&D functionality that is on the horizon is
the ability to drag items between windows, or between your browser and the desktop,
and vice versa.

For instance, you can drag a file from your desktop and drop it onto a target on a web
page. Responding to the drop is identical to the code snippets above—the only differ-
ence being that you didn’t need an element on your page with the draggable attribute
to be the thing that you dragged. For example:

catcher.addEventListener("drop", function(evt) {
 if (evt.preventDefault) evt.preventDefault();
 if (evt.stopPropagation) evt.stopPropagation();

 this.style.border = ""; // remove the border from the catcher

 var files_array = evt.dataTransfer.files;
 // now, you have a reference to the file(s) that the user dragged
 // onto your page. Do something cool with them!

Drag and Drop | 213

 return false;
}, false);

As you can see, the native D&D functionality is focused on data transfer between two
elements, rather than on moving an element from one position to another. This really
helps us out here big time. We receive in the dataTransfer.files property a list of
references to the file(s) that the user chose to drag onto our application. There was
nothing visual about this operation—it was entirely about dragging data (file referen-
ces) from the desktop to an element on our page!

Now, once we have a reference to a file on the user’s system, what can we do with it?
We address that in “Local Files” on page 226 Local Files.

There is likely be a lot of changes to this advanced functionality before it settles and is
standardized across all browsers. But it’s exciting to know that it’s coming soon!

See Also
For more information on the native HTML5 Drag and drop, see this tutorial: http://
www.html5rocks.com/en/tutorials/dnd/basics/.

Web Workers

Problem
You want to run a complex, long-running JavaScript task without locking up the UI in
the browser.

Solution
You need to run the JavaScript task in a separate thread, and the way to do this is with
the Worker API, otherwise known as Web Workers.

Web Workers create a special environment for JavaScript code to run in that occurs in
a separate thread from the main UI of your page. This means that your page’s UI won’t
be locked up if you have particularly long-running JavaScript code.

To test if the browser supports Web Workers, use the following feature-detect for the
Worker API:

var webworkers_support = !!window.Worker;

Now let’s build a simple Web Workers demo. We’ll initialize a large 2-dimensional
array with random numbers, a task that may take long enough to cause a noticeable
UI delay.

You might use such a 2-D array of random numbers to represent random pixels in a
canvas element (see Chapter 9). Two nested for-loops do the trick:

214 | Chapter 10: Advanced HTML5 JavaScript

http://www.html5rocks.com/en/tutorials/dnd/basics/
http://www.html5rocks.com/en/tutorials/dnd/basics/

var data = [];
for (var i=0; i<1500; i++) {
 data[i] = [];
 for (var j=0; j<1500; j++) {
 data[i][j] = Math.random();
 }
}

Nothing particularly exciting going on here. Such an array, with 2.25 million (1500 ×
1500) operations to initialize it, may very well lock up the UI for anywhere from 2 to
30 seconds, depending on browser and device capability.

A more graceful way to handle this, without locking the UI, is to put such an operation
into a separate thread, a Web Worker, and simply wait to be notified of it finishing
before continuing.

To do this, first put this code above into a separate file, called for instance “init_ar-
ray.js”, and wrap the code in an onmessage event handler:

self.onmessage = function(evt) {
 var data = [];
 for (var i=0; i<1500; i++) {
 data[i] = [];
 for (var j=0; j<1500; j++) {
 data[i][j] = Math.random();
 }
 }

 self.postMessage(data);
 data = null; // unassign our copy of the data now, to free up memory
}

This is the code for the Web Worker. The code first tells the worker to listen for the
message event, which lets the worker know when to start.

Once started, the worker performs the long-running computation. Finally, the worker
sends back a message (the data array in our example) using postMessage(...), to the
main page. Workers can also be started by other workers, and the communication
works exactly the same.

Different from normal JavaScript operations, where passing an object
around is done by reference, the data passed in worker messages is
copied, which means that double the memory is consumed during the
transmission. For most types of data, this is not an issue to be concerned
with.

But in our example with the large array, the considerable memory usage
is something to watch out for issues on memory-limited mobile devices.
To conserve memory, only keep variables with large amounts of data in
them around for the shortest amount of time necessary.

Web Workers | 215

In the main page of our UI, we create the worker, pointing it at the appropriate file.
Then we set up a listener for the message event, to receive the message (the initialized
array) from the worker when it finishes its job. We start the worker by sending it an
empty message using postMessage():

var worker = new Worker("init_array.js");

worker.onmessage = function(evt) {
 alert("Data array initialization finished!");
 var data = evt.data;
};

worker.postMessage(); // tell our worker to start his task

Discussion
Web Workers are very useful for offloading complex or long-running tasks to another
thread, something that JavaScript itself cannot do.

If Web Workers are not supported in a particular browser, you’ll need to just run your
code in the main JavaScript thread, and deal with the delays it may cause. In some
circumstances, you can break up your long-running code into smaller chunks, and run
each chunk at a time, pausing briefly in between to let the UI update before resuming.
For example:

function doNextChunk() {
 var done_yet = false;
 for (var i=0; i<500; i++) { // do 500 iterations at a time
 // do something
 // when done, set `done_yet` = true
 }
 if (!done_yet) setTimeout(doNextChunk,0);
 else alert("All done finally!");
}

doNextChunk();

Using a setTimeout(...,0) pattern, we do 500 iterations of a long-running loop, then
pause for a brief moment long enough for the UI to update, then we resume and do
another 500 iterations, etc. This technique has better performance than letting a long-
running piece of code tie up the UI indefinitely. But the performance is still be far less
efficient than if Web Workers can be used.

By creating a Web Worker, you are creating a bridge between your main JavaScript in
your page, and a sandboxed piece of JavaScript running in another thread. These two
sides of the bridge communicate with each other by asynchronously sending and re-
ceiving messages, using and postMessage(...) and listening for the message event.

216 | Chapter 10: Advanced HTML5 JavaScript

An asynchronous Ajax call using XMLHttpRequest ("XHR") to a server
is quite similar to sending and receiving asynchronous messages to/from
a Web Worker.

The Web Workers communication interface also allows errors to be sent and received.
To signal an error from inside a worker, simply throw a JavaScript error, like so:

self.onmessage = function(evt) {
 var data = [];
 for (var i=0; i<1500; i++) {
 data[i] = [];
 for (var j=0; j<1500; j++) {
 data[i][j] = Math.random();
 if (data[i][j] == 0) {
 throw "I don't like zeros in my array!";
 }
 }
 }

 self.postMessage(data);
 data = null; // unassign our copy of the data now, to free up memory
}

To receive an error message from a worker, listen for the error event:

var worker = new Worker("init_array.js");

worker.onerror = function(err) {
 alert("An error occurred in the initialization of the array.");
 throw err; // optional
}

worker.onmessage = function(evt) {
 alert("Data array initialization finished!");
 var data = evt.data;
};

worker.postMessage();

A Web Worker is sandboxed away from the main page, and basically can only com-
municate with the page using these messages. That means the worker cannot access
the DOM to read or modify any information. Also, UI-centric tasks like calling an
alert(...) dialog are not allowed.

However, a worker does have several helpful things available to it. The worker can
access the navigator object, to identify the user agent (browser) running it. A worker
can also load scripts into it, using the importScripts(...) command.

if (navigator.userAgent.test(/MSIE/)) { // UA sniffing is *bad* practice!!
 importScripts("ie_helper.js");
}
self.onmessage = function(evt) {

Web Workers | 217

 /* ... */
}

loadScripts(...) loads one or more scripts in parallel, but always executes
them in the order requested.

Also, loadScripts(...) executes synchronously, meaning it blocks the rest
of the worker until it finishes loading and executing the scripts.

A worker may spawn another worker, exactly the same as we’ve just seen. A worker
may also be terminated by the code which created the worker, by calling terminate()
on the worker instance.

Finally, workers may use timeouts and intervals, including setTimeout(...), clearTi
meout(...), setInterval(...), and clearInterval(...). This would be useful if, for
instance, you wanted to have a worker running in the background every so often, no-
tifying the page each time it runs:

self.onmessage = function(evt) {
 setInterval(function(){
 self.postMessage(Math.random()); // send a random number back
 }, 60*60*1000); // execute once per hour
}

Web Sockets

Problem
You want to create persistent, two-way communication between your web application
and the server, so that both the browser and the server can send and receive data from
each other as needed.

Solution
Most browsers now have the native ability to establish a bi-directional socket connec-
tion between the browser and the server, using the WebSocket API. This means that both
sides (browser and server) can send and receive data.

Common use cases for Web Sockets are live online games, stock tickers, chat clients,
etc.

To test if the browser supports Web Sockets, use the following feature-detect for the
WebSocket API:

var websockets_support = !!window.WebSocket;

Now, let’s build a simple application with chat room type functionality, where a user
may read the current list of messages, as well as add their own message to the room.

218 | Chapter 10: Advanced HTML5 JavaScript

We’ll have a text entry box where new messages are written before being sent, and we’ll
have a list of messages in the chat room. We don’t need features such as login or au-
thentication here—only simple chat room message sending and receiving.

<!DOCTYPE html>
<html>
<head>
<title>Our Chatroom</title>
<script src="chatroom.js"></script>
</head>
<body>
<h1>Our Chatroom</h1>

<div id="chatlog"></div>

<input id="newmsg" />

<input type="button" value="Send Message" id="sendmsg" />
</body>
</html>

Now, let’s examine the JavaScript in “chatroom.js”:

var chatcomm = new WebSocket("ws://something.com/server/chat");

chatcomm.onmessage = function(msg) {
 msg = JSON.parse(msg); // decode JSON into object

 var chatlog = document.getElementById("chatlog");
 var docfrag = document.createDocumentFragment();
 var msgdiv;

 for (var i=0; i<msg.messages.length; i++) {
 msgdiv = document.createElement("div");
 msgdiv.appendChild(document.createTextNode(msg.messages[i]));
 docfrag.appendChild(msgdiv);
 }

 chatlog.appendChild(docfrag);
};

chatcomm.onclose = function() {
 alert("The chatroom connection was lost. Refresh page to reconnect.");
};

document.getElementById("sendmsg").addEventListener("click", function(){
 var newmsg = document.getElementById("newmsg");

 chatcomm.send(newmsg.value); // send the message to the server
 newmsg.value = ""; // clear out the message entry box
}, false);

Let’s break down that code just a little bit. First we create the socket and point it at a
location on our server. The server URL in our example uses the “ws://” protocol, as
opposed to the more common “Error! Hyperlink reference not valid.” you’re fa-

Web Sockets | 219

miliar with. This signals the special protocol that Web Sockets use between client and
server.

Next, we set up two event listeners on our socket object: onmessage and onclose. The
onclose handler is self-explanatory—it is fired when the connection is closed.

The server-side implementation of this chat-room demo is beyond the
scope of this chapter, but there are lots of tutorials and software projects
for making this very easy to do in any of your favorite server-side lan-
guages, including PHP, JavaScript (node.js), Java, etc.

Such a chat-room server just needs to implement basic send and receive
actions much like the JavaScript you see here for the client. As a basic
implementation, the server doesn’t even need to persist the messages;
it can just publish each message out to the socket stream as it is received,
meaning that all clients that are currently connected see it.

Our onmessage handler receives a string of data (which in our example we expect to be
JSON), and parses it into a message object. The message object has an array of one or
more messages (each one is just simple text). The handler loops through each message,
adding it to the chat log in the order received.

Lastly, the code sets up a click event handler on the “Send Message” button. When
clicked, the handler takes whatever has been typed into the entry input, and sends it
to the server, using the send(...) method.

Discussion
Admittedly, this type of functionality is not new at all. Since the advent of Ajax, using
the XMLHttpRequest (“XHR”) object, developers have been sending and receiving data
between browser and server. Other approaches have included instantiating an invisible
flash object and using flash’s socket communication capabilities.

However, it’s quite inefficient in the XHR approach to establish a whole new connec-
tion for each piece of data you need to send from browser to server. It’s similarly un-
desirable to instantiate a memory-heavy Flash instance to use socket communication.

So, Web Sockets are understandably a welcomed addition to the “HTML5 & Friends”
family of technologies.

The message sending and receiving in Web Sockets is like a sensible mix between XHR
and Web Workers that we saw in “Web Workers” on page 214.

220 | Chapter 10: Advanced HTML5 JavaScript

Web Sockets requires both the browser and the server to speak a stand-
ardized and agreed upon protocol (much like HTTP is for normal web
pages). However, this protocol has undergone quite a lot of experimen-
tation and change as it has developed over the last couple of years.

It is beginning to stabilize a little bit, but Web Sockets are still quite
volatile. And you have to make sure that your server is speaking the most
up-to-date version of the protocol so that the browser can communicate
properly with it.

The WebSocket object instance has, similar to XHR, a readyState property, which lets
you examine the state of the connection. It can have the following constant values:

{worker}.CONNECTING (numeric value 0)
connection has not yet been established

{worker}.OPEN (numeric value 1)
connection is open and communication is possible

{worker}.CLOSING (numeric value 2)
connection is being closed

{worker}.CLOSED (numeric value 3)
connection is closed (or was never opened successfully)

The events that a WebSocket object instance fires are:

open
called when the connection has been opened

message
called when a message has been received from the server

error
called when an error occurs with the socket (sending or receiving)

close
called when the connection is closed

For each of these events, you can add an event listener using addEventListener(...),
or you can set a corresponding handler directly on the worker object instance, including
onopen, onmessage, onerror and onclose.

If Web Sockets are not supported, you’ll need to provide some fallback functionality
for your application, or at least gracefully notify the user that their browser doesn’t
support the required functionality. Fortunately, there’s a very easy way to do that.

Because consistent browser support for Web Sockets has been elusive, the best practice
suggestion for using Web Sockets is to use a library like Socket.io (http://socket.io/),
which attempts to use Web Sockets if available, and falls back to a variety of other
techniques for communication if Web Sockets are not present.

Web Sockets | 221

http://socket.io/

You should also be aware of how Web Sockets usage scales in terms of server resources.
Traditional web requests only take up dedicated resources from the server for a split
second at a time, which means you can serve a lot of web traffic from your server without
having too much overlap and thus running out of resources.

Sockets on the other hand tend to be more dedicated, and so there can be issues with
resource availability under high load. Your server setup and architecture vary greatly
with your application’s needs, and are a big factor in how well you are able to utilize
Web Sockets.

See Also
For more information about Socket.io, see the project homepage at: http://socket.io/.

History

Problem
For your web application, you want fine-grained control to manage the forward/back-
ward button history queue, as well as the displayed URL in the address bar of the
browser.

Solution
HTML5 brings us several important enhancements to the browser’s window.history
object, commonly referred to as the History API.

To test if the browser supports the enhanced History API, use the following feature-
detect:

var history_support = !!(window.history && window.history.pushState);

Normally, when you change the URL in the address bar, the browser initiates a new
request to the server for that new page. But, today’s complex web applications more
commonly use Ajax to load only new information, without full-page refreshes. This
leads to a disconnect, where web applications can’t update the address bar URL, be-
cause they don’t want a browser page refresh.

To change the URL in the address bar without forcing a new page load, use the his
tory.pushState(...) method. This method updates the URL in the address bar, and
creates a special state-oriented entry in the browser’s history.

222 | Chapter 10: Advanced HTML5 JavaScript

http://socket.io/

The new URL you pass to pushState() or replaceState() must be the
same origin (domain, etc) as the current page, or the API throws an error.
You can change the path, filename, query string, and hash portions of
the URL, just not the protocol/schema, domain, or port.

It would make no sense, and indeed would be a security risk, to allow
mixing of URL origins in the state queue. Use normal location/history
manipulation if you need to navigate across different origins.

That means that if a user then clicks the back button in their browser, instead of doing
a reload of the previous page, the browser fires the new popstate event, which your
application can respond to by setting the page back to that previous state.

Let’s take a look at an example of how these two additional functionalities work to-
gether to allow you to handle forward/backward navigation with only state changes
(and not separate page loads), as well as keeping the displayed URL in the address bar
up to date.

Our example keeps track of whether an element is visible or not, and maintains this
state in the browser’s forward/backward navigation stack—as well as reflecting that
state in the browser address bar URL—so that the current state can be copied and
pasted or bookmarked:

<html>
<head>
<title>History Exmaple</title>
<script>
function showText(updateHistory) {
 document.getElementById("long_desc").style.display = "block";
 if (updateHistory) history.pushState(null, null, "?show");
}
function hideText(updateHistory) {
 document.getElementById("long_desc").style.display = "none";
 if (updateHistory) history.pushState(null, null, location.href.replace(/\?show/, ""));
}
function toggleText() {
 var elem = document.getElementById("long_desc");
 if (elem.style && elem.style.display == "none") showText(true);
 else hideText(true);
}
function manageText() {
 if (location.href.match(/\?show/)) showText();
 else hideText();
}

window.addEventListener("popstate", manageText, false);
window.addEventListener("DOMContentLoaded", function(){
 document.getElementById("toggle").addEventListener("click", function(e){
 toggleText();
 e.preventDefault();
 return false;
 }, false);

History | 223

 manageText();
}, false);
</script>
</head>
<body>
<p>Here's a short description.</p>
toggle
<p id="long_desc">Here's a longer description, which can be shown or hidden.</p>
</body>
</html>

If you run this demo, and click successively on the “toggle” link, you’ll see that the the
longer text description paragraph is indeed toggled on and off. You’ll also notice that
when the paragraph is visible, the URL has “?show” in it, and when it’s hidden, this
parameter is removed. Finally, you will notice the forward/backward navigation cycles
through these states, showing and hiding the paragraph as appropriate.

Try copying and pasting the URL while the “?show” is visible, and pasting that into a
new browser tab, and you’ll see that indeed the paragraph is visible—the state really
was preserved in the URL, as we wanted.

The above example keeps track of the state changes in the forward/backward queue of
the browser. For some applications, this is desirable. For other applications, polluting
the forward/backward queue with lots and lots of intermittent state changes is not
appropriate.

So, instead of using pushState(...), use replaceState(...), which, as the name im-
plies, replaces the current state entry in the forward/backward navigation with the new
desired state. If we do that for our example above, it looks like this:

//...

function showText(updateHistory) {
 document.getElementById("long_desc").style.display = "block";
 if (updateHistory) history.replaceState(null, null, "?show");
}
function hideText(updateHistory) {
 document.getElementById("long_desc").style.display = "none";
 if (updateHistory) history.replaceState(null, null, location.href.replace(/\?show/, ""));
}

//...

Running that updated demo, you’ll see that the toggle behavior and the URL all behave
the same. The only difference is that there’s no forward/backward queue state to cycle
through.

Discussion
The browser has long supported a History API. The difference that HTML5 brings is
the enhanced functionality of pushState(...), replaceState(...) and popstate.

224 | Chapter 10: Advanced HTML5 JavaScript

Before the HTML5 History API enhancements were added to browsers, the only way
to emulate the functionality described above was using the URL’s “hash” (the end of
a URL that looks like “#some|stuff|here”).

Most browsers agree on behavior that if you change the current page’s hash, then the
browser saves that state in the forward/backward queue, update the displayed URL,
and suppress the browser from requesting a new page from the server.

On the surface, that sounds just like what we’re looking for. However, there are several
browser quirks (race conditions, etc) which make dealing with hash changes hard to
get consistent and reliable.

In particular, older browsers don’t all support the hashchange event, which is very
helpful in monitoring the state of the URL hash, in case a user copies and pastes a URL
into the address bar. Without that event, you must poll the URL hash using a timer.

Fortunately, all this mess is generally taken care of by various helper libraries. One
particularly useful library is History.js (https://github.com/balupton/history.js), which
attempts to use the new HTML5 History API enhancements, and falls back to URL
hash management automatically.

The above code example stores a simple state in the URL (“?show”). This is good for
the copy/paste (or bookmarking) use case, as the entirety of the state is in the URL and
thus restorable.

If you have a more complex set of states to manage, and copy/paste or bookmarking
is not important, you can actually store a much richer and more complex set of states
with each entry. This complex state is saved with an entry, and then retrieved and sent
back to your application via the popstate event handler as the user navigates back with
the back button.

The first parameter to pushState(...)/replaceState(...) is the state object, which can
be any arbitrarily complex object that you need, as long as it’s serializable to a string
value.

For example:

window.addEventListener("popstate", function(e){
 alert("Current state data: " + JSON.stringify(e.state));
}, false);

window.pushState({foo:"bar"}, null, "?foobar");
window.pushState({bar:"baz"}, null, "?barbaz");
history.back(); // triggers `popstate` to go back to the "?foobar" page/state

Browsers currently don’t support the second parameter, which is a “ti-
tle” for the new state, so just pass null or an empty string for that pa-
rameter.

History | 225

https://github.com/balupton/history.js

See Also
• For more information about using the API, see the following MDC entry: https://

developer.mozilla.org/en/DOM/Manipulating_the_browser_history.

• For more information about History.js, see the github repo at: https://github.com/
balupton/history.js.

Local Files

Problem
You want users to be able to read an image file from their local file-system, and do
something with it in the webpage, such as previewing or uploading it.

Solution
Prior to HTML5, the only interaction users could have with their local file system was
through the input[type=file] element. This functionality was an opaque action as far
as the page’s JavaScript was concerned, because the page couldn’t see anything about
the file selected, or interact with it in any meaningful way.

HTML5 gives us the FileReader API, which lets us take a reference to a local file, and
read its contents directly into the web page.

To test if the browser supports the enhanced FileReader API, use the following feature-
detect:

var history_support = typeof FileReader != "undefined";

We saw in “Drag and Drop” on page 209 how to get a reference to local file(s) using
the native drag and drop functionality. In a very similar way, we can now get a reference
to local files selected by the user in a input[type=file] element:

<p>Pick an image file:</p>
<input type="file" id="file_selector" />

<script>
var file_selector = document.getElementById("file_selector");
file_selector.addEventListener("change", function(){
 var files_array = this.files;
 // now, you have a reference to the file(s) that the user selected.
 // Do something cool with them!
}, false);
</script>

Either way, once you have a reference to a local file, such as an image file, you can read
the contents of that file using a FileReader instance:

226 | Chapter 10: Advanced HTML5 JavaScript

https://developer.mozilla.org/en/DOM/Manipulating_the_browser_history
https://developer.mozilla.org/en/DOM/Manipulating_the_browser_history
https://github.com/balupton/history.js
https://github.com/balupton/history.js

function read_image_file(file) {
 var reader = new FileReader();
 reader.onload = function(e){
 var image_contents = e.target.result;
 // now you have the contents of the file!
 };
 reader.readAsDataURL(file);
}

Now that you have the file contents, in this case, as a data URI (base64-encoding of
the file), you can display it in an img element. The code all put together looks like this:

<p>Pick an image file:</p>
<input type="file" id="file_selector" />

<script>
var file_selector = document.getElementById("file_selector");
file_selector.addEventListener("change", function(){
 var files_array = this.files;
 // we only allowed one file to be selected
 if (files_array[0].type.match(/image/)) { // it's an image file
 read_image_file(files_array[0]);
 }
}, false);

function read_image_file(file) {
 var reader = new FileReader();
 reader.onload = function(e){
 var image_contents = e.target.result;
 var img = document.createElement("img");
 img.src = image_contents;
 document.body.appendChild(img);
 };
 reader.readAsDataURL(file);
}
</script>

This code snippet assumes only one file being selected, but the <input
type=”file”> element now supports the “multiple” attribute, which al-
lows the user to select more than one file at a time. This is why we receive
an array of file references, rather than a single file reference.

If you also want to let the user upload the image file they’ve selected, you simply need
to send the file’s contents to the server via an XHR Ajax call:

<p>Pick an image file:</p>
<input type="file" id="file_selector" />
<input type="button" id="upload" value="Upload Image" disabled />

<script>
var file_selector = document.getElementById("file_selector");
file_selector.addEventListener("change", function(){
 var files_array = this.files;

Local Files | 227

 // we only allowed one file to be selected
 if (files_array[0].type.match(/image/)) { // it's an image file
 read_image_file(files_array[0]);

 file_selector.disabled = true; // disable the file selector now
 var upload = document.getElementById("upload");
 upload.disabled = false;
 upload.addEventListener("click", function(){
 upload_file(files_array[0]);
 }, false);
 }
}, false);

function upload_file(file) {
 var xhr = new XMLHttpRequest();
 xhr.setRequestHeader("Content-Type", "multipart/form-data");
 xhr.setRequestHeader("X-File-Name", file.fileName);
 xhr.setRequestHeader("X-File-Size", file.fileSize);
 xhr.setRequestHeader("X-File-Type", file.type);
 xhr.open("GET", "image_upload.php");
 xhr.send(file);
}

function read_image_file(file) {
 var reader = new FileReader();
 reader.onload = function(e){
 var image_contents = e.target.result;
 var img = document.createElement("img");
 img.src = image_contents;
 document.body.appendChild(img);
 };
 reader.readAsDataURL(file);
}
</script>

Notice that you now have access to the file’s name, size, and type, and so you send that
data along to the server along with the file’s contents. Other than that, we’re not doing
much extra here that’s particularly HTML5’y—we’re just using standard XHR to up-
load the file.

Discussion
HTML5 gives us the FileReader API, so we can read a user’s local file contents, and
use those contents in the webpage.

The example above shows how to use those contents to display an image file’s preview,
or to send (aka, upload) those file contents to a server using Ajax. There are of course
a variety of other things you may want to do with the file’s contents.

For instance, the FileReader API provides a readAsBinaryString(...) method, which
gives you a binary string representation of the file’s contents. If you know the format
of the file you are reading, you can perform various operations on this data.

228 | Chapter 10: Advanced HTML5 JavaScript

As another example, if you put the image data into an img element (as shown above),
then you could use what you learned in “Web Sockets” on page 218 to render that
image to a canvas element, where you can then perform various color and geometric
transformations (see “History” on page 222 and “Local Files” on page 226).

At this time, access to local files is restricted to read-only, and it must be initiated by a
user action, such as dragging a file onto the webpage or selecting one or more files from
the input[type=file] element. This is probably for the best, safety-wise, as allowing
pages to write to the local file system, while cool, could be quite dangerous!

Also, keep in mind that local file access is still heavily evolving in browsers, and so it’s
very important to test the functionality you want in your target browser environments,
and to provide fallback behavior if it isn’t present or doesn’t work the way you need it
to.

See Also
For more information about interacting with local files from the webpage, see this MDC
entry: https://developer.mozilla.org/en/Using_files_from_web_applications.

Local Files | 229

https://developer.mozilla.org/en/Using_files_from_web_applications

	Table of Contents
	Preface
	Audience
	Assumptions This Book Makes
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Books Online
	Acknowledgments

	Chapter 1. Fundamental Syntax & Semantics
	Introduction
	Specifying the DOCTYPE
	Problem
	Solution
	Discussion
	See Also

	Specifying the Character Set
	Problem
	Solution
	Discussion
	Special Characters

	See Also

	Specifying the Language
	Problem
	Solution
	Discussion
	See Also

	Optimizing scripts and links
	Problem
	Solution
	Discussion
	See Also

	Adding Document Structure With HTML5’s New Elements
	Problem
	Solution
	Discussion
	Structural Elements
	When to Use Structural Elements
	When to Use div Elements
	Styling Structural Elements

	See Also

	Choosing Between article and section
	Problem
	Solution
	<article>
	<section>

	Discussion
	See Also

	Checking Your Document Outline
	Problem
	Solution
	Discussion
	Heading Levels
	Implicit Sectioning
	Why Is This Important?

	See Also

	Modifying the Document Outline
	Problem
	Solution
	Discussion
	See Also

	Emphasizing Text
	Problem
	Solution
	Discussion
	Redefining <i>

	See Also

	Adding Importance to Text
	Problem
	Solution
	Discussion
	Redefining

	See Also

	Highlighting Text for Reference
	Problem
	Solution
	Discussion
	See Also

	Marking Up Small Print
	Problem
	Solution
	Discussion
	See Also

	Defining Acronyms & Abbreviations
	Problem
	Solution
	Discussion
	See Also

	Adding Links to Block-Level Content
	Problem
	Solution
	Discussion
	See Also

	Marking Up Figures and Captions
	Problem
	Solution
	Discussion
	See Also

	Marking Up Dates and Times
	Problem
	Solution
	Discussion
	What About Microformats?
	Publication Dates
	See Also

	Setting the Stage for Native Expanding and Collapsing
	Problem
	Solution
	Discussion
	See Also

	Controlling the Numbering of Your Lists
	Problem
	Solution
	Discussion
	See Also

	Hide Content to Show Later
	Problem
	Solution
	Discussion
	See Also

	Making Portions of a Page Editable
	Problem
	Solution
	Discussion
	See Also

	Set the Stage for Native Drag and Drop
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Progressive Markup & Techniques
	Introduction
	Adding More Semantic Meaning
	Problem
	Solution
	Discussion
	See Also

	Picking a Markup Style
	Problem
	Solution
	Discussion
	See Also

	Understanding Browser Support for HTML5
	Problem
	Solution
	Discussion
	See Also

	Making Internet Explorer Recognize HTML5 Elements
	Problem
	Solution
	Discussion
	See Also

	Detecting HTML5 Features with JavaScript
	Problem
	Solution
	Using Modernizr

	Discussion
	See Also

	Using HTML5 Boilerplate
	Problem
	Solution
	Using the HTML5 Boilerplate

	Discussion
	See Also

	Validating HTML5
	Problem
	Solution
	Discussion
	See Also

	Mapping HTML5 Elements to id and class Names
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Forms
	Introduction
	Displaying a Search Input Field
	Problem
	Solution
	Discussion
	Testing Browser Support

	See Also

	Contact Information Input Fields
	Problem
	Solution
	Discussion
	Customizing the default error message

	See Also

	Utilizing Date and Time Input Fields
	Problem
	Solution
	Discussion
	Additional Features

	See Also

	Number Inputs
	Problem
	Solution
	Discussion
	User Friendly Input Fields
	Additional Features

	See Also

	Selecting From a Range of Numbers
	Problem
	Solution
	Discussion
	Additional Features

	See Also

	Selecting Colors
	Problem
	Solution
	Discussion
	See Also

	Creating an Editable Drop-down
	Problem
	Solution
	Discussion
	datalist Workaround

	See Also

	Requiring a Form Field
	Problem
	Solution
	Discussion
	See Also

	Auto-focusing a Form Field
	Problem
	Solution
	Discussion
	See Also

	Displaying Placeholder Text
	Problem
	Solution
	Discussion
	See Also

	Disabling Autocomplete
	Problem
	Solution
	Discussion
	See Also

	Restricting Values
	Problem
	Solution
	Discussion
	See Also

	Making HTML5 Work in Older Browsers
	Problem
	Solution
	Example 1: Supporting the autofocus attribute
	Example 2: Supporting the placeholder attribute
	Example 3: Supporting the date input type

	Discussion
	See Also

	Validating Form Data in Older Browsers with JavaScript
	Problem
	Solution
	Discussion

	Example: Sample Form
	Problem
	Solution
	Discussion

	Chapter 4. Native Audio
	Introduction
	Adding HTML5 Audio
	Problem
	Solution
	Multiple Audio Codecs
	Integrating Multiple Sources
	Preloading the Audio

	Discussion
	Creating Fallback Content
	Accessible Alternatives
	Intellectual Property Rights

	See Also

	Manipulating the Audio Stream
	Problem
	Solution
	autoplay
	loop

	Discussion
	See Also

	Generating audio Using JavaScript
	Problem
	Solution
	Discussion
	See Also

	Visualizing audio Using canvas
	Problem
	Solution
	Discussion
	See Also

	Sample Design: Custom Audio Player
	Define audio and player structure
	JavaScript API
	CSS for Style
	See Also

	Chapter 5. Native Video
	Introduction
	Adding HTML5 Video
	Problem
	Solution
	Preloading
	Fallback Content

	Discussion
	Multiple Video Codecs
	Browser Support

	See Also

	Ensuring Multi-Browser Video Support
	Problem
	Solution
	Discussion
	See Also

	Setting Video Dimensions
	Problem
	Solution
	Discussion
	See Also

	Displaying a Placeholder Image Before Video Plays
	Problem
	Solution
	Discussion
	See Also

	Making Video Loop
	Problem
	Solution
	Discussion
	Autoplay

	See Also

	Sample Design: Manipulating Video With canvas
	Add video and canvas
	Generate Preview
	Set Preview Dimensions
	Add an Event Listener
	And close out the function:
	Draw Previews
	The Final Product
	See Also

	Chapter 6. Microdata and Custom Data
	Introduction
	When to use microdata versus custom data

	Adding Microdata to Markup
	Problem
	Solution
	Discussion
	See Also

	Using Microdata and Schema.org
	Problem
	Solution
	Discussion
	See Also

	Adding Custom Data to Markup
	Problem
	Solution
	Discussion
	See Also

	Accessing Custom Data with JavaScript
	Problem
	Solution
	Discussion
	See Also

	Manipulating Custom Data
	Problem
	Solution
	Discussion
	See Also

	Example: Creating a Map Application Using Custom Data
	Problem
	Solution
	Discussion
	Example: The jQuery data() method

	See Also

	Chapter 7. Accessibility
	Introduction
	The Purpose of Accessibility
	Accessibility Guidelines

	Writing Appropriate ALT Text Descriptions
	Problem
	Solution
	Multiple Images

	Discussion
	Null alt Attribute
	Using figcaption

	See Also

	Identifying Abbreviations and Acronyms
	Problem
	Solution
	Using abbr

	Discussion
	Styling abbr

	See Also

	Identifying Sections of a Page Using ARIA Landmark Roles
	Problem
	Solution
	ARIA Roles
	Roles for Web Apps

	Discussion
	See Also

	Creating More Accessible Navigation Links
	Problem
	Solution
	Discussion
	Purpose of Skipping Links
	Hiding Skip to Main Content Links

	See Also

	Associating Form Fields with their Labels
	Problem
	Solution
	Multiple labels

	Discussion
	See Also

	Grouping Form Fields Logically
	Problem
	Solution
	Discussion
	See Also

	Enabling a fieldset Dynamically
	Problem
	Solution
	Discussion
	See Also

	Identifying Required Form Fields
	Problem
	Solution
	Write Out Required
	Using ARIA

	Discussion
	The required attribute

	See Also

	Using ARIA Live Regions to Announce When Dynamic Content Is Updating
	Problem
	Solution
	Custom Live Regions

	Discussion
	See Also

	Chapter 8. GeoLocation
	Introduction
	Getting Basic GeoLocation Data
	Problem
	Solution
	Discussion
	See Also

	Basic GeoLocation Data with Fallback
	Problem
	Solution
	Google vs MaxMind
	Coding the Solution

	Discussion
	See Also

	Reverse Geocoding an Address with Latitude and Longitude
	Problem
	Solution
	Discussion
	See Also

	Convert an Address into Latitude and Longitude
	Problem
	Solution
	Discussion
	See Also

	Directions From Current Location
	Problem
	Solution
	Discussion
	See Also

	Starbucks to Starbucks
	Problem
	Solution
	Discussion
	See Also

	Chapter 9. Canvas
	Introduction
	Drawing on a canvas
	Problem
	Solution
	canvas API

	Discussion
	Vectors vs. Bitmaps

	See Also

	Using Transparency
	Problem
	Solution
	Discussion
	See Also

	Setting canvas Dimensions
	Problem
	Solution
	Discussion

	Creating a Gradient
	Problem
	Solution
	Discussion
	See Also

	Pulling External Images Into a canvas Drawing
	Problem
	Solution
	Discussion

	Setting Color Transformations
	Problem
	Solution
	Discussion
	See Also

	Working with Geometric Transformations
	Problem
	Solution
	Discussion

	Placing Text on canvas
	Problem
	Solution
	Discussion
	See Also

	Clipping canvas Drawings
	Problem
	Solution
	Discussion

	Animating canvas Drawings
	Problem
	Solution
	Discussion

	Drawing Graphs with canvas
	Problem
	Solution
	Discussion
	See Also

	Saving a canvas Drawing to a File
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Advanced HTML5 JavaScript
	Introduction
	Local Storage
	Problem
	Solution
	Discussion
	See Also

	Application Caching
	Problem
	Solution
	Updating the appcache

	Discussion
	See Also

	Drag and Drop
	Problem
	Solution
	Discussion
	See Also

	Web Workers
	Problem
	Solution
	Discussion

	Web Sockets
	Problem
	Solution
	Discussion
	See Also

	History
	Problem
	Solution
	Discussion
	See Also

	Local Files
	Problem
	Solution
	Discussion
	See Also

