
ptg6964689

ptg6964689

HTML5
Multimedia

DEVELOP AND DESIGN

Ian Devlin

ptg6964689

HTML5 Multimedia: Develop and Design

Ian Devlin

Peachpit Press

1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.
Copyright © 2012 by Ian Devlin

Editor: Rebecca Gulick
Development and Copy Editor: Anne Marie Walker
Technical Reviewer: Chris Mills
Production Coordinator: Myrna Vladic
Compositor: David Van Ness
Proofreader: Patricia Pane
Indexer: Valerie Haynes-Perry
Cover Design: Aren Howell Straiger
Cover Production: Jaime Brenner
Interior Design: Mimi Heft

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the pub-
lisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim, the
designations appear as requested by the owner of the trademark. All other product names and services identi-
fied throughout this book are used in editorial fashion only and for the benefit of such companies with no
intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey
endorsement or other affiliation with this book.

ISBN-13: 978-0-321-79393-5
ISBN-10: 0-321-79393-5

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

ptg6964689

Dedicated to the memory of Paul Fallon

Tá daoine a shiúlann inár saolta agus shiúlann amach astu go luath

Tá daoine a fhanann ar feadh tamaill

Agus fágann said rianta a gcos ar ár gcroíthe

Agus casann ár n-anamacha port nua go deo deo

ptg6964689

IV HTML5 MULTIMEDIA

Writing a book is a time-consuming and difficult process, and one I knew noth-
ing about before embarking on this project. A number of people have helped me
through the book-writing process, and others have helped me through the HTML5
process, whether they know it or not. All deserve my thanks.

To Rebecca Gulick for giving me the opportunity to actually write this book
and for clearly explaining to me the steps involved.

To Anne Marie Walker for ensuring that my words are clear and understandable.
To Chris Mills for his editing and technical reviewing skills, and providing me

with many good suggestions and alterations throughout the text.
To Rich Clark for giving me the opportunity to curate for HTML5 Gallery (www.

html5gallery.com), which not only increased my interest in and knowledge of
HTML5, but it also led to me writing this book.

To Remy Sharp for first drawing my attention to HTML5 in an article in .net
magazine back in October 2009.

To you, the reader, for deciding to purchase this book with the intention of
learning. I hope you find it enjoyable and educational.

ACKNOWLEDGMENTS

www.html5gallery.com
www.html5gallery.com

ptg6964689

CONTENTS V

Introduction . xi

CHAPTER 1 AN INTRODUCTION TO HTML5 . 2

What Is HTML5? . 4

The Progression of HTML5 . 4
When Can You Use HTML5? . 7

Main HTML5 Structural Elements . 8
DOCTYPE and Charset . 8

<header> and <footer> . 11

<hgroup> . 12

<article> and <section> . 13

<nav> . 17

<aside> . 18

<figure> and <figcaption> . 19

<script> . 21

Wrapping Up . 21

CHAPTER 2 HTML5 MULTIMEDIA ELEMENTS . 22

History of Web Multimedia . 24
Media Players . 24

HTML Elements . 28

Welcome, Native Multimedia! . 31
The Audio Element . 32

The Video Element . 35

The Source Element . 38

The Track Element . 40

Wrapping Up . 43

CONTENTS

ptg6964689

VI HTML5 MULTIMEDIA

CHAPTER 3 USING AUDIO . 44

Audio Codecs and File Formats . 46
Ogg Vorbis . 46

MP3 . 47

WAV . 48

AAC . 48

MP4 . 48

Browser Support for Audio Formats . 49
Encoding Your Audio File . 50

Legacy Browser Fallback . 51

Examples of Using the Audio Element . 52
Playing an Audio File . 52

Playing an Audio File with Different Sources . 54

Playing an Audio File with Different Sources and Legacy Fallback . . 55

Wrapping Up . 59

CHAPTER 4 USING VIDEO . 60

Video Codecs and File Formats . 62
Theora Ogg . 62

MP4 (H.264) . 63

WebM . 63

Browser Support for Video Formats . 64
Encoding Your Video Files . 65

Using the Video Elements . 67
Playing a Video File . 67

Playing a Video File with Different Sources . 69

Playing a Video File with Different Sources and Legacy Fallback 72

Targeting Devices with Different Video Files Using Media Types and
Queries . 75

Android and Video . 80

Wrapping Up . 82

ptg6964689

CONTENTS VII

CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS 84

What Is JavaScript? . 86

Exploring the API Attributes . 87

Harnessing the API Events . 93

Using the API Methods . 96

Creating a Simple Video Player with Custom Controls 98
Adding Play/Pause and Stop Buttons . 99

Adding Volume and Mute Buttons . 104

Adding a Progress Bar . 107

Adding Fast-Forward and Rewind Buttons . 110

Adding a Seek Bar . 112

Non-HTML5 Browsers . 114

Wrapping Up . 115

CHAPTER 6 STYLING MEDIA ELEMENTS WITH CSS . 116

Simple CSS Styling . 118

Advanced Whizzyness with CSS3 . 122
Opacity . 122

Gradient . 123

Rounded Corners . 126

Shadow . 126

Sizing Your Content . 128

WebKit-specific CSS3 Rules . 135
Reflect . 135

Mask . 136

Wrapping Up . 137

ptg6964689

VIII HTML5 MULTIMEDIA

CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION 138

Using Transitions . 140
Using Transitions with Audio and Video . 143

Styling with CSS Transitions . 144

Fading Transitions . 146

Exploring 2D Transforms . 148
Scaling a Video . 148

Rotating a Video . 150

Skewing a Video . 151

Translating a Video . 151

Playing with 3D Transforms . 154

Working with Animations . 158
@keyframes . 158

Animated Video Cover . 161

Animated Spin . 167

Extending the Animated Video Cover to 3D . 169

Wrapping Up . 171

CHAPTER 8 MULTIMEDIA AND ACCESSIBILITY . 172

Media and Potential Accessibility Issues . 174

A Brief Look at SRT . 175

Introducing WebVTT . 176
What Can WebVTT Do? . 176

WebVTT File Format . 177

The Track Element . 185

Using WebVTT and the Track Element Now . 188
Playr Example . 189

Media Controls and Accessibility . 192

Wrapping Up . 195

ptg6964689

CONTENTS IX

CHAPTER 9 USING VIDEO WITH CANVAS . 196

The Canvas Element . 198

The 2D API . 200

Taking a Screen Shot of an HTML5 Video . 202

Making a Copy of a Playing Video . 206

Playing the Video Copy in Greyscale . 208

Wrapping Up . 213

CHAPTER 10 USING VIDEO WITH SVG . 214

A Brief Introduction to SVG . 216
Browser Support . 217

The svg Element . 217

SVG Text . 218

SVG Circle . 219

SVG Ellipse . 220

Using SVG with HTML5 Video . 221
Adding a Text Mask to a Video . 221

Adding an Ellipse Mask to a Video . 226

Animating an SVG Video Mask . 228

Moving an SVG Video Mask . 230

Applying SVG Filters to HTML5 Video . 233

Wrapping Up . 237

ptg6964689

X HTML5 MULTIMEDIA

CHAPTER 11 FUTURE FEATURES . 238

Audio APIs . 240
Audio Data API . 240

Web Audio API . 245

getUserMedia API . 247

PeerConnection API . 249

Stream API . 250
The MediaStream Object . 250

WebSocket API . 252
The WebSocket Interface . 252

Using WebSockets . 254

Wrapping Up . 259

Index . 260

ptg6964689

INTRODUCTION XI

INTRODUCTION

As a web developer or web designer, or those of you who just maintain your own
website, you know that the web is constantly changing, and the tools and methods
that are used to build websites are in constant development. Like sand dunes in
the Sahara, they shift constantly, but fortunately, usually in a forward direction.

The shift in web technologies has currently arrived at HTML5, the latest ver-
sion of the language used to define and build web pages. With it comes an easier
method of adding multimedia to your web pages.

The goal of this book is to provide you with an introduction to adding audio
and video to your website, and to give you a glimpse of what else you can do with
HTML5 multimedia.

Throughout the book you’ll find in-depth details of the various HTML5 mul-
timedia elements, as well as full code examples on how you can use them to add
audio and video to your website. You’ll also learn about the accompanying JavaScript
API that allows you to create your own media controls.

In addition, you’ll find explanations and examples of how you can style the
HTML5 media elements with CSS, including some of the new features that CSS3
has to offer. You’ll also learn about multimedia and accessibility, and how you can
add subtitles to your website video.

WHO THIS BOOK IS FOR

This book is aimed at those who are starting out with HTML5 and adding HTML5
audio and video to their websites, and those who are already familiar with HTML5
multimedia but want to learn more.

Some basic knowledge of HTML and CSS is assumed, and the later chapters
require at least a rudimentary knowledge of JavaScript. That said, all the examples
on the book’s accompanying website at www.html5multimedia.com are complete.

www.html5multimedia.com

ptg6964689

XII HTML5 MULTIMEDIA

SCREEN SHOTS AND BROWSER VERSIONS

During the course of writing this book, some browser vendors released newer
versions of their products. Firefox is now on version 7, Chrome is on version 14,
and Safari has moved to 5.1. The screen shots in the book usually indicate which
browser and version it was taken from at the time the chapter was written. This, of
course, means that some of the screen shots are from older versions of the browser.
But rest assured that they still work just as well in the latest versions, and if they
don’t, it is clearly marked.

THE WEBSITE FOR THIS BOOK

All the code used in the examples in this book is on the accompanying website at
www.html5multimedia.com. You can either download the files in their entirety or
navigate to the various files via the website and see them working online.

CONTACT

If you would like to contact me, you can do so at info@html5multimedia.com.

BEFORE YOU BEGIN

In the later chapters of this book, some of what you’ll read is experimental due to
specifications that were still in development at the time of this writing and poor
or nonexistent support in browsers. This of course may have changed by the time
you have this book in your hands. The book’s website will indicate improved sup-
port where applicable.

It’s time to begin! Let’s start by taking a quick look at HTML5, what it is, and
where it comes from.

www.html5multimedia.com

ptg6964689

This page intentionally left blank

ptg6964689

1

AN INTRODUCTION
TO HTML5

ptg6964689

3

HTML5 is a major overhaul of the lan-

guage that nearly all the content on the

Internet is effectively displayed in. Indeed,

HTML5 changes the way you think about the HTML markup

language. As well as introducing new markup elements to the

specification, a host of JavaScript APIs are also included to give

developers a deeper and consistent way to access native func-

tionality across browsers. Designers and those who are “not too

techy” will also benefit. They’ll now be able to carry out complex

tasks and easily add multimedia to a web document that in the

past would have required more technical knowledge.

This chapter provides you with a brief introduction to HTML5

and how it came about. You’ll also take a quick look at some of

the main HTML5 structural elements.

Let’s go forth and learn!

ptg6964689

4 CHAPTER 1 AN INTRODUCTION TO HTML5

WHAT IS HTML5?

HTML5 is the latest and greatest version of the core language of the World Wide
Web and is one of the most exciting developments to happen to the web and the web
community in a long time. HTML (HyperText Markup Language) is the language that
has been at the heart of all web documents since its conception in the early 1990s.

HTML5’s predecessor is HTML 4.01, and one of the major differences between
HTML 4.01 and HTML5 is the addition of many JavaScript APIs (Application Pro-
gramming Interfaces) to the specification. Of course, one of these specifications is
directly relevant to the subject of this book—the API that allows interactions with
multimedia elements within the browser. As well as these new APIs, HTML5 also
alters the meaning of some existing HTML elements, removes others, and more
important, adds new ones—some of which allow you to provide more semantic
meaning to your content.

It’s worthwhile noting that most of these new elements don’t actually add any
new functionality that you’ve not seen before.

But before you dive into the workings of HTML5, let’s first look at where HTML5
came from and how it evolved.

THE PROGRESSION OF HTML5

It’s fairly common knowledge that Tim Berners-Lee is the father of HTML and
what everyone recognises as the web today.

There is no need to go into a long and detailed history of HTML’s growth from
the initial version in 1990 to the version that most of you will have been brought
up on, HTML 4.01. But it is worthwhile looking at how HTML5 came into fruition
and then evolved.

In 1998, the members of the World Wide Web Consortium (W3C; www.w3.org)
decided that it wouldn’t be worth their while to extend the HTML specification
beyond HTML 4.01. They decided that the future of the web lay with XML (eXten-
sible Markup Language) due to its stricter syntax, which also made the processing
of XML web documents much easier.

Laying HTML 4.01 to rest, they began working on a new specification for
XHTML 1.0, which basically was a reformulation of HTML 4.01 as an XML vocabu-
lary that contained several strict syntax rules. Personally, I was quite a fan of this,
because I liked the uniformity of it all, but not everyone was convinced. So, two

www.w3.org

ptg6964689

WHAT IS HTML5? 5

flavours of XHTML were created: XHTML Transitional to help convert the non-
believers and XHTML Strict, which was for the true believers and what (the W3C
hoped) the nonbelievers would eventually strive to follow.

The situation remained like this for a number of years, with the nonbelievers
either reverting back to HTML 4.01 or remaining satisfied with XHTML Transitional.
As the W3C’s dream of a stricter XHTML world began to dissipate, its members
soldiered on and began working on the specification for XHTML 2.0.

This seemed a bit of an odd decision, because XHTML wasn’t as widely sup-
ported as the W3C hoped. Internet Explorer (IE), one of the most widespread
browsers at the time (it still is, just less so), didn’t even support XHTML. In fact,
declaring a web document as XHTML would only cause IE to attempt to download
the page and not even render it! In addition, forging ahead with a new specification
in XHTML 2.0 didn’t reflect what web developers in the real world were actually
doing at the time. Also, it wasn’t backwards compatible, which, as you will learn
later, is another of HTML5’s strengths.

HTML5 AND BACKWARDS COMPATIBILITY

One of the first HTML documents ever written, “Links and Anchors,”

(www.w3.org/History/19921103-hypertext/hypertext/WWW/Link.html) is

almost valid HTML5!

In February 2004, a separate group—which included people from Opera,
Mozilla, and later, Apple—called the WHATWG (Web Hypertext Application Tech-
nology Group; www.whatwg.org) released a draft of a new specification—Web
Forms 2.0—that aimed to extend HTML forms. This specification had no standing
with the W3C, and in fact the specification states:

“This document currently has no official standing within the W3C at all. It
is the result of loose collaboration between interested parties over dinner,
in various mailing lists, on IRC, and in private e-mail.”

The state of affairs continued this way with the W3C pursuing XHTML 2.0 and
the WHATWG taking its own path, which included beginning work on another
specification, Web Applications 1.0. As it turns out, Web Applications 1.0 was the
precursor to what is now known as HTML5.

www.w3.org/History/19921103-hypertext/hypertext/WWW/Link.html
www.whatwg.org

ptg6964689

6 CHAPTER 1 AN INTRODUCTION TO HTML5

The situation took a turn for the better in 2006 when the W3C had a change
of heart with regards to XHTML and decided to no longer pursue it. In 2007, the
Fifth W3C HTML Working Group was chartered, and the W3C also announced that
it would allow the charter for the XHTML 2 Working Group to expire at the end
of 2009. Using the WHATWG’s Web Applications specification as a base, both the
W3C and the WHATWG began developing a new HTML specification, although
somewhat bizarrely, it wasn’t a collaborative process.

As a result, there are actually two different versions of the specification, although
the editor of both is Ian Hickson of Google. Fortunately, there aren’t many dif-
ferences between the two; the main difference is how they are maintained. The
WHATWG specification is a “continuously maintained living standard”; it is main-
tained on a section-by-section granular scale. The W3C specification on the other
hand follows the more traditional style of staged releases. Content-wise they’re
largely the same, although one of the main differences (at time of this writing) is
that the WHATWG version includes the WebVTT file format and some text-track
API features (which are discussed in Chapter 8) that the W3C version does not.

Currently, both the W3C and WHATWG versions of the HTML5 specification
are in a stage called “Last Call,” which means internal and external communities
to the W3C are invited to confirm the technical soundness of the specification.

HTML5 SPECIFICATIONS

Two different versions of the HTML5 specification are available at this time, but there are a few other

versions that are also worth taking a look at:

� W3C HTML5 Specification. The latest published version is at www.w3.org/TR/html5. This version is what

is closest to being final.

� WHATWG HTML5 Specification. The latest living standard is at www.whatwg.org/specs/web-apps/

current-work/multipage. Generally, newer additions get added to this specification first, before finally

making it to the W3C specification.

� WHATWG HTML5 Specification—Edition for Web Developers. The web developer edition is at http://

developers.whatwg.org. This is a nice, easy-to-look at version of the WHATWG specification that is

usually kept in sync with the living standard but can be out of date.

www.w3.org/TR/html5
www.whatwg.org/specs/web-apps/current-work/multipage
www.whatwg.org/specs/web-apps/current-work/multipage
http://developers.whatwg.org
http://developers.whatwg.org

ptg6964689

WHAT IS HTML5? 7

WHEN CAN YOU USE HTML5?

Actually, you can use HTML5 now. Many existing websites are written in HTML5,
of which you are probably already aware. Although the current target date for the
HTML5 specification to reach recommendation status is 2014, this does not mean
you cannot use it.

At the time of this writing, all the latest versions of the main browsers support
some, if not most, features of HTML5. Even IE9 finally supports HTML5 markup
and functionality. This should help to remove any misgivings you might have with
regards to browser compatibility.

You shouldn’t be worried that the HTML5 specification won’t reach recommen-
dation status for another few years. To put this into perspective, the specification
for CSS2.1 only reached recommendation status on the 7th of June, 2011. And CSS3
is all the rage at the moment.

With this in mind, let’s move on and take a look at some of the new structural
elements of HTML5.

ptg6964689

8 CHAPTER 1 AN INTRODUCTION TO HTML5

Any use of the HTML5 multimedia elements and APIs that this book discusses
will naturally require writing HTML markup. You could of course use HTML 4.01
markup (although you do need to use the HTML5 DOCTYPE mentioned in this sec-
tion), but because this book is about HTML5 multimedia, it makes sense for you
to use HTML5 markup. All the examples throughout this book and on the website
use HTML5 markup.

Let’s start by taking a quick look at the main structural elements that can make
up an HTML5 document.

DOCTYPE AND CHARSET

As with any HTML document, you need to begin an HTML5 document with a
DOCTYPE. A DOCTYPE tells the browser what version of HTML the page in question
uses, and the browser in turn uses this to determine how to render the page. The
great thing about the HTML5 DOCTYPE is its simplicity.

With HTML 4.01, you might write this:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

“http://www.w3.org/TR/html4/strict.dtd”>

But in HTML5, you’d write this:

<!DOCTYPE html>

Yep. That’s it. Nothing more.
This new DOCTYPE is the shortest valid string that will cause the browser to

render the document in standards mode, which you want, rather than quirks
mode, which you definitely don’t want (see the sidebar “Standards Mode vs. Quirks
Mode” for more details).

MAIN HTML5

STRUCTURAL ELEMENTS

ptg6964689

MAIN HTML5 STRUCTURAL ELEMENTS 9

STANDARDS MODE VS. QUIRKS MODE

Modern browsers can use two different modes to interpret the CSS of a web

document: standards mode and quirks mode.

Standards mode causes the browser to render the CSS according to the speci-

fication, which is correct and the way you would want it.

Quirks mode on the other hand causes the browser to render the CSS accord-

ing to old, nonspecification rules. This mode exists for backwards compatibil-

ity because older browsers didn’t render CSS according to the specifications.

These days standards mode is the one you want to use, because in most

cases the oldest browser you will be supporting will be IE6, which doesn’t

need quirks mode to work correctly (although it probably will require some

IE6 specific CSS, but chances are you already know that!).

Interestingly, or annoyingly, IE versions 6 to 8 render a web document as

IE5.5 would when they render a quirks mode page. And you definitely don’t

want this because the resulting rendered page is unpredictable!

It’s also useful and a good idea to provide the character encoding of the docu-
ment, which is usually UTF-8. Specifying this in your markup has also been highly
simplified in HTML5.

In HTML 4.01, the charset would be set via this line:

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

In HTML5, you’d use:

<meta charset=”utf-8”>

As with the DOCTYPE, this character encoding string contains the minimum
number of characters required to be interpreted by the web browser. In fact, you
could make it two characters shorter by removing the quotes, but my personal
choice is to include them here. Also, I’ve not closed the element, which again I
don’t have to, but I could if I wanted to. HTML5 isn’t that strict.

TIP: Specifying a charset also prevents a

cross-site scripting vulnerability issue in IE7.

ptg6964689

10 CHAPTER 1 AN INTRODUCTION TO HTML5

NAMING THE NEW HTML5 ELEMENTS

Some of the new elements that came to be

included in the HTML5 specification weren’t just

randomly chosen.

In 2004, the editor of the HTML5 specification,

Google’s Ian Hickson, carried out a data-mining

experiment using the Google index on over 1 billion

web pages to get a better idea of what the web was

actually made of with regards to web document

content. He published a number of analyses, one of

which identifies the most popular CSS class names

used for HTML elements. You can read this analysis at

http://code.google.com/webstats/2005-12/classes.html.

The top 10 CSS class names and their corresponding

HTML5 elements are listed in Table 1.1.

Although Table 1.1 doesn’t cover all of the new

HTML5 elements that have been added, it does

show you that there was some thought behind

the naming of the new HTML5 elements and the

semantic content they represent.

TABLE 1.1 Top 10 Most Popular HTML Class Names and Their Corresponding HTML5 Elements

RANK NAME HTML5 ELEMENT

1 footer <footer>

2 menu <menu>

3 title <header>

4 small <small>

5 text <article>, <section>, <aside>

6 content <article>, <section>, <aside>

7 header <header>

8 nav <nav>

9 copyright n/a

10 button n/a

http://code.google.com/webstats/2005-12/classes.html

ptg6964689

MAIN HTML5 STRUCTURAL ELEMENTS 11

<HEADER> AND <FOOTER>

Almost every HTML document has a header and footer. The HTML5 specification
recognises this and includes two specific elements that you can use to semanti-
cally identify a header and footer. These elements are not restricted to one per
document, however, and can be used to specify the header and footer areas of a
particular section or article of a document.

The header element usually contains at least one h element:

<header>

<h1>The header element</h1>

A quick guide

</header>

The footer element is just as simple to use and requires no explanation:

<footer>

<small>Copyright © 2011</small>

</footer>

The header element doesn’t have to appear at the top of the web document, just
as the footer element doesn’t have to be placed at the bottom. You can actually
place either wherever you want to. That said, it often makes sense to do so, just so
the source of the document is easier to read.

ptg6964689

12 CHAPTER 1 AN INTRODUCTION TO HTML5

<HGROUP>

If a header contains a number of h elements grouped together, they can be con-
tained within an hgroup element like this:

<header>

 <hgroup>

 <h1>The header element</h1>

 <h2>A quick guide</h2>

 </hgroup>

 Home

</header>

Note that the hgroup element can only contain h elements and nothing else.

HGROUP CONTROVERSY!

The hgroup element is a bit controversial at the time of this writing, because

it has been removed and reinserted into the HTML5 specification in the last

few months. Efforts are being made to remove it again and possibly replace

it with something more semantic. So by the time you read this, it might be

omitted from the specification, so it’s worth double-checking.

ptg6964689

MAIN HTML5 STRUCTURAL ELEMENTS 13

<ARTICLE> AND <SECTION>

When you’re laying out a web page with HTML, you often use the div element
to indicate specific sections of your document. This usually works well and is all
that is needed. But what if you wanted to give your section a particular semantic
meaning so it’s more than “just a div”?

This is where the article and section elements come in, and there’s often a bit
of confusion as to which one to use and when. The confusion arises because you’re
forced to think a bit more about what you’re writing and the way you present it.

If you simply want to contain information for styling purposes only, the div
element is the one to use. The reason is that the content within the div doesn’t
have any specific semantic meaning, for example, when using it as a “wrapper”
element to help position some columns in the centre of a page:

<div class=”wrapper”>

<div class=”columnOne”>This is column one</div>

<div class=”columnTwo”>This is column two</div>

</div>

If you decide that the content actually does have a semantic meaning, you need
to look closely at what that meaning is. The W3C HTML5 specification actually
defines a section element as representing

“a generic section of a document or application. A section, in this context,
is a thematic grouping of content, typically with a heading.”

So if the content you want to contain all fits nicely under the one heading, a
section element is probably the way to go. But before you make the final decision
on using a section element, let’s take a quick look at the article element, which is
a specific type of section element. Once again, the W3C specification encourages
you to use the article element

“when it would make sense to syndicate the contents of the element.”

But what does this mean, exactly?
Well, as an example, think about the layout of a newspaper article. A newspaper

article might contain several sections, each of which has its own heading. But overall,

ptg6964689

14 CHAPTER 1 AN INTRODUCTION TO HTML5

the sections relate to each other and fit together, because they talk about the same
story. If this is the case in your content, the article element is the one to use.

But bear in mind that the article element doesn’t relate to the idea of a news-
paper article, just the way it is laid out. An article can also represent an article of
clothing in your wardrobe, because it’s a generic term that refers to a single unit
of content that stands alone and can be syndicated. But it can also relate to other
articles that it sits beside.

Of course, the newspaper article analogy also shows that you can nest section
elements within article elements and vice versa. But as with the div element,
don’t make the content too muddled or have too much nesting!

Putting the article and section elements together, your content might look
something like this:

<article>

 <header>

 <h1>HTML5 Multimedia</h1>

The way forward!

 </header>

 <section>

 <header>

 <h2>Video</h2>

 </header>

<p>This section talks about video...</p>

 </section>

 <section>

 <header>

 <h2>Audio</h2>

 </header>

<p>This section talks about audio...</p>

 </section>

 <footer>

ptg6964689

MAIN HTML5 STRUCTURAL ELEMENTS 15

<small>Written by Ian Devlin 2011</small>

 </footer>

</article>

Using the preceding example, you can see how the idea of using the article
and section elements within your content can be put into practice. The example
has two sections, one contains information about video and the other contains
information about audio. They are clearly separate from each other and therefore
should be contained within separate section elements.

Overall, however, they are related, coming together under the HTML5 Multi-
media heading. So collectively they should go together under the same heading,
either in an enclosing section or article. In this case, it does seem to make sense
that the content could be syndicated (e.g., contained as an item in an RSS feed), so
the article element seems most suitable.

Alternatively, as mentioned previously, you can have a number of section ele-
ments contained within an article, for example, on a news summary page that
contains links to separate articles:

<section>

 <header>

 <h1>HTML5 News</h1>

 </header>

 <article>

 <header>

 <h2>HTML5 Multimedia</h2>

 </header>

 <p>In this article you will learn all about HTML5
p Multimedia.</p>

 Read more...

 </article>

 <article>

 <header>

ptg6964689

16 CHAPTER 1 AN INTRODUCTION TO HTML5

<h2>HTML5 and Semantic Structure</h2>

 </header>

 <p>This article is all about HTML5 and structural
p semantics.</p>

 Read more...

 </article>

 <footer>

 View all

 </footer>

</section>

As the examples also illustrate, the article and section elements can also
contain header and footer elements if they make semantic sense, as they do here.

H ELEMENTS IN HTML5

A hot topic of discussion at the moment in the HTML5 world is that of h elements in the header element and

whether multiple h1 elements should be used throughout a single document.

As you may have noticed in the examples in the “<article> and <section>” section, an h1 element has been

used in the main header (be it in the overall article or section) and h2 elements in the sub section/article

header elements. This was done for backwards compatibility purposes due to poor browser support (Firefox 5

and Chrome 12 excepted) for what is known as the HTML5 Outlining Algorithm.

The HTML5 Outlining Algorithm is defined as part of the HTML5 specification and is used to determine the

structure of an HTML5 document using its headings, titles, and so on to map out the document. You can

read about HTML5 Document Outlines at http://html5doctor.com/document-outlines.

At the moment it’s advisable to stick to using the different h elements to maintain compatibility with older

browsers. Naturally, support for the algorithm will improve with further browser releases, but as with every-

thing, the decision is ultimately yours.

http://html5doctor.com/document-outlines

ptg6964689

MAIN HTML5 STRUCTURAL ELEMENTS 17

<NAV>

The nav element is used to contain the primary navigation throughout your site. So
any links to separate pages, such as About, News, and your blog, can be included here.

It can also contain any links that are external to your site—that is, that take
the user away from your site—for example, links to Twitter or Facebook accounts,
as long as they constitute the primary navigation of your site.

The markup is easy, and the nav element usually contains an unordered list, but
of course can also simply contain a number of hyperlinks to the pages in question:

<nav>

 Home

 About

 Contact

</nav>

The nav element is often contained within a header, although it doesn’t have
to be. It can also be contained within a footer element, but only if it’s the primary
navigation of your website. Because footers these days often contain a set of sec-
ondary site navigation links, they should not be contained within a nav element.
However, it’s OK to have more than one nav element on the same page, should its
use be warranted.

ptg6964689

18 CHAPTER 1 AN INTRODUCTION TO HTML5

<ASIDE>

The aside element is used to contain page non-main content that is relevant to
the main content it sits next to, but the main content makes perfect sense on its
own without it. The content of the aside element can also make sense on its own,
although it doesn’t have to.

A current, real-world use of the aside element is for sidebars, which of course
can contain anything from widgets and social media feeds to related links and
images:

<aside>

 <header>

 <h1>Twitter feed</h1>

 </header>

#HTML5 is awesome! - 26th June 2011 @ 14:30

Everyone should be using #HTML5 - 26th June 2011 @
14:22

 <footer>

 follow me!

 </footer>

</aside>

Note how the aside element can also contain header and footer elements if
they are appropriate.

ptg6964689

MAIN HTML5 STRUCTURAL ELEMENTS 19

<FIGURE> AND <FIGCAPTION>

Two new elements were introduced to allow relating a multimedia element (image,
video, or audio) to a specific caption, which of course makes the content contained
within these new elements more semantic (there’s that word again!): the figure
element and the figcaption element.

The figcaption element can only exist within a figure element, although it
doesn’t have to be there; obviously, not all content will have a caption:

<figure>

 <figcaption>

Figure 1 - The HTML5 logo in all its glory!

 </figcaption>

</figure>

Normally, you’d style the figcaption contents to appear in small text above
an image or at the bottom (Figure 1.1). But of course you don’t have to and can
generally do with it whatever you want!

FIGURE 1.1 An image and caption

displayed with the figure and

figcaption elements.

ptg6964689

20 CHAPTER 1 AN INTRODUCTION TO HTML5

INTERNET EXPLORER AND BROWSER COMPATIBILITY

At the time of this writing, the latest versions of all major browsers support several of the new HTML5

elements, especially those mentioned in this chapter. IE8 and earlier, however, do not. These new elements

are completely unknown to these browsers, and therefore, the browsers won’t render them at all.

All is not lost however.

You can easily add the html5shim script by Remy Sharp (http://code.google.com/p/html5shiv) to the top of

your web document:

<!--[if lt IE 9]>

 <script src=”//html5shim.googlecode.com/svn/trunk/html5.js”></script>

<![endif]-->

This script tells IE all about the new elements that it may come across when rendering the document, so it

happily does so.

For these older browsers, you also need to add some default CSS styling to certain elements so that the

browser knows to render them as block-level elements:

<!--[if lt IE 9]>

 <style>

article, aside, figure, footer, header, hgroup, menu, nav, section {

 display:block;

 }

 </style>

<![endif]-->

If you intend to set the innerHTML of an element or use jQuery with HTML5 and older versions of IE, you need

to add the innerShiv script (http://jdbartlett.com/innershiv) to your web document.

You’ll need to download this JavaScript file and host it yourself, and then add it in the same way as you would

add the innershim file mentioned previously:

<!--[if lt IE 9]>

 <script src=”innershiv.js”></script>

<![endif]-->

The innershim and innerShiv files work together to allow you to work with HTML5 on older versions of IE.

Notice that each of these additions is contained within conditional comments that target IE versions ear-

lier than version 8. This is to avoid unnecessary adding and processing of scripts for browsers that don’t

need them.

http://code.google.com/p/html5shiv
http://jdbartlett.com/innershiv

ptg6964689

WRAPPING UP 21

<SCRIPT>

The meaning and usage of the script element hasn’t changed at all in HTML5.
However, because a good part of this book is about JavaScript APIs, it’s worth noting
one new and useful difference: You no longer have to specify the type attribute if
you are using it to enclose JavaScript.

Yes, the clever people at the WHATWG and the W3C have decided that by
default type=”text/javascript”, which prevents you from having to type it and
makes for much neater code:

<script>

alert(“I didn’t have to specify the type attribute!”);

</script>

WRAPPING UP

The processes involved for the current HTML5 specifications to arrive at where they
are now were of course quite a bit more complicated than has been described in
this chapter. But the brief explanation should give you a foundation in the process.

In addition, the elements mentioned are only a very small portion of the new
elements contained in the HTML5 specification, and there have also been changes
made to elements that existed in HTML 4.01 and earlier versions. You can read a
full list of these differences at www.w3.org/TR/html5-diff.

However, the elements you encountered in this chapter are sufficient for you
to create your own simple HTML5 documents. This knowledge will also aid your
understanding of the examples and resources provided in this book.

In the next chapter, you’ll learn a bit about the history of multimedia within
browsers, and you’ll also take a close look at the HTML5 elements that are specifi-
cally relevant to HTML5 multimedia.

www.w3.org/TR/html5-diff

ptg6964689

2

HTML5 MULTIMEDIA
ELEMENTS

ptg6964689

23

Now that you’re armed with the basic

history of HTML5 and its structural

elements, you can start learning about

HTML5 multimedia, its elements, their attributes, and the com-

bined functionality that they bring.

HTML 4.01 had no defined method of bringing audio and video to

a website, which led to a huge popularity in third-party plugins,

such as Flash, to deliver multimedia content. But HTML5 provides

this much-needed structure to deliver audio and video across the

Internet through a web browser.

This chapter offers some history of multimedia in the browser

and how the playback of audio and video was achieved through

the many applications, players, and plugins that various vendors

released. Then you’ll learn about the new HTML5 elements, which

let you to take advantage of native multimedia in the browser.

ptg6964689

24 CHAPTER 2 HTML5 MULTIMEDIA ELEMENTS

HISTORY OF WEB MULTIMEDIA

When browsers and the idea of the web first appeared back in the early 1990s, there
wasn’t any web multimedia. Soon thereafter, images began to be incorporated but
were at best a poor man’s multimedia. Although they could be animated with the
advent of animated GIFs, they were of course completely noninteractive.

Even with the existence of audio and video files, the ability of internet technol-
ogy to deliver this multimedia across the web was limited. Internet connections
were slow, audio and video files were large, and no one wanted to wait for large
files to download. Once the file did arrive, an external player had to be used to
view the contents, which was separate from the web browser. This was the norm,
and few complained.

The phenomenal increase in internet connection speeds brought with it the
ability to send multimedia across the web even faster, and web browser technology
had to move just as quickly, which of course it did with the introduction of what’s
now referred to as native multimedia.

Before you dive into native multimedia, let’s quickly take a look at an overview
of the external players that were (and still are as desktop players) used to play back
audio and video files.

MEDIA PLAYERS

A media player is a standard term used to describe a piece of software that has the
capability of playing back multimedia files, such as audio and video, usually via a
graphical user interface.

In the mid-1990s, the MIDI (Musical Instrument Digital Interface) file format was
used to play background music on web documents, and the music usually played
automatically. Although highly annoying, this was the beginning of multimedia
becoming available through the browser. A host of other players from different
vendors were then developed to infest your computer.

RealNetworks released its audio player RealAudio back in 1995, which first
introduced the idea of playing audio through the web using proprietary .ra and
.ram audio files. Further developments of RealAudio led to the release of RealVideo

in 1997, which allowed video streaming and was based on the H.263 video format.
These two players eventually were bundled together under the RealPlayer name
and were included in Windows 98 as a selectable tool. RealPlayer is still around
today (version 14 is the latest stable release) and is available across many platforms;
it is capable of playing multiple audio and video file formats.

ptg6964689

HISTORY OF WEB MULTIMEDIA 25

Macromedia released its first edition of Shockwave in 1995, which was originally
developed for the Netscape web browser. At the time, the company allowed users
of its popular Director multimedia software to create interactive applications and
animations, and insert them into a web document. Macromedia also had another
media player in development; it released the Shockwave Flash player in 2002, which
supported video as well as audio. Shockwave Flash player used the SWF file format
developed by FutureWave software. The main intent of the SWF file format was to
create small files for displaying animations, as well as to use it to exchange audio,
video, and data. Macromedia was bought by Adobe in 2005, and the Shockwave
Flash player was renamed Adobe Flash. It is this particular player that became the
player to use when delivering multimedia through the browser.

Microsoft improved on its previous offerings and released DirectShow in 1996,
which later became Media Player 6.1 and was released as part of Windows 98
(Figure 2.1).

With the release of Windows 2000, Microsoft also released version 7.1 of Win-
dows Media Player. This had a much improved graphical interface and overall
offered a better experience. With this release came codecs—special file protocols
that allow for creating and playing back media content.

FIGURE 2.1 Microsoft Media Player 6

shipped with Windows 98.

NOTE: You’ll read more about codecs in Chapters 3

and 4 on HTML5 audio and video, respectively.

ptg6964689

26 CHAPTER 2 HTML5 MULTIMEDIA ELEMENTS

With subsequent releases, Microsoft enhanced its Media Player, continuously
improving the offering along the way.

Microsoft also worked on an application framework to rival Adobe Flash in that
it could run browser plugins (sets of small software components that add specific
abilities to other, larger software applications—in this case a web browser) and
other rich internet applications. Initially released in 2007, Microsoft Silverlight
supported many different types of audio and video file formats, as well as anima-
tion and interactivity. Originally, it had a slow adoption rate, but as of June 2011, it
had roughly 73 percent market penetration, with Adobe Flash holding at 97 percent
market share.

Apple was also in the multimedia player game from the early days. Its first
version of QuickTime was released in 1991 for the System Software 6 operating
system. QuickTime continued to be a Mac-only piece of software until the release
of QuickTime 4.0 in 1999, which also ran on Windows and supported MP3 audio
playback. QuickTime 5 and 6 delivered video and Flash playback, with version 6
also supporting MP4 playback. Release 7 came out in 2005 and had improved MP4
playback but dropped support for Flash content. The latest version of QuickTime
at the time of this writing is version 10 for the Mac OS, and different flavours of
Microsoft Windows have earlier versions.

Every vendor had its own way of delivering multimedia, but of course none were
perfect. There was no standardised method of embedding audio and video into a
web document, and it is for this reason—to standardise embedding of multimedia—
that the audio and video elements became part of the HTML5 specification.

ptg6964689

HISTORY OF WEB MULTIMEDIA 27

ISSUES WITH MEDIA PLAYERS

All of the media players had one major problem in common: End users needed to
have the appropriate plugin installed to be able to play the required audio or video.

Initially, all these plugins did was launch the respective media player to play
the audio or video. The ability to display multimedia within the browser came later,
although pop-ups (where the appropriate media player was started outside of the
browser) were still common. If the required plugin did not exist on your system, you
had to download it, which was a hassle because you needed to constantly update it.

In addition, different plugins from different vendors could conflict with each
other, causing browser instability. For example, the VLC Media Player conflicts
with the Windows Media Player in Firefox, sometimes causing Firefox to crash
when attempting to view a WMV file.

Security was also an issue, because plugins were and still are one of the main
target areas for malware. An example of this was identified in March 2011 when it
was determined that a critical vulnerability in Flash Player 10.2 could allow remote
attackers to execute arbitrary code or cause a denial of service attack on the infected
machine (see www.adobe.com/support/security/advisories/apsa11-01.html).

Of course as soon as these vulnerabilities are detected, the vendors move quickly
to patch them and push out a release. But again this means that the user must
constantly upgrade to the latest versions when they become available.

One major issue with the most popular plugin of them all, Flash, is Apple’s April
2010 decision not to support Flash on iPhones and iPads. This of course makes
content served in Flash completely unavailable on these devices.

Let’s now look at how these media players could be harnessed through their
plugins to play the required audio or video in HTML.

www.adobe.com/support/security/advisories/apsa11-01.html

ptg6964689

28 CHAPTER 2 HTML5 MULTIMEDIA ELEMENTS

HTML ELEMENTS

In the past, to embed plugins within your web document to launch a media player,
you could use various HTML elements to do so. Although using these elements is
the way it was done in the past, you still need to be aware of these elements and
how they are used, because unfortunately, not all browsers support HTML5 multi-
media. You’ll read more about this lack of browser support for HTML5 multimedia
in Chapters 3 and 4.

In fact, three different HTML elements could be used:

� applet

� embed

� object

The applet element, as its name suggests, was only ever used for embedding
Java applets and was actually deprecated in HTML 4.01. It allowed a Java applet to
be embedded anywhere within the web document where the element was placed.
Most likely, you’ll never need to use this element because it’s now obsolete, so
let’s move on.

The embed element was introduced by the Netscape 2.0 browser to allow devel-
opers to embed an arbitrary data object within a web document. If the required
plugin was not installed on your system, a warning was usually displayed along
with an empty box. An example of embed code being used to play a MIDI file
looks like this:

<embed src=”myMidiFile.mid” height=”60” width=”144”>

Here the browser is being told to embed the myMidiFile.mid into the browser
at the specified position with the specified dimensions.

NOTE: The embed element was officially introduced in HTML5, finally

making it a valid part of an HTML specification. Although most browsers

supported it prior to HTML5, it was never actually a valid element.

ptg6964689

HISTORY OF WEB MULTIMEDIA 29

The object element replaced the applet and embed elements (neither were ever
actually in any specification) in HTML 4.01 and was intended to be more generic
with regards to the media that it contains. Therefore, it can be used to embed
Java applets, audio, and video. The object element is quite powerful in that it can
accept a large number of arguments and data object types, but this in turn renders
it rather unwieldy. The following example shows how the object element can be
used to embed an Adobe Flash video file:

<object type=”application/x-shockwave-flash” width=”512”
p height=”300” wmode=”transparent” data=”flvplayer.swf?
p file=myFlashVideo.flv&autoStart=true”>

 <param name=”movie” value=”flvplayer.swf?file=
p myFlashVideo.flv&autoStart=true” />

<param name=”wmode” value=”transparent” />

<param name=”allowscriptaccess” value=”always” />

<param name=”allowfullscreen” value=”always” />

</object>

The code here indicates to the browser that the content within the object
element is Flash via the MIME (Multipurpose Internet Mail Extension) type in
the type attribute. It also sets the width and height of the object container, and
uses the wmode attribute to inform the browser that the background of the HTML
page should show through on transparent sections of the Flash content. The data
attribute is used to point to a valid URL, which will contain the actual content of
the container.

ptg6964689

30 CHAPTER 2 HTML5 MULTIMEDIA ELEMENTS

The param element is used to add different parameters to the embedded content.
As you can see, one of the param elements here is used to set a parameter called
movie whose value is the same as the data attribute set in the overall object ele-
ment! This leads to duplication, which is, sadly, necessary. This is a fallback: If
the browser doesn’t know how to play objects with a MIME type of application/
x-shockwave-flash, it will check the next child element and see if it can play that
(in this case, the param setting for movie).

The wmode parameter is also set again for browsers that don’t understand the first
setting in the object declaration. Two other parameters are set: allowscriptaccess,
which allows the HTML page to interact with the object should the object have
anything to interact with; and allowfullscreen, which allows the object to fill the
full screen should the user request it.

You might agree that the preceding code is a bit painful and confusing to look
at initially. Fortunately, HTML5 makes embedding of multimedia objects much
easier because multimedia is now native to the browser.

ptg6964689

WELCOME, NATIVE MULTIMEDIA! 31

With native multimedia, the object is no longer embedded into the web document
but is treated as a native object by the browser and therefore built in. This provides
immediate benefits, such as:

� Plugins are no longer required.

� Speed—anything native to a browser will be faster than any third-party
add-on.

� Native controls are provided by the browser.

� Keyboard accessibility is built in automatically.

HTML5 provides four new markup elements that help you to achieve native
multimedia in the browser. Let’s take a look at each of these elements and their
possible attributes.

WELCOME, NATIVE MULTIMEDIA!

ptg6964689

32 CHAPTER 2 HTML5 MULTIMEDIA ELEMENTS

THE AUDIO ELEMENT

The audio element allows you to embed audio files or an audio stream into a web
document. Here’s a quick piece of code showing you just how much easier it is to
embed an audio file in your web document using the audio element:

<audio src=”sayHello.mp3”></audio>

Much simpler, isn’t it?
Table 2.1 lists the attributes that the element can take.

TABLE 2.1 Audio Element Attributes

ATTRIBUTE DESCRIPTION

src Provides the address of the media resource, in this case an audio file

or stream. This attribute must contain a valid URL to the audio source.

preload Is used to hint to the browser how to preload the audio source, if at

all. It only advises the browser what to do, but ultimately the browser

will do what it wants (e.g., based on a user setting).

It has three possible settings:

none Informs the browser not to preload the audio file. The

user is not expected to play the audio, so there’s no

need to perform any preloading. It will begin to load

as soon as the user clicks the Play button.

metadata Informs the browser to only preload information about

the audio file (e.g., dimensions, duration, etc.). The

user may want to play the audio. Its metadata (e.g.,

dimensions, duration) should be preloaded. The rest of

the audio will download when the user clicks the Play

button.

auto Tells the browser to decide whether to download the

metadata, the entire source, or not to download any-

thing. This is the default if preload is not specified.

Support for this attribute is poor; only Firefox 5 and Chrome 12

currently support it.

ptg6964689

WELCOME, NATIVE MULTIMEDIA! 33

TABLE 2.1 Audio Element Attributes (continued)

ATTRIBUTE DESCRIPTION

autoplay Is a boolean attribute that informs the browser to automatically start

playing the audio source when the page is loaded. Use this with cau-

tion because autoplaying audio can be an annoyance to users.

controls Is also a boolean attribute, which if present, tells the browser to

provide a default set of controls for the audio.

muted Controls the default state of the audio source. Naturally, this is largely

redundant with an audio source because if you play it automatically,

you'll want it heard. Currently no browser supports this attribute.

loop Another boolean attribute, which indicates that the audio is to be

continuously played in a loop. It's advisable to use this with cau-

tion because it can be an annoyance to users, especially if you don't

provide any controls for them to stop it! This attribute is currently not

supported in Firefox 5.

crossorigin Is a relatively new attribute to the specification that is intended to

allow or prohibit cross-origin media of the audio source using the

CORS (Cross-Origin Resource Sharing) specification (which you can

read about at www.w3.org/TR/cors).

Basically, it specifies whether the audio source can be shared across

other domains.

It can have two settings:

anonymous Allows anonymous access to the audio source.

use-credentials Credentials are required to access the audio

source.

If no particular setting is specified, but crossorigin is present, it

defaults to the anonymous setting. Because this attribute is so new

to the specification, it is yet to be implemented in any of the major

browsers.

mediagroup Allows multiple media elements, in this case audio sources, to be

linked together. This can, for example, allow the playing and synchro-

nisation of two different audio sources in two different places on the

screen.

www.w3.org/TR/cors

ptg6964689

34 CHAPTER 2 HTML5 MULTIMEDIA ELEMENTS

As you can see in Table 2.1, several different settings can be used with the audio
element, some of which have a number of settings. A sample audio declaration in
a web document might look like this:

<audio src=”sayHello.ogg” controls></audio>

This simple piece of code informs the browser to embed the specified audio file
in the browser and to use the browser’s own multimedia controls. Various brows-
ers have different default controls, so how the audio controls look depends on the
browser that the viewer is using. You can see examples of how these controls are
rendered differently in Figures 2.2 through 2.6.

You’ll learn more about the audio element in Chapter 3. More in-depth examples
of its usage are provided as well as how to combine most of the attributes listed
in Table 2.1.

Now that you’ve taken a quick look at the attributes of the audio element, let’s
check out the video element.

FIGURE 2.2 The audio controls in

Firefox 5.

FIGURE 2.5 The audio controls in

Opera 11.50.

FIGURE 2.3 The audio controls in

Safari 5.0.5.

FIGURE 2.6 The audio controls in

Internet Explorer 9.

FIGURE 2.4 The audio controls in

Chrome 12.

ptg6964689

WELCOME, NATIVE MULTIMEDIA! 35

THE VIDEO ELEMENT

The video element allows you to embed video content into your web document,
and once again you can specify a number of attributes to control this video content.

Many attributes are the same as those specified for the audio element, but there
are some extras, and they’re all listed in Table 2.2.

TABLE 2.2 Video Element Attributes

ATTRIBUTE DESCRIPTION

src Provides the address of the media resource, in this case a video file or stream. This attribute must

contain a valid URL to the video source.

preload Is used to hint to the browser how to preload the video source, if at all. Again, it's only a hint to the

browser, which may choose to override it with a possible user setting.

It has three possible settings:

none Informs the browser that the user is not expected to want to view the video, so there's

no need to perform any preloading.

metadata Informs the browser that the user may want to view the video, and therefore its meta-

data (e.g., dimensions, duration) should be preloaded.

auto Tells the browser to decide whether to download the metadata, the entire source, or not

to download anything. This is the default if preload is not specified.

autoplay Is a boolean attribute that informs the browser to automatically start playing the video source as soon

as it can. It's not considered good practice to do this!

controls Is also a boolean attribute, which if present, tells the browser to provide a default set of controls for

the video.

muted Controls the default state of the video source. This means that you can specify that an automatically

playing video can be muted when it begins to play, thus preventing any irritation to the user.

This attribute is currently not supported in any of the major browsers.

loop Another boolean attribute, which indicates that the video is to be continuously played in a loop.

This is currently not supported in Firefox 5.

poster Allows an image file to be displayed when there’s no video data available.

If poster is not specified, the browser will display the first frame from the video, which may of course

not be the image that you want shown. It must contain a valid URL to the image in question.

ptg6964689

36 CHAPTER 2 HTML5 MULTIMEDIA ELEMENTS

TABLE 2.2 Video Element Attributes (continued)

ATTRIBUTE DESCRIPTION

width Specifies the width of the video element in pixels.

height Specifies the height of the video element in pixels.

crossorigin Indicates whether the video source can be shared across domains or not. By default, the source can be

shared cross-domain.

It can have two settings:

anonymous Allows anonymous access to the video source.

use-credentials Credentials are required to access the video source.

If no particular setting is specified, but crossorigin is present, it defaults to the anonymous setting.

Because this attribute is so new to the specification, it is yet to be implemented in any of the browsers

mediagroup Allows multiple media elements, in this case video sources, to be linked together. This can, for example,

allow the playing and synchronisation of two different videos in two different places on the screen.

CROSSORIGIN

crossorigin is a very recent addition to the HTML5 specification, and as such,

currently has no real-world application. None of the major browsers support

it. It uses the CORS (Cross-Origin Resource Sharing) specification, which you

can read about at www.w3.org/TR/cors.

MEDIAGROUP

Like crossorigin, mediagroup is a very new addition to the HTML5 specifica-

tion and at the time of this writing hasn’t been implemented in any of the

major browsers yet. Once implemented, it will be very useful for accessibility,

because it allows scenarios such as playing a sign-language video alongside

a regular video and keeps them in sync.

www.w3.org/TR/cors

ptg6964689

WELCOME, NATIVE MULTIMEDIA! 37

As you can see, many of the audio and video elements’ attributes are the same,
which of course makes it that much easier when specifying them because you only
need to remember one set of attributes.

An example of using the video element to display a video in a web document
complete with browser controls might look like this:

<video src=”snowy-tree.mp4” width=”300” height=”176” controls>
p </video>

This simple example informs the browser to display a video player of size 300
pixels by 176 pixels with default media controls containing the snowy-tree.mp4
video file.

As with audio, various browsers display the controls and video differently. You
can see how they look in each browser in Figures 2.7 through 2.11.

FIGURE 2.7 The video controls in

Firefox 5.

FIGURE 2.10 The video controls in

Opera 11.50.

FIGURE 2.8 The video controls in

Safari 5.0.5.

FIGURE 2.11 The video controls in

Internet Explorer 9.

FIGURE 2.9 The video controls in

Chrome 12.

ptg6964689

38 CHAPTER 2 HTML5 MULTIMEDIA ELEMENTS

THE SOURCE ELEMENT

Due to different browser requirements (more on this in Chapters 3 and 4), it is often
required that you specify different sources for the same audio or video element.

As you saw earlier, both the audio and video elements provide a src attribute
in which to place a URL to the audio or video source. But that attribute only allows
for one source. So how can you add multiple sources?

This is where the source element comes in. Any number of source elements
can be contained within an audio or video element declaration, and it is through
this element that you can specify multiple media sources.

The source element can contain the attributes listed in Table 2.3.
So the source element allows you to specify different sources for a particular

multimedia offering, an example of which follows:

<audio controls>

<source src=”sayHello.ogg” type=”audio/ogg”>

<source src=”sayHello.mp3” type=”audio/mp3”>

Sorry, your browser doesn’t support the audio element

</audio>

In this example, two different audio file formats are presented to the browser
for it to play. The browser will play the first format it recognises and ignore any
formats that it doesn’t recognise. If it can’t find a format that it can play, it will
inform the user that the browser is unable to play the audio by displaying the text,

“Sorry, your browser doesn’t support the audio element.”
This process of a browser ignoring what it can’t understand proves very useful

when serving up a multimedia solution for cross-browser support. As mentioned
earlier, different browsers support different multimedia file formats, which you’ll
read about in more detail in the next two chapters.

ptg6964689

WELCOME, NATIVE MULTIMEDIA! 39

TABLE 2.3 Source Element Attributes

ATTRIBUTE DESCRIPTION

src Provides the address of the media resource, be it audio or video. As

with the src attribute of the audio and video elements, this must

contain a valid URL to the source in question.

type Specifies the type of the media resource to aid the browser in deter-

mining if it can actually play this source or not. The value must be a

valid MIME type, which tells the browser what format the source is in.

The most common include:

In some cases, the codec that the source is encoded with may also

need to be specified to ensure that it can be played. You'll learn more

about MIME type and codecs in Chapters 3 and 4.

media Specifies the intended media type of the resource in question, because

it might target a certain type of device with a certain height, width,

resolution, or aspect ratio.

This value must be a valid media query. You can read more

about this attribute in the media queries specification at

http://dev.w3.org/csswg/css3-mediaqueries.

You'll learn more about media queries and their uses in Chapter 4.

http://dev.w3.org/csswg/css3-mediaqueries

ptg6964689

40 CHAPTER 2 HTML5 MULTIMEDIA ELEMENTS

THE TRACK ELEMENT

The track element is used to specify explicit external timed text tracks for media
elements. It must be used in conjunction with either an audio or video element
because it doesn’t represent anything on its own.

This element is mainly used to provide increased accessibility to a multimedia
resource, because it allows captions, descriptions, transcripts, and subtitles to
be provided. These can then be displayed in the browser in conjunction with the
media being played.

In most cases, the information provided through the track element is more
suited to a video media source.

Like the other elements described earlier, the track element can take a number
of attributes (Table 2.4).

The track element can therefore be used to specify complete transcriptions of
media resources, which, for example, can be useful in making the source available
to those with auditory impairments. It also allows you to specify multiple subtitles
and descriptions in different languages. Here is an example:

<video src=”sayHello.mp4”>

 <track kind=”subtitles” src=”hello-en.vtt” srclang=”en”
p label=”English”>

 <track kind=”subtitles” src=”hello-de.vtt” srclang=”de”
p label=”German”>

</video>

This example specifies two different files for the sayHello.mp4 video for two
different languages, English and German.

NOTE: HTML5 video and subtitles are discussed in

detail in Chapter 8, so don’t fret!

ptg6964689

WELCOME, NATIVE MULTIMEDIA! 41

TABLE 2.4 Track Element Attributes

ATTRIBUTE DESCRIPTION

kind Specifies what type of data this instance of the track element provides

for the specified media element. It can have any of the following

values:

subtitles A full transcription of the dialogue, which is suitable

for use when the audio is available but not under-

stood. The contents will be displayed as an overlay

on the video.

captions A transcription of the dialogue, sound effects, and

other relevant audio information, and is suitable

when the audio/soundtrack is unavailable. The con-

tents are overlayed on the video and are labeled as

useful for those with auditory impairments.

descriptions Provides textual descriptions of the video component

of the media resource and is intended for when the

visual component is unavailable.

chapters Specifies chapter titles and is used to navigate the

contents of the media resource.

metadata Contains information that is to be used via a script

and is not actually displayed on the browser in

any way.

If this attribute is omitted, the default value is subtitles.

src Provides the address of the text track data, which must be a valid URL.

The file provided at this source needs to be in a specific format for it to

be understood—two of which are WebSRT and WebVTT. Both formats

are discussed in Chapter 8.

srclang Indicates the language of the text track data.

label Specifies a user-readable title for the track, which provides a more

understandable title for the user to read. Must be unique across track

elements of the same kind attribute for the same resource.

default Informs the browser that the track element in question is to be used

as the default if the user’s preferences do not indicate that a different

one would be more appropriate.

ptg6964689

42 CHAPTER 2 HTML5 MULTIMEDIA ELEMENTS

A QUIRK OF SAFARI AND INTERNET EXPLORER 9

Earlier in the chapter when I mentioned that native multimedia is the bee’s

knees and that it doesn’t require third-party plugins, which is ideal, I might

have been bending the truth a little. It’s not to say that native multimedia

isn’t great, it is; it’s wonderful.

But.

For native multimedia to work in Safari and Internet Explorer 9, Apple has

decided that you must have its QuickTime plugin installed, and Microsoft

requires you to install its Media Player on your system.

These requirements somewhat detract from the idea of native multimedia.

Why Apple and Microsoft have chosen to take this path I don’t know, but this

is the way of things as they stand.

ptg6964689

WRAPPING UP 43

You’ve taken a brief look back at the availability of multimedia within the web
browser. Predictably, the technology involved and the results that can be achieved
have advanced a great deal from the days of “images only.”

You also are now aware of the three new HTML5 markup elements—audio,
video, and source—that you’ll need to embed audio and video content into your
web document. The track element was included because it provides you with a
powerful method to make your media content accessible by allowing you to specify
enhancements, such as subtitles and captions.

With this grounding in the elements and their attributes under your belt, you’ll
next learn how to use these elements to bring media to your users.

With no further ado, let’s move on to the next chapter and explore what you
can do with HTML5 audio.

WRAPPING UP

ptg6964689

3

USING AUDIO

ptg6964689

45

Adding native audio to your web docu-

ment using HTML5 multimedia couldn’t

be easier. Whether you wanted to share

sound snippets, voice recordings, or your own music with users

on the Internet, the ability to do so was always available. But now

you can share audio without having to rely on third-party plugins

being installed.

Chapter 2 introduced you to the HTML5 elements and attributes

that allow you to add audio to your web document. Now it’s time to

explore how this is actually done. This chapter explains, with the

aid of examples, how you can use these elements and attributes.

But let’s first take a brief look at the audio file formats that are

available for use and how you might convert existing audio from

one format to another to use in your web document.

ptg6964689

46 CHAPTER 3 USING AUDIO

AUDIO CODECS AND
FILE FORMATS

The plethora of different plugins and formats that are available for encoding mul-
timedia files for presentation on the web could cause a bit of a headache if the
particular plugin or audio codec isn’t available on a user’s system.

HANG ON; WHAT’S AN AUDIO CODEC?

A codec is a computer program that uses a compression algorithm to encode

and/or decode (hence the name: coder-decoder) a digital stream of data,

making it more suitable for playback on a computer or other device.

The objective of the codec is usually to maintain the high quality of the

audio signal using the smallest number of bits possible to reduce the size

of the file in question and hence the bandwidth required for transfer.

Different audio codecs can be used to output different audio file formats—a
number of which are supported by HTML5.

OGG VORBIS

Ogg Vorbis is an open source, unpatented, free file format created by the Xiph.
Org Foundation (www.xiph.org). Because it is free of charge, it tends to be quite
attractive as a format to use.

Ogg is the name of the container format, and Vorbis is the specific audio com-
pression it uses. According to the Vorbis website (www.vorbis.com), Vorbis files
can compress to a small file size and yet still maintain good sound quality. This
of course is ideal for delivery across the web because it reduces bandwidth costs.

The Ogg Vorbis format has proved quite popular among the gaming commu-
nity with companies like Epic Games, Crystal Dynamics, and EA Games using it
to deliver game music.

Ogg Vorbis uses the application/ogg MIME type and audio/ogg codec.

www.xiph.org
www.vorbis.com

ptg6964689

AUDIO CODECS AND FILE FORMATS 47

WHAT’S A MIME TYPE?

MIME (Multipurpose Internet Mail Extensions) is an internet standard that

was initially designed to describe email content. It has now extended much

further than that. MIME types are used to identify the type of information

that a particular file contains.

A MIME type definition usually takes this form:

type/subtype

where type can be audio, application, video, or image and subtype might be

jpg, mp3, or zip, depending on the value of type.

For a list of common MIME types and their corresponding file extensions, see

http://hul.harvard.edu/ois/systems/wax/wax-public-help/mimetypes.htm.

MP3

MP3 has rather a misleading name because it’s also known as MPEG-1 or MPEG-2
Audio Layer III. Developed by the Moving Picture Expert Group (www.mpeg.org),
MP3 differs from Ogg Vorbis in that it is covered under a patent held by Fraunhofer
(www.fraunhofer.de/en), which receives a percentage of each sale.

The MP3 standard does not actually include an exact specification on how
to encode MP3, but the standard does specify how to decode the format. This of
course has resulted in many different MP3 encoders, each of which produces audio
files of different sound quality.

Despite the patent, MP3 has proved to be one of the most popular audio formats
for encoding sound files.

MP3 uses the audio/mpeg MIME type and audio/mp3 codec.

www.mpeg.org
www.fraunhofer.de/en
http://hul.harvard.edu/ois/systems/wax/wax-public-help/mimetypes.htm

ptg6964689

48 CHAPTER 3 USING AUDIO

WAV

The WAV file format’s proper name is Waveform Audio File Format but is called
WAV due to its file extension. WAV is an audio format that was first created by
Microsoft and IBM in 1991.

Although it can contain compressed data, it usually doesn’t, which of course
can render rather large file sizes. It is for this reason that its use as a format for
delivering audio over the internet has declined.

WAV uses the audio/wav MIME type and audio/wav codec.

AAC

Advanced Audio Coding (AAC) is an audio format used by Apple and has been
made popular as the default format for Apple’s iTunes Store. It was designed to
be the successor to the MP3 format and for this reason usually has a better sound
quality than MP3.

AAC uses the audio/aac MIME type and audio/aac codec.

MP4

Although mainly used as a video file format (more on that in Chapter 4), MP4 can
also be used to encode audio only. Like AAC, it has been made popular by Apple,
which also uses it to encode some audio files with the .m4a extension.

MP4 uses the audio/mp4 MIME type and audio/mp4 codec.

Now that you know about the different audio formats, let’s look at how they are
supported across browsers.

ptg6964689

BROWSER SUPPORT FOR AUDIO FORMATS 49

When the first drafts of the HTML5 specification came out, they included a recom-
mendation, nay, a requirement, that all web browsers must have built-in support for
the Ogg Vorbis audio format. This was beneficial because you could be guaranteed
that each browser that supported the HTML5 audio element would at least support
Ogg Vorbis, and you could present your audio file in that format.

However, this utopia of a universally supported audio format changed when
both Apple and Nokia objected to this requirement. Apple simply didn’t want any
compulsory requirement for a technology that, at the time, wasn’t widely supported
(plus Apple had a vested interest in the MP4 file format), whereas Nokia claimed
that the Ogg Vorbis format wasn’t as open and free as it claimed.

As a result, the requirement was removed from the specification. Consequently,
different vendors decided to support different audio codecs. Table 3.1 contains a
list of which vendors support certain audio formats in their browsers.

TABLE 3.1 Audio Formats and Browser Support

FORMAT BROWSER

Ogg Vorbis Firefox 3.5+ Chrome 5+ Opera 10.5+

MP3 Safari 5+ Chrome 6+ IE9+ iOS

WAV Firefox 3.6+ Chrome 8+ Safari 5+ Opera 10.5+

AAC Safari 3+ Chrome 5+ IE9+ iOS 3+ Android 2+

MP4 Safari 3+ Chrome 5+ IE9+ iOS 3+ Android 2+

Browser support of audio formats is a bit of a mixed bag, but you can easily
combat this by presenting the audio file in the different formats required using
the audio and source elements you read about in Chapter 2.

With different browsers supporting different formats, you must be wondering
how to convert from one format to another. Well, let’s take a quick look.

NOTE: Chrome is due to drop support for MP4/H.264.

See http://blog.chromium.org/2011/01/more-about-

chrome-html-video-codec.html for more information.

BROWSER SUPPORT FOR
AUDIO FORMATS

http://blog.chromium.org/2011/01/more-aboutchrome-html-video-codec.html
http://blog.chromium.org/2011/01/more-aboutchrome-html-video-codec.html

ptg6964689

50 CHAPTER 3 USING AUDIO

ENCODING YOUR AUDIO FILE

Once you have your audio file, whether you recorded it yourself or obtained it from
elsewhere, it will generally be in one format only. Most likely, it will be in one of
the formats mentioned earlier, but it might not be.

You could of course decide to support only one audio type. You might know,
for example, that all your users will use Firefox, and therefore you only have to
support Ogg Vorbis.

For argument’s sake, let’s say that you want to support all the main browsers,
so you need to convert your audio file to the other formats. How do you do this?

Well, many encoders will do the job for you, and most of them are free. Here
are two of my favourite encoders for converting the various audio formats from
one to another:

� Miro Video Converter (www.mirovideoconverter.com) allows you to open
many different audio file formats and convert them to MP3, WAV, Ogg, and
others via a simple drag-and-drop interface. It runs on both Windows
and Mac.

� Media Converter (www.mediaconverter.org) is an online conversion appli-
cation that allows you to either upload an audio file or use one that’s already
online. It also allows you to convert your audio file to MP3, WAV, and Ogg.

Many other encoders are of course available, but I prefer these two because
one is a desktop application and one is online. This suits all occasions because the
desktop application is useful when I am offline, and of course the web converter
is useful when I want a quick file conversion and am online.

However, you must face a particular issue if you want to support browsers that
do not have HTML5 multimedia-playing capabilities.

TIP: It’s a good idea to have a number of your favourite converters

either on your desktop/laptop or online so that you can always convert

between the different formats at will when you need to. Although only two

have been mentioned here, you may find different encoders that you prefer.

www.mirovideoconverter.com
www.mediaconverter.org

ptg6964689

BROWSER SUPPORT FOR AUDIO FORMATS 51

LEGACY BROWSER FALLBACK

The eagle-eyed among you will have noticed that at no stage yet have I brought up
Internet Explorer 6 to 8. As mentioned in Chapter 2, these browsers don’t support
any HTML5 and need JavaScript help in order for them to render the elements.
And it gets slightly worse with regard to multimedia, because naturally there is no
native support for any of the aforementioned audio file formats.

So what’s the solution? You use a method that the Internet Explorer versions
do understand, which means Flash, QuickTime, or some other third-party plugin.
Or, you simply provide a link to the audio file in question so that any unlucky
users can download the file and play it in the old style via an audio player on their
computers. This is achieved by using the audio and source elements.

A complete example of how to use the audio and source elements to do this,
along with how to provide Flash fallback is provided in the next section, as well
as other examples on how to use the audio element.

ptg6964689

52 CHAPTER 3 USING AUDIO

By now you’ve read enough about HTML5 audio and are eager to see some proper
examples of how to actually use it in a web document. Well, here you’ll do just that.

All the elements and attributes that are used in the code in this section were
introduced to you in Chapter 2.

PLAYING AN AUDIO FILE

If you want to simply play an audio file, you just need to use an instance of the
audio element. For example, to allow the user to play an Ogg Vorbis audio file, you
simply use this:

<audio src=”sayHello.ogg” controls></audio>

The controls attribute tells the browser to display its default controls to users
to allow them to control the playback of the file.

However, if you were evil and wanted to play the file before your users had a
chance to do anything about it, you would add the autoplay attribute:

<audio src=”sayHello.ogg” controls autoplay></audio>

If you were even more evil, you could play the audio file to users automatically
and in a loop, like this:

<audio src=”sayHello.ogg” controls autoplay loop></audio>

And if you had some vendetta against your users and wanted to torment them,
you could remove the controls attribute, thus rendering them unable to stop the
playback:

<audio src=”sayHello.ogg” autoplay loop></audio>

NOTE: You can find all of the examples (and more) in this section

on the accompanying website at www.html5multimedia.com.

EXAMPLES OF USING

THE AUDIO ELEMENT

www.html5multimedia.com

ptg6964689

EXAMPLES OF USING THE AUDIO ELEMENT 53

Note that I am not recommending that you use autoplay or loop, or remove
the controls attribute. It’s generally not a nice thing to do and can really annoy
your users. Just ensure that you can justify your decision should you decide to
use autoplay or loop.

You can also mute the file when it first loads by using the muted attribute. This
specifies the default state of the audio, which you might want to do to potentially
override any user preferences:

<audio src=”sayHello.ogg” controls autoplay muted></audio>

In addition, you can request that the browser not preload the audio file on
startup. The previous examples all default to preload=”auto” when it’s not specified:

<audio src=”sayHello.ogg” controls preload=”none”></audio>

And of course you can request that the browser load the metadata only. This
can be apt when the audio file is quite long or you know that the user may actually
choose not to listen to the audio file:

<audio src=”sayHello.ogg” controls preload=”metadata”></audio>

Any use of the preload attribute is simply a suggestion to the browser and
may actually be overridden by the browser itself, perhaps based on a user setting.

All the preceding examples use just one audio source. So what if you need to
serve up multiple sources for different browsers?

ptg6964689

54 CHAPTER 3 USING AUDIO

PLAYING AN AUDIO FILE WITH DIFFERENT SOURCES

Let’s say you wanted to provide audio in both Ogg Vorbis and MP3 formats to sup-
port Firefox, Chrome, Opera, Safari, and IE9. You can do this by using the source
element in conjunction with the audio element. The code would look like this:

<audio controls>

<source src=”sayHello.ogg” type=”audio/ogg”>

<source src=”sayHello.mp3” type=”audio/mp3”>

</audio>

It couldn’t be easier!
Naturally, you can add a WAV file format too (should you want to):

<audio controls>

<source src=”sayHello.ogg” type=”audio/ogg”>

<source src=”sayHello.mp3” type=”audio/mp3”>

<source src=”sayHello.wav” type=”audio/wav”>

</audio>

You can incorporate any of the attributes mentioned earlier here as well. So
making whichever source the browser chooses to play automatically would simply
require this code:

<audio controls autoplay>

<source src=”sayHello.ogg” type=”audio/ogg”>

<source src=”sayHello.mp3” type=”audio/mp3”>

<source src=”sayHello.wav” type=”audio/wav”>

</audio>

To support browsers that don’t support the HTML5 audio element, you’d follow
the same tactic, but the fallback is different.

ptg6964689

EXAMPLES OF USING THE AUDIO ELEMENT 55

PLAYING AN AUDIO FILE WITH DIFFERENT
SOURCES AND LEGACY FALLBACK

Because legacy browsers like Internet Explorer 6 to 8 don’t support HTML5, if you
want to support these browsers (and you should), you need to revert to another
format that they do understand—something like Flash for example.

So, do you need to pollute your nice, clean, HTML5 markup with ugly Flash
plugin code? Yes, I’m afraid you do unless you are happy with simply providing a
link to the audio file for the user to download.

In much the same way as HTML5-supporting browsers work their way through
the sources your document presents to them to find an audio format they can play,
legacy browsers will ignore all these audio formats until they come across a file
they can play, be it a Flash file, or whatever.

There are a number of ways you can provide Flash file playback: via a Flash player
that you host on your server; by using a remote Flash player, such as Google’s Flash
Player; or by using either the embed or object elements (see Chapter 2).

The code for using a downloaded player (this particular player is the Google
Flash Player already mentioned, which I have simply downloaded) and the object
element might look like this:

<audio controls>

<source src=”sayHello.ogg” type=”audio/ogg”>

<source src=”sayHello.mp3” type=”audio/mp3”>

<object type=”application/x-shockwave-flash”

 data=”player.swf?audioUrl=sayHello.mp3&autoPlay=true”

 height=”27” width=”320”>

 <param name=”movie”

 value=”player.swf?audioUrl=sayHello.mp3&autoPlay=true”>

</object>

</audio>

TIP: You can download the excellent JW Player, a Flash player from

Longtail Video, at www.longtailvideo.com/players/jw-flv-player. Although

JW Player is a complete HTML5 and Flash Video player solution, it does contain

a Flash player within the downloaded ZIP file (player.swf) that you can use.

www.longtailvideo.com/players/jw-flv-player

ptg6964689

56 CHAPTER 3 USING AUDIO

The same code using the embed element looks like this:

<audio controls>

<source src=”sayHello.ogg” type=”audio/ogg”>

<source src=”sayHello.mp3” type=”audio/mp3”>

 <embed type=”application/x-shockwave-flash”

 wmode=”transparent”

 src=”player.swf?audioUrl=sayHello.mp3&autoPlay=true”

 height=”27”

 width=”320”>

</audio>

And using Google’s Flash Player and the embed element looks like this:

<audio controls>

<source src=”sayHello.ogg” type=”audio/ogg”>

<source src=”sayHello.mp3” type=”audio/mp3”>

 <embed type=”application/x-shockwave-flash”

 wmode=”transparent”

 src=”http://www.google.com/reader/ui/3523697345-audio-
p player.swf?audioUrl=sayHello.mp3&autoPlay=true”

 height=”27”

 width=”320”>

</audio>

ptg6964689

EXAMPLES OF USING THE AUDIO ELEMENT 57

All of the preceding examples will work in browsers that support HTML5 audio,
as shown in Firefox in Figure 3.1.

And the examples will all work in Internet Explorer 8 using a Flash player, as
shown in Figure 3.2.

You can take advantage of the fact that Flash can play MP3 files, so you don’t
have to serve up yet another audio file format. Of course, users must have the Flash
player installed on their system. But what if they don’t?

Well, you can go one step further with the fallbacks presented and offer a simple
link to the file for the user to download:

<audio controls>

<source src=”sayHello.ogg” type=”audio/ogg”>

<source src=”sayHello.mp3” type=”audio/mp3”>

 <object type=”application/x-shockwave-flash”

 data=”player.swf?audioUrl=sayHello.mp3&autoPlay=true”

 height=”27” width=”320”>

 <param name=”movie”

 value=”player.swf?audioUrl=sayHello.mp3&autoPlay=true”>

 </object>

Download the audio file

</audio>

FIGURE 3.1 The audio

player in Firefox 5.

FIGURE 3.2 A sample Flash player

as viewed in Internet Explorer 8.

ptg6964689

58 CHAPTER 3 USING AUDIO

If the browser doesn’t support HTML5 audio but does have the Flash plugin
installed, it will display both the Flash player and the link, as shown in Figure 3.3.
This isn’t necessarily a bad thing of course, and in fact you might want to always
provide a download link for the user.

If you decide not to support Flash, you can omit the Flash embed element and
provide the hyperlink to download the file only:

<audio controls>

<source src=”sayHello.ogg” type=”audio/ogg”>

<source src=”sayHello.mp3” type=”audio/mp3”>

Download the audio file

</audio>

You should also provide file formats for browsers that do support HTML5 audio
playback. If the browser does support HTML5 but is unable to play any of the
sources provided, it won’t revert to playing any Flash content you may also have
provided nor display the download link should one be present. Instead, a broken
player might be displayed, or as in the case of Firefox, a rather ugly black box
(Figure 3.4).

Whatever you decide to do, there are enough fallback mechanisms available
to help you support most browsers.

FIGURE 3.3 Internet

Explorer 8 showing the

Flash player as well as

the download link to the

audio file.

FIGURE 3.4 Firefox

displays an ugly box if

it is unable to play any

of the HTML5 audio files

provided.

ptg6964689

WRAPPING UP 59

At the moment, the major web browsers support different audio file formats, which
require your audio content to be provided in the various formats in order for these
browsers to be able to play them. Fortunately, providing these different file formats
is easy to do via the HTML5 audio and source elements.

In addition, legacy browsers, such as Internet Explorer 8 and earlier, can also
be supported via third-party plugins (such as Flash) as they were before. Gradually,
legacy browsers will fade out of use, and the requirement to support them will cease
to exist. But you can still guarantee their users access to your audio.

The examples in this chapter cover a wide range of real-life scenarios that you
may encounter when adding audio to your web documents. However, they are by
no means exhaustive. And although all the code used in the examples is available
on the website, additional examples will be added in the future, so it’s definitely
worth checking them out.

Native audio is a major step forward in web technology and is matched at least
by, and perhaps even surpassed by, video, which is the focus of the next chapter.

WRAPPING UP

ptg6964689

4

USING VIDEO

ptg6964689

61

The popularity of video-sharing sites such

as YouTube and Vimeo, combined with

bandwidth speeds that makes online video

feasible, have led to a huge demand for embedding video in web

documents. Yet until recently the only way was by using third-

party plugins such as Flash and QuickTime. HTML5 provides that

missing standard method for embedding videos in web documents.

Major browsers have begun to support it in their latest releases,

so you can be confident that modern browsers can handle your

video content.

This chapter covers the file formats and codecs supported by

HTML5 video, how to convert between formats, and solutions to

issues you might encounter. You’ll also learn how to deliver video

to browsers that don’t support HTML5 video.

ptg6964689

62 CHAPTER 4 USING VIDEO

VIDEO CODECS AND
FILE FORMATS

As with audio, HTML5 video has a number of different formats that you can use
to encode video content in due to browser vendors being unable to agree on a
standard. The video file formats available include Theora Ogg, MP4 (H.264), and
WebM. Let’s look at each in detail.

CODECS AND CONTAINERS

As mentioned in Chapter 3, a codec is a computer program that uses a com-

pression algorithm to encode and/or decode a digital stream of data, making

it more suitable for playback.

A container is a wrapper format whose specification describes how the differ-

ent data elements within the container exist and interact together within a

computer file.

THEORA OGG

Theora Ogg, as you’ve probably guessed, is also from the Xiph.Org Foundation
(www.xiph.org). Like its audio counterpart, Theora Ogg is free and open, and has
no licensing or royalty issues.

As with audio, Ogg is the name of the container format, and in this case Theora
refers to the video-compression format that it uses. Earlier versions of the Theora
codec showed it to be inferior to other similar codecs at the time, but it has improved
a great deal and is now considered comparable to YouTube’s H.264 output (before
YouTube started encoding high-definition video).

Theora Ogg uses the application/ogg MIME type and the video/ogg video
attribute type.

www.xiph.org

ptg6964689

VIDEO CODECS AND FILE FORMATS 63

MP4 (H.264)

MPEG-4 Part 10, or MP4, is a compressed video format, which like the MP3 audio
format (see Chapter 3) was defined by the Moving Picture Experts Group (MPEG;
www.mpeg.org). It was developed to deliver DVD-quality video and audio in a small
package. This small file size makes MP4 files highly suitable for portable players,
and naturally, the web.

H.264 has been split into 17 different “profiles”; each of which provides addi-
tional features that usually increase the file size. Some are suitable for use with
HTML5 video, whereas others are not. The Baseline and Main profiles are usu-
ally used for HTML5 video. For a full list of these profiles, see en.wikipedia.org/
wiki/H.264#Profiles.

MP4 uses the video/mpeg MIME type and the video/mp4 video attribute type.

WEBM

WebM is a project (www.webmproject.org) that is supported by web-industry giants,
such as Mozilla, Opera, Adobe, and Google. The aim of the project is to produce a
high-quality, royalty-free, open video format.

The video content is compressed with the VP8 codec, which was developed by
On2 Technologies (the company was acquired by Google in February 2010). The
codec tends to be used within the WebM container.

WebM uses the video/webm MIME type and the video/webm video attribute type.

www.mpeg.org
www.webmproject.org

ptg6964689

64 CHAPTER 4 USING VIDEO

When the first draft of the HTML5 specification was released, it recommended that
browsers should support the Theora Ogg video format. Knowing that all browsers
that supported HTML5 video would support a standard video format would have
allowed you to guarantee availability of your video content to users when you
served up a Theora Ogg video file. However, note the use of the phrase “would have.”

Unfortunately, like the audio specification, both Nokia and Apple objected to
the requirement to support Theora Ogg, which they regarded as not being widely
supported and not as open and free as the Xiph.Org Foundation claimed. So the
requirement was removed. As a result, you’re back to having to supply your video
content in more than one format to guarantee coverage of all browsers that sup-
port HTML5 video.

Table 4.1 contains a list of which vendors support certain video formats in
their browsers.

TABLE 4.1 Video Formats and Browser Support

FORMAT BROWSER

Theora Ogg Firefox 3.5+ Chrome 5+ Opera 10.5+

MP4/H.264 Safari 3+ Chrome 5–? IE9+ iOS Android 2+

WebM Firefox 4+ Chrome 6+ Opera 11+ IE9+ Android 2.3+

In fact, you need to serve up at least two different formats, MP4 and WebM, in
order to support the latest versions of the major browsers. This isn’t too much of
a chore if you’re only serving up a few videos, because it can be easily done using
the video and source elements mentioned in Chapter 2. For video-intensive sites,
it can unfortunately be a burden because many files need to exist in at least two
different formats, thus doubling the storage space required.

NOTE: Chrome currently supports MP4/H.264 but will drop support

for it soon. Internet Explorer 9 will support WebM as long as a third-party

plugin that can play it is installed.

BROWSER SUPPORT FOR
VIDEO FORMATS

ptg6964689

BROWSER SUPPORT FOR VIDEO FORMATS 65

MOBILE DEVICES

Another good reason to use HTML5 video is Apple’s decision not to support

Flash in the iPhone and iPad. iOS, the operating system that runs on these

phones, has support for MP4 video.

Android phones also support MP4 (and WebM from version 2.3), Windows

Phone 7 has native support for both MP4 and WebM, and Blackberry sup-

ports MP4 from version 7 of its browser.

Because you’ll have your video file in one format, the easiest way of providing
the two formats is by converting from one format to the other.

Let’s take a quick look at how you’d convert your video content between the
different formats before diving into the code examples.

ENCODING YOUR VIDEO FILES

You might already have the video content that you want to display on your web
document, or you might still need to record it. Let’s assume that you already have
the content, and that it is in one of the aforementioned formats, although it could
just as easily not be. Either way it’s not a problem because there are plenty of
encoders on the market that you can use to convert your video content from one
format to another.

TIP: It’s wise to support at least MP4 and WebM to cover the

latest versions of the major browsers. Safari supports MP4; Firefox

and Opera support WebM; and Chrome and Internet Explorer 9 currently

support both MP4 and WebM, although Chrome will drop support for MP4

in the near future and IE9 needs a plugin for WebM. However, you might

also choose to support Theora Ogg, because WebM wasn’t supported by

Firefox until version 4, and Firefox doesn’t support MP4 at all.

ptg6964689

66 CHAPTER 4 USING VIDEO

Here are three of my favourite encoders:

� Miro Video Converter (http://www.mirovideoconverter.com). As well as
converting between audio formats, this converter also supports conversion
of video files to Theora Ogg, MP4, and WebM. It really is all you need and
runs on both Windows and Mac.

� Handbrake (http://handbrake.fr). This open source converter allows you to
convert video files to MP4 and the Theora Ogg format. It runs on Windows,
Mac, and Linux.

� Media Converter (http://www.mediaconverter.org). This online conversion
application allows you to upload a file for conversion or provide the URL
of an existing file. It allows you to convert files to Theora Ogg, MP4, and
Flash FLV, among others.

Although you can choose from many other encoders, these are three solid
encoders that you can use to get started.

MP4 ENCODING AND DELAYED PLAYBACK

Sometimes the way an MP4 file is coded can cause problems with its play-

back. Namely, the file doesn’t start playing until it has downloaded com-

pletely. This is due to the encoding process placing the file index—with all

the metadata on file length and so on—at the end of the file rather than

the beginning.

If you find this is happening to your MP4 files, you can fix the problem by

running the files through the QTIndexSwapper (http://renaun.com/blog/

code/qtindexswapper) by Renaun Erickson of Adobe. QTIndexSwapper

simply moves the index to the beginning of the file.

Now that you’ve converted your files, you’re ready to start using them within
your documents!

http://www.mirovideoconverter.com
http://handbrake.fr
http://www.mediaconverter.org
http://renaun.com/blog/code/qtindexswapper
http://renaun.com/blog/code/qtindexswapper

ptg6964689

USING THE VIDEO ELEMENTS 67

Let’s begin with some basic examples of embedding video files within a web docu-
ment. You’ll have previously encountered all the elements and attributes used in
the examples in Chapter 2, so nothing should be new to you.

PLAYING A VIDEO FILE

The easiest example of them all is to play a simple video file of one format with
default media controls for the user.

To play a WebM file, you use:

<video src=”snowy-tree.webm” controls></video>

The control attribute informs the browser that it should display a set of basic
video controls on top of the video player.

If you wanted the video to start playing as soon as the page loads, you could
simply add the autoplay attribute:

<video src=”snowy-tree.webm” controls autoplay></video>

You might also want the video to start playing immediately and then keep play-
ing in a loop via the loop attribute:

<video src=”snowy-tree.webm” controls autoplay loop></video>

It is, however, strongly advised not to do this: Not only is it annoying, but it can
be an accessibility nightmare because a looping video file might play over added
audio that’s inserted for accessibility reasons.

You could also mute the video file on startup by using the muted attribute. Of
course, if your video has no sound, this has no effect:

<video src=”snowy-tree.webm” controls autoplay muted></video>

NOTES: None of the major browsers currently support the muted

attribute. However, you can set it via the Media JavaScript API,

which is discussed in Chapter 5.

All of the examples in this section and more can be found

on the accompanying website at www.html5multimedia.com.

USING THE VIDEO ELEMENTS

www.html5multimedia.com

ptg6964689

68 CHAPTER 4 USING VIDEO

By default, the browser will start loading the entire video file when the page
loads. If you would prefer that the browser not do this (perhaps you think it’s
unlikely that users will want to view the video and don’t want to waste bandwidth
because they might be viewing your site over a mobile network), you can use the
preload attribute and set it to none:

<video src=”snowy-tree.webm” controls preload=”none”></video>

You can also request that the browser load the video’s metadata (e.g., file length)
by setting the preload attribute to metadata:

<video src=”snowy-tree.webm” controls preload=”metadata”></video>

Any setting of the preload attribute merely suggests to the browser what your
intentions are, but ultimately, the browser will decide what to do. The browser may,
for example, ignore your suggestion due to a user setting in the browser.

If you want to hardcode the width and height of the video rather than letting
the browser automatically decide for you, you can do so via the width and height
attributes:

<video src=”snowy-tree.webm” controls width=”300” height=”210”>
p </video>

You can also remove the controls entirely by omitting the controls attribute:

<video src=”snowy-tree.webm”></video>

Note that the user can restore the default controls in most browsers by right-
clicking on the video and selecting the controls from the displayed drop-down
menu Figure 4.1.

All of the preceding examples use just one video file format. But because you’ll
need to serve up more than one video file format to cover all major browsers, let’s
take a look at how to do that next.

FIGURE 4.1 Restoring the

browser’s default media

controls via the browser

menu in Firefox 5.

TIP: If you also specify autoplay, the preload setting will be

overridden because the video must be downloaded for it to play!

ptg6964689

USING THE VIDEO ELEMENTS 69

PLAYING A VIDEO FILE WITH DIFFERENT SOURCES

Presenting different video file formats to the browser is quite easy using the source
element, which you also used in the audio examples in Chapter 3.

Here is the code you need to provide two different sources for the video to play:

<video controls>

<source src=”snowy-tree.mp4” type=”video/mp4”>

<source src=”snowy-tree.webm” type=”video/webm”>

</video>

But let’s also support Theora Ogg, just in case a Firefox 3.5 or Opera 10.5 user
wants to view your video:

<video controls>

<source src=”snowy-tree.ogv” type=”video/ogg”>

<source src=”snowy-tree.mp4” type=”video/mp4”>

<source src=”snowy-tree.webm” type=”video/webm”>

</video>

The examples in the previous section, “Playing a Video File,” where different
attributes were applied to show you how they work and what they do, also apply
to any video element that contains multiple source elements.

NOTE: You probably won’t need to add support for

Theora Ogg, and you should only really bother if you know

that you need to support specific older versions of Firefox.

ptg6964689

70 CHAPTER 4 USING VIDEO

THE type ATTRIBUTE

When you use the source element within the video element, you’ll notice that the type attribute moves

from the video element to the source element. The reason is that the whole idea of serving up different

sources is because they use different formats, and each source element needs to specify the format the

source is in via its own type attribute.

The type attribute can also contain the actual codec that the video file is encoded in. For example:

<source src=”snowy-tree.mp4” type=’video/ogg; codecs=”theora, vorbis”’>

<source src=”snowy-tree.mp4” type=’video/webm; codecs=”vp8, vorbis”’>

<source src=”snowy-tree.mp4” type=’video/mp4; codecs=”mp4a.40.2”’>

Including the codec in the type attribute can be beneficial because it helps the browser decide if it can play

the file or not. It’s best to only include the codec if you know for certain which codec was used to encode

your video content.

Should you decide to include the codec, be very careful and ensure that you format the string correctly,

paying particular attention to the quotes used; otherwise, the browser won’t recognise the source.

In the preceding example, note how the entire string is enclosed within single quotes, the type and codecs

attributes are separated by a semicolon, and the codecs values are contained within a double quote.

If you want to autoplay and loop your video, you would add the autoplay and
loop attributes to the video element like this:

<video controls autoplay loop>

<source src=”snowy-tree.mp4” type=”video/mp4”>

<source src=”snowy-tree.webm” type=”video/webm”>

</video>

You can of course also autoplay and remove the controls like this:

<video autoplay>

<source src=”snowy-tree.mp4” type=”video/mp4”>

<source src=”snowy-tree.webm” type=”video/webm”>

</video>

ptg6964689

USING THE VIDEO ELEMENTS 71

Notice that when autoplay is off, the first still from the video is displayed in
the browser as an image. You might want to use a different image if the first still
from the video isn’t what you want to display; it might be blank or just not the still
you want to show first.

If you want to use a different image, you can use the poster attribute to point
at an image file to use instead:

<video controls poster=”snowy-tree-poster.gif” width=”300”
p height=”210”>

<source src=”snowy-tree.mp4” type=”video/mp4”>

<source src=”snowy-tree.webm” type=”video/webm”>

</video>

You can get an idea of how the poster attribute works in Figure 4.2.
Now that you know how to play video files, you might want to think about the

legacy browser fallback. How do you show video in legacy browsers? Let’s take a look.

FIGURE 4.2 The image on the

left displays the first still from

the video that the browser

shows by default; on the right,

the same video is shown but

with a defined poster image

displayed instead.

ptg6964689

72 CHAPTER 4 USING VIDEO

PLAYING A VIDEO FILE WITH DIFFERENT
SOURCES AND LEGACY FALLBACK

Throughout this chapter I’ve recommended providing a fallback for legacy browsers,
such as Internet Explorer 6 to 8, that don’t support HTML5 and native multimedia.
This of course means reverting to an old third-party plugin that these browsers
understand, such as Flash.

Because browsers ignore what they don’t understand, legacy browsers will
ignore the video and source elements, and act as if they don’t exist. This of course
allows you to provide a simple link to the video file so it can be downloaded:

<video controls autoplay>

<source src=”snowy-tree.mp4” type=”video/mp4”>

<source src=”snowy-tree.webm” type=”video/webm”>

Download the video: snowy-tree.mp4

</video>

You might prefer to actually provide an image link rather than a simple text link:

<video controls autoplay>

<source src=”snowy-tree.mp4” type=”video/mp4”>

<source src=”snowy-tree.webm” type=”video/webm”>

 <figure>

 <img src=”snowy-tree.gif” alt=”Branches of a fern tree
p covered in snow” height=”210” width=”300” />

 <figcaption>Download the video: snowy-tree.mp4
p </figcaption>

 </figure>

</video>

ptg6964689

USING THE VIDEO ELEMENTS 73

Figure 4.3 shows how this might look in Internet Explorer.
If you decide to support Flash and allow non-HTML5 browsers to play your

video via Flash, you can of course do so using either the embed or object elements.
You can then play the video using a downloaded Flash player (which you have
uploaded to your server) and the object element.

You can also take advantage of the fact that Flash can play MP4 files, so there’s
no need to create another file in a different format. The following code shows how
a Flash fallback can be achieved:

<video controls autoplay>

<source src=”snowy-tree.mp4” type=”video/mp4”>

<source src=”snowy-tree.webm” type=”video/webm”>

 <object type=”application/x-shockwave-flash”

 data=”player.swf?videoUrl=snowy-tree.mp4&autoPlay=true”

 height=”210” width=”300”>

 <param name=”movie”

 value=”player.swf?videoUrl=snowy-tree.mp4&autoPlay=true”>

 </object>

</video>

A non-HTML5 browser will ignore the two source elements because it doesn’t
know what to do with them. It will then recognise the object element, and provided
Flash is installed, will play the video through the Flash player.

FIGURE 4.3 This is how the

image and link to download the

MP4 file might be displayed in

Internet Explorer 8.

ptg6964689

74 CHAPTER 4 USING VIDEO

The same code using the embed element looks like this:

<video controls autoplay>

<source src=”snowy-tree.mp4” type=”video/mp4”>

<source src=”snowy-tree.webm” type=”video/webm”>

<embed type=”application/x-shockwave-flash” wmode=”transparent”

 src=”player.swf?videoUrl=snowy-tree.mp4&autoPlay=true”

 height=”210” width=”300”>

</video>

It’s better practice to use object instead of embed, because any content in the
object start and end tags will be rendered even if the browser doesn’t support the
plugin that the object element specifies in its type attribute. This allows you to
specify yet another fallback should you need to. As you can see in the previous
object example, the param element will be read by browsers that don’t understand
the value specified by the type attribute in the object element.

Of course, you still need to rely on the fact that users have the Flash player
installed on their computers, but this may not always be the case. Therefore, you
can also add the image download link mentioned earlier as a final fallback, just in
case Flash isn’t installed:

<video controls autoplay>

<source src=”snowy-tree.mp4” type=”video/mp4”>

<source src=”snowy-tree.webm” type=”video/webm”>

 <object type=”application/x-shockwave-flash”

 data=”player.swf?videoUrl=snowy-tree.mp4&autoPlay=true”

 height=”210” width=”300”>

 <param name=”movie”

 value=”player.swf?videoUrl=snowy-tree.mp4&autoPlay=true”>

 </object>

Download the video: snowy-tree.mp4

</video>

ptg6964689

USING THE VIDEO ELEMENTS 75

The download link here isn’t a true fallback in the sense that if the browser falls
back to Flash, the download link will also be displayed, but that’s not necessarily
a bad thing because it just provides another way to access the file.

There’s plenty to think about when deciding which browsers you want to sup-
port and which fallbacks you want to provide to do so. Whatever you decide on,
HTML5 multimedia should enable you to get the job done.

VIDEO FOR EVERYBODY!

You can read an excellent article by Kroc Camen of Camen Design (http://

camendesign.com) on how to make video available to all without using

JavaScript or browser sniffing. Kroc’s site is definitely worth checking out for

future reading because he keeps it up to date with any new developments or

discoveries that he or others make.

You’ll find the article at http://camendesign.com/code/video_for_everybody.

Of course, these days it isn’t just modern and legacy desktop browsers that you
need to worry about supporting. You also need to make your content available to
users of modern mobiles, tablets, and other alternative browsing devices with
video-playing capabilities. To optimise your web content for such devices, you also
need to learn about media types and media queries, which is what you’ll look at next.

TARGETING DEVICES WITH DIFFERENT VIDEO
FILES USING MEDIA TYPES AND QUERIES

Let’s say you wanted to serve up a different video file depending on the browser’s
capabilities and size. For example, you might want to play a smaller video, in both
dimensions and file size, to a mobile phone that will have a small screen and pos-
sibly be retrieving data over a 3G connection. Is this even possible? It is if you use
a combination of media types and media queries, and the media attribute in the
source element.

Media types were introduced in CSS2 (www.w3.org/TR/CSS2/media.html) to
enable you to target different devices with specific styling and/or style sheets.
Table 4.2 (on the next page) lists the media types.

www.w3.org/TR/CSS2/media.html
http://camendesign.com
http://camendesign.com
http://camendesign.com/code/video_for_everybody

ptg6964689

76 CHAPTER 4 USING VIDEO

TABLE 4.2 Media Types

TYPE DEFINITION

all Suitable for all devices.

braille Aimed at Braille tactile feedback devices.

embossed Aimed at paged braille printers.

handheld Intended for handheld devices, such as mobile phones.

print Targets paged material and material for display in print preview mode.

projection Suitable for projected presentations.

screen Suitable for displaying on a colour computer screen.

speech Intended for speech synthesisers.

tty Aimed at devices with a fixed-pitch character grid, such as a terminal.

tv Intended for a television-type device.

You may have come across some of the media types listed in Table 4.2 before,
although most of them are probably alien to you. If you’ve ever created a style sheet
for printing content, you’ll be familiar with the print media type; if you’ve ever
attempted to target a mobile phone, the handheld type will also be familiar to you.

But it is the handheld type that has caused particular issues as technology has
moved on. Initially, phones didn’t have browsers that were capable of rendering
HTML sites, so developers largely ignored them. When phones became “smarter”
and came with improved browsers, the handheld media type wasn’t being used
in websites. Vendors then chose to ignore it and default to the screen media type
instead. But something was needed to help combat this because website configu-
rations that were meant for full-screen browsers were now rendering on phones,
causing many an annoying scroll bar. This is where media queries come in.

Media queries were created by the W3C and have a complete specification of
their own (see www.w3.org/TR/css3-mediaqueries). They are an extension to CSS3
media types that allow you to check for conditions of particular media features,
such as width, height, and orientation, to deliver either different content or
styling. You can check for a number of device features, the list of which appears
in Table 4.3.

www.w3.org/TR/css3-mediaqueries

ptg6964689

USING THE VIDEO ELEMENTS 77

TABLE 4.3 Media Query Device Features

FEATURE MIN/MAX PREFIXES DEFINITION

width Yes The width of the target display area.

height Yes The height of the target display area.

device-width Yes The width of the device’s rendering area.

device-height Yes The height of the device’s rendering area.

orientation Yes Orientation of the rendering device: portait or landscape.

aspect-ratio Yes Ratio of target width to the height.

device-aspect-ratio Yes Ratio of device-width to the device-height.

resolution Yes Density of pixels in the device.

color Yes Number of bits per colour component.

color-index Yes Number of entries in colour lookup table.

grid No Tests if the device is grid-based or not.

monochrome Yes Number of bits per pixel in monochrome device.

scan No For TV browsing: progressive or scan.

The great thing is that you can combine media types and media queries to target
certain devices using the and keyword:

screen and (min-device-width:300px)

You can also target all devices that don’t match particular settings by using the
logical not operator keyword:

not screen and (max-width:800px)

The only keyword can also be used to hide the settings from older browsers:

only screen and (max-width:800px)

ptg6964689

78 CHAPTER 4 USING VIDEO

Of course, these settings don’t work on their own and need to be assigned to
the media attribute of the required source element within the video container:

<source src=”myVideo.webm” media=” screen and
p (min-device-width:300px)”>

The following code example serves a different video to all media types that
have a maximum width of 600 pixels. Both WebM and MP4 formats are provided.
Anything that doesn’t match these features will move on to the succeeding source
definitions:

<video controls>

 <source src=”snowy-tree-small.mp4” type=”video/mp4”
p media=”all and (max-width:600px)”>

 <source src=”snowy-tree-small.webm” type=”video/webm”
p media=”all and (max-width:600px)”>

<source src=”snowy-tree-medium.webm” type=”video/webm”>

<source src=”snowy-tree-medium.mp4” type=”video/mp4”>

</video>

If you want to also provide a medium-sized video file based on a larger maxi-
mum display width of 800 pixels, you can do so like this:

<video controls>

 <source src=”snowy-tree-small.mp4” type=”video/mp4”
p media=”screen and (max-width:600px)”>

 <source src=”snowy-tree-small.webm” type=”video/webm”
p media=”screen and (max-width:600px)”>

 <source src=”snowy-tree-medium.webm” type=”video/webm”
p media=”screen and (max-width:800px)”>

 <source src=”snowy-tree-medium.mp4” type=”video/mp4”
p media=”screen and (max-width:800px)”>

<source src=”snowy-tree-large.webm” type=”video/webm”>

<source src=”snowy-tree-large.mp4” type=”video/mp4”>

</video>

ptg6964689

USING THE VIDEO ELEMENTS 79

TESTING WITH MEDIA TYPES AND QUERIES

You might be wondering how on earth you would

test media types and queries if you don’t have

specific devices available to you.

With the examples that I’ve provided, simply

changing the size of the browser window and then

refreshing the page will usually result in the desired

outcome.

You can also use the ProtoFluid application

(http://app.protofluid.com), which allows you to

load a website (even those running on your local

server) and change the view to that of a handful of

phones (such as Blackberry and iPhone) and moni-

tors of various sizes, among other devices.

You can see how the code in the section “Target-

ing Devices with Different Video Files Using Media

Types and Queries” works in ProtoFluid in Figure 4.4

and Figure 4.5.

Of course, nothing beats testing your code on the

real thing, but that isn’t always a viable option

given the sheer number of devices on the market.

NOTE: Firefox completely ignores media queries, so changing the browser window size

will have no effect. I suggest using Opera, which does exactly what it’s supposed to.

FIGURE 4.5 Selecting the desktop

800×600 size in ProtoFluid displays

the medium video file.

FIGURE 4.4 Selecting the iPhone size in ProtoFluid displays the

smaller video file.

http://app.protofluid.com

ptg6964689

80 CHAPTER 4 USING VIDEO

Again, any device that has a maximum display size that is larger than 600 pixels
or 800 pixels will ignore the smaller sizes and play whichever one of the WebM or
MP4 larger videos that it is capable of playing.

These are just some simple examples of what you might want to achieve when
targeting different devices. By combining media types and queries, you can target
any device to meet your specific requirements. Unfortunately, none of the previous
examples discussed will work with Android.

ANDROID AND VIDEO

The implementation of HTML5 video in Android is nothing short of shockingly
poor. For this reason, it deserves its own small section to prevent you from tear-
ing your hair out.

Android supports MP4 files from version 2.0 and WebM from version 2.3.
You shouldn’t use the type attribute with the video or source element when

defining the video file you want Android to use. For some reason, this confuses
Android and it ignores the source.

In addition, Android will completely ignore the controls attribute, and you’ll
have to either implement your own controls via the JavaScript API (which is the
subject of Chapter 5), or to achieve autoplay, play the video via the API on page load.

Android also won’t show the first frame of the video as an image; it instead dis-
plays a video icon. It does however recognise and understand the poster attribute,
so if you specify an image with that attribute, it will display that image correctly.

The code for specifying a video for Android follows, along with the JavaScript
required to play the video on Android when the user presses the video icon. I’ll defer
the explanation of this JavaScript for now but will discuss it in detail in Chapter 5:

TIP: Peter Gasston, a web developer and author of many articles and

a book on CSS3, provides an in-depth tutorial on how to make HTML5

video work on Android phones. Be sure to check out what he has to say at

www.broken-links.com/2010/07/08/making-html5-video-work-on-android-phones

if you have problems working with HTML5 video on Android phones.

www.broken-links.com/2010/07/08/making-html5-video-work-on-android-phones

ptg6964689

USING THE VIDEO ELEMENTS 81

<!DOCTYPE html>

<html>

<head>

<title>Playing a Video File: Media Query Android</title>

 <script>

 function play() {

var video = document.getElementById(‘video’);

 video.addEventListener(‘click’,function(){

 video.play();

 },false);

 }

 </script>

</head>

<body onload=”play();”>

 <video controls>

 <source src=”snowy-tree-small.mp4” media=”screen and
p (max-width:800px)”>

 <source src=”snowy-tree-large.mp4” type=”video/mp4”>

 </video>

</body>

</html>

The preceding issues mentioned only affect the default browser that comes
with Android. If the user uses another mobile browser, such as Opera Mobile, the
preceding code isn’t necessary. It’s a good bet that Google will improve Android’s
implementation of HTML5 video in a future release. And by the time you read this,
it may have already been updated.

ptg6964689

82 CHAPTER 4 USING VIDEO

You should now be aware of just how easy it is to add video to your website using
HTML5 native multimedia. You are probably also aware that there are still a number
of details you need to consider before doing so. For example:

� Which browsers should you support?

� Will you support legacy browsers?

� Should you support mobile devices? If so, which ones?

These are just some of the questions you may need to ask before forging ahead.
Once you’ve made those decisions, however, harnessing the power of HTML5

multimedia to deliver video to your users is relatively simple. With the standardised
method of delivery the multimedia part of the HTML5 specification brings, you
know which viewers you’ll reach and what kind of experience they will have.

So far you’ve been leaving it up to the browser to provide the video (and audio)
controls. And these controls vary from one browser to the next.

In the next chapter you’ll learn how to use the HTML5 multimedia JavaScript
APIs included as part of the HTML5 specification to create your own custom con-
trols for both audio and video. Let’s go!

WRAPPING UP

ptg6964689

This page intentionally left blank

ptg6964689

5

JAVASCRIPT API
AND CUSTOM
CONTROLS

ptg6964689

85

HTML5 audio and video provide a lot of

functionality out of the box, but it doesn’t

stop there. HTML5 also provides a wonder-

fully easy-to-use Media JavaScript API that you can use to extend

that basic functionality in other ways.

You’ve all seen the default controls that browsers add to your video

or audio content, and some are pretty ugly. Well, an excellent use

of the JavaScript API is to roll out your own multimedia controls.

You can style them however you like using CSS, and then hook

them up via the API to control your video and audio.

This chapter describes the attributes, methods, and events of the

JavaScript API and then shows you how to put together your own

control set and connect it to make it functional.

Let’s take control!

ptg6964689

86 CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS

WHAT IS JAVASCRIPT?

JavaScript is a commonly used client-side scripting language that you can use to
provide extra functionality to a website. Because the code is client side, it is part
of the HTML page and it’s up to the browser to do something with it. Therefore,
having the Media API as part of the HTML5 specification ensures a standard imple-
mentation of the API across browsers.

The Media API discussed here is a JavaScript API, and it is assumed that you
have an understanding of this language. If you don’t, I recommend the JavaScript
tutorial at www.quirksmode.org/js/intro.html. It will give you a good introduction
to the JavaScript language, which will aid you with your understanding of the
contents of this chapter.

When you’ve finished the tutorial, or if you are already familiar with JavaScript,
read on!

www.quirksmode.org/js/intro.html

ptg6964689

EXPLORING THE API ATTRIBUTES 87

It’s important for you to know about the attributes that each multimedia element
can have as part of the JavaScript API. Each attribute along with its description is
listed in Table 5.1.

Some attributes are specific to video only; these are listed in Table 5.2.
For those attributes that raise an event when their value is changed, the event

name is given for easy reference. See the section “Harnessing the API Events” later
in this chapter for a list of events.

TABLE 5.1 Audio and Video Attributes (continued)

ATTRIBUTE DESCRIPTION

duration Contains the duration of the audio or video. This is a read-only attribute and may only be

available if the video has been preloaded.

When this value becomes available for reading, the durationchange event is raised.

volume Contains the volume setting for the audio or video.

0 is the lowest value; 1.0 is the highest.

When this value is changed, the volumechanged event is raised.

paused Is a boolean attribute that indicates whether or not the audio or video resource is currently

paused.

When this value changes to true, a pause event is raised.

When this value changes to false, a play event is raised.

playbackRate Indicates the required speed at which the audio or video resource is to be played. Valid values

range from −1.0 to 1.0.

A negative value plays the resource backwards faster; a positive value plays it forward faster.

A value of 0 stops playback.

When this value changes, a ratechange event is raised.

ended Is a boolean attribute that indicates whether the audio or video resource has finished playing

(and the play direction is forward! See defaultPlaybackRate later in this table and playbackRate

earlier).

autoplay Is a boolean attribute that indicates whether or not the audio or video is to play automatically.

EXPLORING THE API ATTRIBUTES

ptg6964689

88 CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS

TABLE 5.1 Audio and Video Attributes (continued)

ATTRIBUTE DESCRIPTION

loop Is a boolean attribute that indicates whether or not the audio or video resource is set to loop.

controls Is a boolean attribute that indicates whether or not the browser is to display its default control

set on the audio or video.

muted Is a boolean attribute that indicates whether or not the audio or video is muted.

src Contains the URL to the media source as set in the attribute of the audio or video element.

currentSrc Initially empty, this contains the URL to the media source that’s actually selected for play by the

audio or video element, usually set via a child source element.

startTime Contains the start-time value of the audio or video element. This is usually 0 but can occasion-

ally be a positive value for various reasons, such as being part of a live stream or if it’s a frag-

ment from a larger audio or video resource.

crossOrigin Contains the setting for the audio or video element’s crossOrigin attribute. This is intended to

allow or prohibit cross-origin media of the audio source using the CORS (Cross-Origin Resource

Sharing) specification (see Chapter 2 for more details).

networkState Contains the current network state of the audio or video element.

It can have one of four settings (the numeric value is provided in brackets after the setting

name):

NETWORK_EMPTY (0) Indicates that the element has not yet been initialised.

When this value is set, the emptied event is raised. The abort and

error events can also be raised when this value is set.

NETWORK_IDLE (1) A resource to play has been selected but is not currently being

played.

When this value is set, the suspend event is raised. The abort and

error events can also be raised.

NETWORK_LOADING (2) The browser is currently attempting to download data.

When this value is set, the following events are raised: loadstart,

progress, and stalled.

NETWORK_NO_SOURCE (3) The element is currently looking for a resource to play but hasn’t

yet found one.

ptg6964689

EXPLORING THE API ATTRIBUTES 89

TABLE 5.1 Audio and Video Attributes (continued)

ATTRIBUTE DESCRIPTION

preload Contains the value of the element’s preload attribute, which is used to provide a hint to the

browser on how the media source is to be preloaded (see Chapter 2 for more details).

buffered Contains the time range of the audio or video element that the browser has currently buffered

(if any).

This returns a TimeRange object.

readyState Contains the current ready state of the audio or video element and can contain one of five

possible values (the numeric value is provided in brackets after the value name):

HAVE_NOTHING (0) There is currently no information on the element available.

HAVE_METADATA (1) The metadata of the element in question is currently available.

In the case of the video element, it also indicates that the

video’s dimensions are available. The resource’s start position

is currently unknown.

When this value is set, the loadedmetadata event is raised.

HAVE_CURRENT_DATA (2) Enough data has been retrieved to know the start position of the

audio or video but not enough to actually play it.

When this value is set, the loadeddata event is raised.

HAVE_FUTURE_DATA (3) Enough data has been retrieved so that the resource can be

played. Playing the resource now, however, might mean that

playback may attempt to overtake the amount of the resource

retrieved.

When this value is set, the canplay event is raised.

HAVE_ENOUGH_DATA (4) Enough of the data has been retrieved that the resource can be

played without fear of playback reaching the end of the available

data before the end of the resource has been loaded.

When this value is set, the canplaythrough event is raised.

You could check this attribute periodically to see when to start/stop displaying a waiting icon for

example.

seeking Is a boolean attribute that indicates whether the browser is currently looking for a different

playback position within the audio or video resource. For example, the user may have dragged

the default controls forward to play at a later point in the resource.

ptg6964689

90 CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS

TABLE 5.1 Audio and Video Attributes (continued)

ATTRIBUTE DESCRIPTION

currentTime Contains the current time in seconds that the playback position within the audio or video

resource has reached.

When this value changes, the timeupdate event is raised.

When this value equals the end of the media resource, the ended event is raised.

initialTime Contains the initial playback position of the audio or video resource.

startOffsetTime Contains a Date object representing the current timeline offset (the explicit date and time

corresponding to the zero time in the resource) within the resource.

defaultPlaybackRate Indicates the required speed at which the audio or video resource is to be played when it starts.

Valid values range from -1.0 to 1.0.

A negative value plays the resource backwards faster; a positive value plays it forward faster.

A value of 0 stops playback. Normal play rate is 0.1.

When this value changes, a ratechange event is raised.

played Returns a TimeRanges object indicating the time ranges, if any, that the browser has so far played

of the resource.

seekable Returns a TimeRanges object that indicates the time ranges, if any, of the media resource that

the browser can “seek” to (i.e., look ahead), which depends on how much of the resource is

actually loaded.

mediaGroup Contains the resource’s mediaGroup attribute value, which allows multiple media elements to be

linked together via a common name/group (see Chapter 2 for more details), if set.

controller Contains the resource’s current media controller, if set; otherwise null.

defaultMuted Is a boolean that reflects the value of the resource’s muted attribute (see Chapter 2).

audioTracks Contains the live audio track list that is available in the media element’s resource, if any.

videoTracks Contains the live video track list that is available in the media element’s resource, if any.

textTracks Is a read-only attribute that contains a list of the text tracks available in the media element’s

resource, if any.

ptg6964689

EXPLORING THE API ATTRIBUTES 91

THE TIMERANGE OBJECT

Some of the attributes mentioned in Table 5.1 return a TimeRange object,

which essentially contains the following bits of data:

� length. The number of ranges actually in the object.

� start(index). The timestamp of the start time of the range for the

given index.

� end(index). The timestamp of the end time of the range for the

given index.

Thus, if a particular TimeRange object’s length is 1, you can access the start

and end timestamps of that particular object via start(0) and end(0),

respectively.

TABLE 5.2 Video Attributes

ATTRIBUTE DESCRIPTION

width Contains the width of the video element in pixels or percentage.

Altering this value will not affect the value of videoWidth.

height Contains the height of the video element in pixels or percentage.

Altering this value will not affect the value of videoHeight.

videoWidth Is a read-only attribute that contains the actual width of the video

media file in pixels, or 0 if it’s not known, at the time the video

is loaded.

videoHeight Is a read-only attribute that contains the actual height of the

video media file in pixels, or 0 if it’s not known, at the time the

video is loaded.

poster Contains the URL to the poster image for the video, if any.

Phew, that’s quite a list of attributes! But don’t worry; many of them you might
not ever use. I’ve made an attempt at putting them in order of those you might be
most interested in.

ptg6964689

92 CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS

Let’s look at a couple of quick examples that show how you might use these
attributes. If, for example, you wanted to grab the current played time position of
the video, you’d use the currentTime attribute:

<script>

var video = document.getElementsByTagName(“video”)[0];

 alert(video.currentTime);

</script>

You grab a handle to the video object using the standard getElementsByTagName()
JavaScript function (there’s only one video here, and you know that, hence the index
of 0), and then read the video’s currentTime attribute. This could of course be 0 if
the video hasn’t started yet and is constantly updated as the video plays.

Another example would be to check if the video is looping, and if so, stop it
from doing so:

<script>

var video = document.getElementsByTagName(“video”)[0];

if (video.loop) video.loop = false;

</script>

As you can see, you can achieve this by checking if the loop attribute is true,
and if so, setting it to false to stop the video from looping.

These are just two brief examples of how you can use the attributes. You’ll see
plenty more examples when you start putting together your own media controls
later in this chapter.

Tables 5.1 and 5.2 contain the entire list of attributes just in case you want to
try one or more in the future and are curious as to what does what and where. Also,
you might have noticed that changing some of these attributes raises events that
you can catch, allowing you to act on them.

Let’s take a closer look at these events.

ptg6964689

HARNESSING THE API EVENTS 93

Because JavaScript adds interactivity to web documents, when a user performs
an action, there needs to be a way of detecting that the action occurred. This is
the role of events.

A number of events in the Media JavaScript API can be raised based on value
changes, method calls, and browser actions. Listening to certain events and
responding to them can be key when rolling out your own control set for audio
and video resources.

A full list of the events that can be raised is provided in Table 5.3.

TABLE 5.3 Events Raised in the Media JavaScript API (continued)

EVENT DESCRIPTION

loadstart Is raised when the browser starts looking for media data to load.

progress Is raised when the browser is retrieving media data.

suspend Is raised when the browser was fetching media data but paused and has not yet fetched the

entire media resource.

abort Is raised when the browser stops fetching media data but not because of an error.

error Is raised when an error occurred while the browser was fetching the media data.

emptied Is raised when the network connection was lost while the browser was fetching media data or

the load() method was called when one such method was already in progress.

stalled Is raised when the browser is attempting to fetch media data, but for some reason the data

isn’t being transferred.

loadedmetadata Is raised when the duration and dimensions of the media resource have been acquired by

the browser.

loadeddata Is raised when the browser knows the start position of the media resource.

canplay Is raised when the browser can start playback for the first time but can’t guarantee that if

playback begins now that it won’t have to pause to fetch more media data.

TIP: If JavaScript events are new to you, check out

www.quirksmode.org/js/introevents.html for a good

solid introduction.

HARNESSING THE API EVENTS

www.quirksmode.org/js/introevents.html

ptg6964689

94 CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS

TABLE 5.3 Events Raised in the Media JavaScript API (continued)

EVENT DESCRIPTION

canplaythrough Is raised when the browser is capable of playing the media resource from start to finish

without having to pause to fetch more media data.

playing Is raised when playback of a media resource is ready to start after having been previously

paused or delayed due to lack of sufficient media data.

waiting Is raised when the browser has stopped playback due to insufficient media data being

available. It does, however, expect the required data to become available shortly.

seeking Is raised when the media resource’s seeking attribute is set to true.

seeked Is raised when the media resource’s seeking attribute is set to false.

ended Is raised when the media resource stops playing because it has finished.

durationchange Is raised when the media resource’s duration attribute has been updated.

timeupdate Is raised when the media resource’s current playback position has been changed (e.g., as part

of normal playback).

play Is raised when the media resource that was previously paused no longer is paused, and normal

playback has resumed.

pause Is raised after the pause() method has returned and the media resource has been paused.

ratechange Is raised when either the media resource’s defaultPlaybackRate or playbackRate attributes

are changed.

volumechange Is raised when the media resource’s volume or muted attribute has changed.

ptg6964689

HARNESSING THE API EVENTS 95

Events can be quite useful when you want to react to various media resource
attributes and states being changed, even if it’s only to update an onscreen display.

Let’s reuse one of the earlier short examples. If you wanted to grab and display
the current time of the video as it’s playing, you’d naturally want to update the time
as it changes. To do this, you’d listen for the timechange event and then act on it:

<div id=”time”>0</div>

<script>

var video = document.getElementsByTagName(“video”)[0];

video.addEventListener(‘timechange’, function() {

 document.getElementById(“time”).innerHTML =
p video.currentTime;

 }, false);

</script>

This code adds an event listener (more on this later) for the timechange event.
When it is raised, it updates the time div with the current video played time. Because
the timechange event is raised as the video’s currentTime attribute is changed, this
code will keep the display updated.

You’ll use a video in the examples throughout the rest of the chapter (unless
otherwise mentioned). Although nearly all the attributes, events, and methods
apply to both audio and video, a video example helps to visualise them better.

As the video is playing, you’ll need to move or give the impression of move-
ment within a progress bar. Simply reacting to the timeupdate event can facilitate
that task, because you can easily read the currentTime attribute and work out
the percentage of the video played. You’ll revisit progress bars later in the chapter
when you learn how to create one.

But before you start looking at code and how you actually use the API, you
need to know about methods.

ptg6964689

96 CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS

Methods are small subroutines that tell an object, in this case an audio or video
object, what to do. You don’t need to know the ins and outs of what a particular
method does internally. You just need to know that it exists, can be called, what it
does, and the expected outcome.

The Media JavaScript API contains a handful of methods that are all aptly named
and do exactly what they say they do (Table 5.4).

It’s not a long list of methods for sure, but enough to be able to create your own
simple set of media controls and use it to manipulate your audio and video media.

If you wanted to play the video when a certain button is clicked (which you
will of course when implementing your own media controls!), you could do the
following:

<button id=”play” title=”play” onclick=”playVideo()”>play</button>

<script>

function playVideo() {

var video = document.getElementsByTagName(“video”)[0];

 video.play();

}

</script>

This code defines a simple HTML button and specifies that the playVideo()
JavaScript function should be called when the button is clicked. The playVideo()
function simply calls the video’s play() method, which starts the video playing!

By now you’re absolutely bored to the back teeth with looking at lists of attri-
butes, events, and methods. Well, as interesting and useful as they may be, so am I.
So, let’s move on to see just how useful they can be as you create a simple HTML5
video player with custom controls.

TIP: You may have noticed that there is no stop() method. Well,

stopping the playback is pretty much the same as pausing it. The

only difference is that you’d probably also want to set the media resource’s

currentTime attribute to the start of the media resource, which is 0.

USING THE API METHODS

ptg6964689

USING THE API METHODS 97

TABLE 5.4 Media API Methods

METHOD DESCRIPTION

load() Causes all activity on a media resource to be suspended immediately, and the element in

question is reset to default values (for a comprehensive list of the default values that are

set, go to www.whatwg.org/specs/web-apps/current-work/multipage/the-video-element.

html#dom-media-load).

This method causes the loadstart event to be raised.

play() Informs the media element to begin playback of a media resource.

If the media resource was previously paused, the resource’s paused attribute will be set to

false and the play event raised.

pause() Causes a media resource to stop playing.

This will cause the media element’s paused attribute to be set to true and therefore raise

a pause event.

canPlayType(type) Takes a string representation of a MIME type (e.g., audio/ogg, video/mp4) as a parameter

and returns a string value indicating the browser’s perceived ability to play that particular

media type.

The values that can be returned include:

An empty string The browser is unable to play a media resource of this type.

“maybe” The browser can’t say for certain that it can or cannot play a media

resource of this type.

“probably” The browser is pretty sure it can play a media resource of this type.

addTextTrack(kind,

[label],[language])

Returns and adds a text track, which it also adds to the media element’s list of text tracks.

The kind parameter can be one of:

subtitles

captions

descriptions

chapters

metadata

The optional label and language parameters default to an empty string if they’re not provided.

You'll read more about text tracks in Chapter 8.

www.whatwg.org/specs/web-apps/current-work/multipage/the-video-element.html#dom-media-load
www.whatwg.org/specs/web-apps/current-work/multipage/the-video-element.html#dom-media-load

ptg6964689

98 CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS

While creating custom controls, you’ll incorporate many of the elements you’ve
learned about in previous chapters and in this one.

To begin, you’ll need a video with sound. The previous video example of the
snowy tree moving gently in the wind shows that I’m not very creative when it
comes to choosing video. So, for this example, I’ve chosen grass blowing in the
wind, complete with windy sounds and rustling grass—exciting stuff.

The basic HTML5 code for this little video setup is code that you’ve seen before
and therefore isn’t new to you:

<video controls>

<source src=”grass-in-the-wind-sma.mp4” type=”video/mp4”>

<source src=”grass-in-the-wind-sma.webm” type=”video/webm”>

</video>

Next, you’ll add buttons to use as your Play/Pause and Stop buttons.

NOTES: The code for this simple video player example is available on the

website at www.html5multimedia.com.

On some occasions there might be better or quicker ways to write the

JavaScript functions. But the purpose of this code is to show you what

you can achieve via the Media JavaScript API. Therefore, I think it’s easier

to see it explained via verbose JavaScript.

CREATING A SIMPLE VIDEO

PLAYER WITH CUSTOM CONTROLS

www.html5multimedia.com

ptg6964689

CREATING A SIMPLE VIDEO PLAYER WITH CUSTOM CONTROLS 99

ADDING PLAY/PAUSE AND STOP BUTTONS

Using simple HTML, again nothing you’re not familiar with, you’ll add the two
buttons in a div below the video element definition:

<div id=”controls”>

<button id=”playpause” title=”play”>play</button>

<button id=”stop” title=”stop”>stop</button>

</div>

And there you have it; two simple, but currently useless, buttons that you can
style however you like. For now, let’s leave them as they are (Figure 5.1).

You’ll use the same button for playing and pausing the video because you’ll only
ever have one and not the other. Check out the browser’s default media controls.
When you click Play, it becomes a Pause button. You’ll mimic that behaviour.

Notice that I’ve added a controls attribute to the video element. Why? I’m just
playing it safe. Because you’ll add all your custom controls using the JavaScript API,
if users have JavaScript turned off, they won’t have any controls. So you’ll leave the
controls attribute where it is and then remove it via JavaScript, which also won’t
happen if users have JavaScript turned off. Therefore, the attribute is no problem.

FIGURE 5.1 A boring video

player.

NOTE: You could of course use hyperlinks instead of

buttons, but I have chosen to use buttons here.

ptg6964689

100 CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS

Let’s add the first piece of JavaScript and actually remove the default controls
from the video:

<script>

var video = document.getElementsByTagName(“video”)[0];

video.controls = false;

</script>

You grab a handle to the video object using the standard getElementsByTagName()
JavaScript function and then, using that handle, you set the boolean controls
attribute to false. Your video player now looks like the one in Figure 5.2.

Next, you’ll create a function for the buttons to call when they’re actually clicked.
Let’s do the Stop button first, because it’s the easiest.
You define the function stopVideo() and add it to the Stop button’s onclick

event:

function stopVideo() {

 video.pause();

video.currentTime = 0;

}

<button id=”stop” title=”stop” onclick=”stopVideo()”>stop</button>

As mentioned earlier, stopping the video is pretty much the same as pausing
it except you also reset the video’s time to the beginning. As you can see, these
tasks are achieved by calling the video’s pause() method and then setting the
currentTime attribute to 0.

FIGURE 5.2 The video player

sans controls.

ptg6964689

CREATING A SIMPLE VIDEO PLAYER WITH CUSTOM CONTROLS 101

The Play and Pause buttons naturally follow a similar pattern but are slightly
more complex. You need to grab a handle to the button object because you’ll need
to make changes to it like this:

var ppbutton = document.getElementById(“playpause”);

You then define another function—for this example, call it togglePlay()—and
assign it to the Play/Pause button:

function togglePlay() {

if (video.paused || video.ended) {

if (video.ended) video.currentTime = 0;

 ppbutton.title = “pause”;

 ppbutton.innerHTML = “pause”;

 video.play();

 }

 else {

 ppbutton.title = “play”;

 ppbutton.innerHTML = “play”;

 video.pause();

 }

}

<button id=”playpause” title=”play” onclick=”togglePlay()”>play
p </button>

Let’s look at the function more closely.
You first check if the video is currently in a paused or ended state. If it’s ended,

you reset the currentTime to 0 (much the same as you did in stopVideo()). Then
you set the button’s title attribute and text to “pause” and call the play() method
to play the video.

If the video is not paused or ended, then obviously it’s currently playing (and
you want to pause it). So you change the button’s title attribute and text to “play”
and then call the pause() method to actually pause the video.

ptg6964689

102 CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS

As it is now, the video player changes the Play button to Pause when you click
it and vice versa (Figure 5.3). The Play/Pause and Stop buttons now do exactly
what they’re supposed to.

You’ve made a good start on customising your controls. But what if users man-
aged to play or pause the video without using your controls? How can they do that,
you ask? Well, some browsers (e.g., Firefox) allow you to reinstate the controls by
right-clicking on the video and choosing Show Controls. If a user clicks your Play
button and then uses these default controls to pause the video, your controls look
broken because the values shown on the Play/Pause buttons become out of sync
with the actual state of the video. This where events come in.

LISTENING FOR EVENTS

As mentioned in Table 5.4, when the pause() and play() methods are called, they
raise two events, pause and play, respectively. So all your code needs to do is listen
for them and act accordingly.

To listen for an event, you use the addEventListener() method (which you
saw briefly earlier) to call on the video object. So to listen for the pause and play
events, you need to add this:

video.addEventListener(‘play’, function() {

 /*...do stuff...*/

}, false);

video.addEventListener(‘pause’, function() {

 /*...do stuff...*/

}, false);

FIGURE 5.3 The custom video

player with Play/Pause and

Stop buttons.

ptg6964689

CREATING A SIMPLE VIDEO PLAYER WITH CUSTOM CONTROLS 103

And the “stuff” that you need to do in this case is simply to update the button’s
text accordingly, like this:

video.addEventListener(‘play’, function() {

ppbutton.title = “pause”;

ppbutton.innerHTML = “pause”;

}, false);

video.addEventListener(‘pause’, function() {

ppbutton.title = “play”;

ppbutton.innerHTML = “play”;

}, false);

Now if you use the browser’s default controls to play/pause the video, your
custom controls will still show the correct values.

Because you’ve now added the updating of the button values to the event listen-
ers, you no longer need to do it in the togglePlay() function; it will now happen
automatically when the event is raised. So togglePlay() now looks like this:

function togglePlay() {

if (video.paused || video.ended) {

if (video.ended) video.currentTime = 0;

 video.play();

 }

 else {

 video.pause();

 }

}

You also need to add an event listener for the ended event so you can correctly
update the buttons when video playback ends normally. Do so like this:

video.addEventListener(‘ended’, function() { this.pause(); }, false);

ptg6964689

104 CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS

The this in question in the preceding line of code is the video, and calling
pause() simply pauses the video, which in turn will raise the pause event. Then
the Play/Pause button will be updated accordingly via the listener you’ve already
added for the pause event.

This same logic applies for all the default controls that you will see on the
browser, because your code will need to listen for all of them as well and act accord-
ingly. You’ll be adding event listeners and acting on them throughout the rest of
the examples in this chapter.

Next, you need to control volume and mute.

ADDING VOLUME AND MUTE BUTTONS

As with the Play/Pause and Stop buttons, the principle of adding Volume and Mute
buttons is the same:

� Add HTML buttons

� Create JavaScript functions to interact with the video via the API

� Add the JavaScript functions to the HTML button’s onclick event

� Add appropriate events to catch the default control’s behaviour (if required)

So once again you’ll add new buttons—nothing fancy for the moment, just
three simple buttons—one each for increasing and decreasing the volume, and
also for muting/unmuting the sound:

<button id=”volumeDown” title=”-”>-</button>

<button id=”volumeUp” title=”+”>+</button>

<button id=”mute” title=”mute”>mute</button>

NOTE: You could use the new HTML5 range element for the volume

controls, which is ideal for functionality such as this. However, not

all browsers currently support this element; Opera, Chrome, and Safari

are the only ones that do. Hence, buttons are used in the example.

ptg6964689

CREATING A SIMPLE VIDEO PLAYER WITH CUSTOM CONTROLS 105

Now you need to define those functions, one for changing the volume and one
for toggling the mute:

function changeVolume(direction) {

var volume = Math.floor(video.volume * 10) / 10;

video.muted = false;

if (direction == “-”) {

if (volume <= 0.1) video.volume = 0;

else video.volume -= 0.1;

 }

 else {

if (volume >= 0.9) video.volume = 1;

else video.volume += 0.1;

 }

}

Let’s look at changeVolume() first.
You first grab the current volume setting of the video via the video’s volume

attribute, and then round it down to the nearest decimal place using JavaScript’s
Math.floor() function. Next, you set the video’s muted attribute to “false” (you
don’t have to do this, but if someone’s changing the volume, that person probably
wants to unmute the video automatically if it’s muted).

Then you check the direction parameter passed in by the button’s call to
changeVolume() to see if the volume should be decreased or increased. A “-” indi-
cates a decrease, and a “+”indicates an increase. If it’s a decrease, you check whether
the current volume is already less than 0.1 (you decrease and increase the volume
in steps of 0.1), and if so, you simply set the video’s volume attribute to 0. Other-
wise, you decrease the volume by 0.1. Almost the opposite occurs for an increase
in volume; 1 is the highest value.

ptg6964689

106 CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS

Now you define a function, toggleMute(), to toggle the mute status of the video:

function toggleMute() {

var mute = document.getElementById(“mute”);

if (video.muted) {

 mute.title = “mute”;

 mute.innerHTML = “mute”;

 video.muted = false;

 }

 else {

 mute.title = “unmute”;

 mute.innerHTML = “unmute”;

 video.muted = true;

 }

}

As you can see in the preceding code, you first need to get a reference to the
mute button object so you can use it, because, as with the Play/Pause button, you
need to change the text and value.

Then you check the video’s muted attribute to see if it’s already muted. If so, you
change the button’s value to “mute” and set the video’s muted attribute to “false.”
Otherwise, you set the button’s value and title to “unmute” and set the video’s
muted attribute to “true.”

Now you need to add the functions to their appropriate button onclick events:

<button id=”volumeDown” title=”-” onclick=”changeVolume(‘-’)”>-
p </button>

<button id=”volumeUp” title=”+” onclick=”changeVolume(‘+’)”>+
p </button>

<button id=”mute” title=”mute” onclick=”toggleMute()”>mute</button>

ptg6964689

CREATING A SIMPLE VIDEO PLAYER WITH CUSTOM CONTROLS 107

In this case you don’t need to listen for any events unless you’re updating a dis-
play of the player’s current controls. If you did want to react to changes in volume,
you could add a listener for the volumechange event, which is raised when either
the volume or mute values are changed.

The buttons are finished. Your player now has three more working buttons
(Figure 5.4), and they’re fully functional.

Enough with the buttons for the moment. How can you show your users how
much of the video they’ve seen? For that you need a progress bar.

ADDING A PROGRESS BAR

To add a progress bar, you again need to add the HTML for it first:

<div id=”progressBar”></div>

FIGURE 5.4 The video player

now has added sound control-

ling functionality!

NOTE: Ideally, the new HTML5 progress element would be used to

add a progress bar. Unfortunately, it’s currently only supported by Opera

and Chrome, so a simple div and span combination is used instead.

ptg6964689

108 CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS

In addition, you also need to style it with a little bit of simple CSS to make it
work visually:

#progressBar {

border:1px solid #aaa;

 color:#fff;

 width:295px;

 height:20px;

}

#played {

 background-color:#aaa;

 height:20px;

 display:inline-block;

}

The width and heights are rather arbitrary, but that doesn’t matter at this point
because you can style the progress bar however you desire. With this code, you
now have a crude progress bar (Figure 5.5).

Basically, what you’ll do next is increase the percentage width of the played
span within the progressBar div as the video is playing.

You define a function called updateProgress(), which you’ll use to capture the
video’s currentTime setting and increase the width of the played span accordingly:

FIGURE 5.5 The video player

displays a progress bar that

currently does nothing.

ptg6964689

CREATING A SIMPLE VIDEO PLAYER WITH CUSTOM CONTROLS 109

function updateProgress() {

var value = 0;

if (video.currentTime > 0) {

 value = Math.floor((100 / video.duration) *
p video.currentTime);

 }

document.getElementById(“played”).style.width = value + “%”;

}

The function works out the percentage of the video played using the video’s
full duration compared to the currentTime (which is where within the video’s full
time it currently is).

Of course, to make the progress bar work, you need to listen for an event that
tells you when currentTime has changed so you can call the updateProgress()
function and actually update the progress bar—in this case, the timeupdate event:

video.addEventListener(‘timeupdate’, updateProgress, false);

And that’s it. Playing the video will raise the timeupdate event as it’s play-
ing, which in turn will call the updateProgress() function that will update the
progress bar.

Your slightly better-than-average video player now has a working progress
bar (Figure 5.6)!

To make this simple video player even more useful, why not add fast-forward
and rewind buttons?

FIGURE 5.6 The video player

and its working progress bar.

Huzzah!

ptg6964689

110 CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS

ADDING FAST-FORWARD AND REWIND BUTTONS

Yes, it’s back to adding buttons I’m afraid. But you’re a dab hand at adding them
by now, so I won’t need to tell you what to do until you get to the JavaScript stage.

Let’s define the buttons and throw in the function names for the onclick events
because you now know what’s what:

<button id=”rewind” title=”reverse” onclick=”changePlaybackSp
eed(‘-’);” >«</button>

<button id=”ffwd” title=”fast forward” onclick=”changePlaybackSp
eed(‘+’);” >»</button>

You’ll use the HTML entities « and » to mimic the typical symbols
you find on such buttons: « and » respectively.

Notice that the name of the function you’ll define is changePlaybackSpeed().
The attribute that you’ll change to make this work is the playbackRate attribute
that you encountered in Table 5.1.

There is a caveat though: Currently, only the WebKit-based browsers, Safari
and Chrome, support the playbackRate attribute. Therefore, the only way you can
sort of mimic the intended functionality on other browsers is to alter the video’s
currentTime attribute, moving it either forward or backwards:

function changePlaybackSpeed(direction) {

if (video.playbackRate != undefined) {

if (direction == “-”) video.playbackRate -= 1;

else video.playbackRate += 1;

 }

 else {

if (direction == “-”) video.currentTime -= 1;

else video.currentTime += 1;

 }

}

ptg6964689

CREATING A SIMPLE VIDEO PLAYER WITH CUSTOM CONTROLS 111

If video.playbackRate is defined, you check the direction parameter passed
in—again “-” for back and “+” for forward—and decrease or increase playbackRate
accordingly. If the playbackRate is 0, the video is effectively paused and playback
stops. Otherwise, you move the video’s currentTime backwards or forward by 1.

Your simple but slightly more awesome than it was at the start of the chapter
media player now has a full set of rather grey but functional buttons and a working
progress bar (Figure 5.7).

With a bit of jiggery pokery with CSS, you can style the player to your taste and
achieve what you see in Figure 5.8 or perhaps something better.

Just when you thought you were finished with this simple media player, you’ll
make one final addition to increase its awesomeness—progress bar seek
functionality.

FIGURE 5.7 Your fully functional but rather bland video

player that could really do with a bit of CSS love.

FIGURE 5.8 A styled version of the video player

makes it actually look the part.

TIP: Although Safari and Chrome support the playbackRate attribute,

they work in different ways. Both support the incrementing of the parameter

to fast forward, but Chrome doesn’t support rewinding. Safari on the other hand

actually starts to play the video backwards, right to the start.

NOTE: The code for this styled player and for

the unstyled player is available on the website at

www.html5multimedia.com.

www.html5multimedia.com

ptg6964689

112 CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS

ADDING A SEEK BAR

Progress bar seek functionality allows users to click anywhere on the progress bar
to move the video to that point. No new HTML is needed for this; everything you
need to do to add this functionality is all in the JavaScript. You just need to add
one event listener and two functions.

Because the interaction will be via a mouse, you need to add an event listener
for the mouseup event (which is raised when a user releases the mouse button at
the end of a click) to the progress bar:

var progressBar = document.getElementById(“progressBar”);

progressBar.addEventListener(“mouseup”, function(e)
p { setPlayPosition(e.pageX); }, false);

This code indicates that the setPlayPosition() function (which takes one
parameter—the x-coordinate of the mouse position at the time of the click) is
called when mouseup is raised.

Define the setPlayPosition() function as:

function setPlayPosition(x) {

var progressBar = document.getElementById(“progressBar”);

var value = (x - findPos(progressBar)).toFixed(2);

 var timeToSet = ((video.duration /
p progressBar.offsetWidth).toFixed(2) * value).toFixed(2);

video.currentTime = timeToSet;

}

ptg6964689

CREATING A SIMPLE VIDEO PLAYER WITH CUSTOM CONTROLS 113

The setPlayPosition() function is where it all happens. You define a handle
to the progress bar and then set a variable value based on the x-coordinate of the
mouse position at the time of the click—minus the real position of the progress
bar on the web page (obtained via the findPos() function)—to two decimal places:

findPos() is defined as:

function findPos(obj) {

var curleft = 0;

if (obj.offsetParent) {

 do { curleft += obj.offsetLeft; } while
p (obj = obj.offsetParent);

 }

 return curleft;

}

You calculate the value variable via the findPos() function to get a more accu-
rate reading for the mouse position, because it takes into account the offset position
of the progress bar.

Next, you define the timeToSet variable, which will be the actual time value
the video will be set to. You calculate this variable by taking the full duration of
the video and dividing it by the width of the progress bar. The resulting calcula-
tion roughly equates to the pixel position per video unit of time, which you then
multiply by value. All the results are obtained to two decimal places.

You then set the video’s currentTime variable to this new time value.
Now when a user clicks in the progress bar, the video will move to that position

and play will continue/start from there.
The player that you just created is of course HTML5 only, and for browsers that

don’t support HTML5, such as Internet Explorer 6 to 8, the player won’t work. So
how can you make it compatible with such browsers? That’s what you’ll learn next.

NOTE: The findPos() function finds the real position of an HTML ele-

ment, taking into account the position of its parents. You can read more

about the code behind it at www.quirksmode.org/js/findpos.html.

www.quirksmode.org/js/findpos.html

ptg6964689

114 CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS

NON-HTML5 BROWSERS

To make your player compatible with non-HTML5 browsers, you’ll first need to
add a Flash resource (as discussed in Chapter 4) to the video element for these
browsers to use. Then perform a check to see if the browser supports HTML5
video. If so, you can carry on with all that fancy JavaScript that adds the controls,
events, and functions. If the browser doesn’t support HTML5 video, you’ll hide
your custom controls and let the Flash player handle the video playback and pro-
vide user controls.

You can check for video browser support by using the following piece of
JavaScript:

var v = document.createElement(“video”);

if (v.play) {

/* ...the browser supports HTML5 video...*/

}

else {

/*...the browser doesn’t support HTML5 video...*/

}

This code creates a dummy video element and then checks to see if the play
function exists. If not, the browser doesn’t support video playback.

ptg6964689

WRAPPING UP 115

MODERNIZR

You can also check for video browser support by using the very useful Modernizr (www.modernizr.com)

detection library, which enables you to simply write:

if (Modernizr.video) {

/* ...the browser supports HTML5 video...*/

}

else {

/*...the browser doesn’t support HTML5 video...*/

}

In addition, Modernizr allows you to check for browser support for a multitude of other HTML5 elements,

functions, and capabilities, as well as to check for CSS3 support.

WRAPPING UP

You’re now familiar with most of the attributes, events, and methods of the HTML5
Media JavaScript API and what they can be used for. You learned how to use them
to build a simple HTML5 video player with custom controls that also reacts to
changes in the video playback from other sources via events.

Of course, that’s not all you can do with the API and your video player, which
after all is quite simple and basic. You could take it further and add a playlist that
loads videos in the player based on user selection from a list. But that feature is
outside the scope of your simple media player.

You styled the final version of your minimal media player (Figure 5.8) via CSS,
which was simply a case of adding the styling to the standard HTML elements you
used to build up your control set: div, button, and span. The next chapter shows
how you can use CSS to style the actual media elements.

www.modernizr.com

ptg6964689

6

STYLING MEDIA
ELEMENTS WITH CSS

ptg6964689

117

Because the audio and video elements are

valid HTML elements, you can treat them

the same way as other elements, such as

div, header, article, and section. This, of course, means that

the audio and video elements can be styled via CSS.

No longer do you need to obtain a Flash player that has the cor-

rect or similar colours so that the player fits in with your website’s

colour scheme (well, except for non-HTML5 browsers of course).

Now you can don your CSS hat and use your skills to make these

elements look the way you want them to.

As well as the usual CSS declarations that you are familiar with,

a number of new ones have surfaced with the advent of CSS3—

the latest version of CSS. In this chapter, you’ll learn some of the

most useful CSS properties and techniques that you can apply to

media elements. You’ll also learn about browser-vendor prefixed

CSS rules and why they’re needed.

ptg6964689

118 CHAPTER 6 STYLING MEDIA ELEMENTS WITH CSS

SIMPLE CSS STYLING

Cascading Style Sheets (CSS) is a language that is used to describe the presentation
of a document written in a markup language, in this case HTML5. CSS basically
separates the document content from the document style, which includes colours,
background images, fonts, and positioning.

A complete and thorough study of CSS, its syntax, and its properties is outside
the scope of this book. If you are new to CSS, check out the many books and online
resources available to you to familiarise yourself with the concept.

Before diving into more advanced styling, let’s first look at a few simple examples
of how you can use basic CSS to style the look of a video element.

To begin, let’s take a video, give it a large white border, and centre it in the
middle of a web document (Figure 6.1).

The code for the video is nothing you haven’t seen before:

<video controls preload=”metadata”>

<source src=”parrots-small.mp4” type=”video/mp4”>

<source src=”parrots-small.webm” type=”video/webm”>

</video>

The basic CSS that’s used to achieve the styling is as follows:

body {

 background-color:#262626;

 margin:0 auto;

 text-align:center;

}

FIGURE 6.1 Some simple CSS

styling can make the video

more aesthetically pleasing.

ptg6964689

SIMPLE CSS STYLING 119

video {

margin-top:100px;

border:20px solid #fff;

}

The body has a background colour of #262626 (a sort of charcoal), and its con-
tents are aligned in the centre. The video element has a thick white border of 20
pixels and is placed 100 pixels from the top of the page. This improves the overall
look of the video.

If you wanted to add a title on top of the video, you could use the usual method
of relative positioning and z-indexes to ensure that the title is placed where you
want it. The following HTML defines a simple container div, a div containing the
title, and then the video element:

<div class=”container”>

<div class=”title”>Parrots</div>

<video controls preload=”metadata”>

 <source src=”parrots-small.mp4” type=”video/mp4”>

 <source src=”parrots-small.webm” type=”video/webm”>

</video>

</div>

The container div is simply being used to enclose the title div and the video
within a certain width:

.container {

width:340px;

}

NOTE: You can use margin:0 auto; on

the video element if you want to centre

videos inside different content div columns.

ptg6964689

120 CHAPTER 6 STYLING MEDIA ELEMENTS WITH CSS

Next, you style the title div, giving it certain dimensions, applying a background
colour, centering the text, and transforming the text into uppercase. Let’s also give
it a position of relative and define the z-index as 2:

.title {

 width:200px;

 height:30px;

 background-color:#aaa;

 z-index:2;

 position:relative;

 margin:10px auto;

border:1px solid #262626;

 text-transform:uppercase;

 text-align:center;

}

Then give some dimensions to the video, a position of relative, and a z-index
of 1 (less than that of the title div so it will be placed behind it). Apply a negative
margin at the top to place it under the title div, and then horizontally centre it
inside the container div (via the auto setting):

video {

 margin:-35px auto;

 width:305px;

 height:152px;

border:20px solid #fff;

 position:relative;

 z-index:1;

}

ptg6964689

SIMPLE CSS STYLING 121

The result is shown in Figure 6.2.
If you need to define a video element that is bigger than the video it contains

(e.g., videos of different sizes might be loaded into the element), the video might
letterbox. You can apply a background colour to the video element, which will
then fill the empty space:

video {

 margin:20px;

 background-color:#fff;

 width:305px;

 height:200px;

}

Here the background colour is defined as #fff (white), and the result is shown
in Figure 6.3.

The preceding examples were nothing spectacular and relatively easy. However,
they show that you can manipulate and style the video element the same way as
any other HTML element using the CSS knowledge that you already have.

Next up are a few CSS3-specific examples.

FIGURE 6.2 A title div is placed on top of the video element. FIGURE 6.3 The video with a white background.

ptg6964689

122 CHAPTER 6 STYLING MEDIA ELEMENTS WITH CSS

CSS3, the latest version of CSS to emerge, has a whole host of new rules and proper-
ties that its predecessor, CSS2.1, didn’t have. And you can use these new features
to style HTML elements to your heart’s content.

A study and list of these rules and properties are outside the scope of this book,
but you can view the specification at www.w3.org/TR/CSS.

Some of the more interesting properties that add new functionality are discussed
in the following sections, and as usual, contain complete examples.

OPACITY

You can, should you want to, make your video transparent using the CSS3 opacity
property. This property takes a value between 0 and 1; 0 is invisible and 1 is opaque:

video {

opacity:0.5;

}

This piece of CSS makes the video 50-percent transparent (Figure 6.4).
You could then bring the video to 100-percent opacity on hover by using the

following:

video:hover {

opacity:1;

}

Opacity works in the latest versions of Firefox, Opera, Internet Explorer, and
Safari. Chrome renders the video controls transparent but not the video.

TIP: Two fantastic resources for CSS3 and examples of how you can

use its various bits and pieces are CSS3.info at http://www.css3.info and

Dev.Opera at http://dev.opera.com/articles/css.

ADVANCED WHIZZYNESS

WITH CSS3

www.w3.org/TR/CSS
http://www.css3.info
http://dev.opera.com/articles/css

ptg6964689

ADVANCED WHIZZYNESS WITH CSS3 123

GRADIENT

Another new addition to CSS3 is the ability to define a gradient (blending from one
colour to another) as the background image of an element. Specifying gradients
makes use of another CSS3 property, rgba colour definitions.

Previously in CSS, colours could be defined through common names (e.g.,
white), colour hex codes (e.g., #ffffff), or rgb colour definitions where you define
the individual red, green, and blue values of the colour, (e.g., rgb(255,255,255)).
These colour definitions are of course still completely valid in CSS3, but you can
also use a new rule, rgba. Similar to rgb, rgba also allows you to define the alpha
channel—that is, the opacity value for the colour in addition to the red, green, and
blue values. For example, a definition of rgba(255,255,255,0.5) defines a white
colour with 50-percent opacity. Gradients make use of this as you will see next.

You can also use a gradient with a video, but you can’t apply it to the actual
element because, as a background image, the video would always and correctly
be on top and therefore hide most or all of the background. You can, however,
add the gradient to a div that you then place on top of the video element like this:

<video controls preload=”metadata”>

<source src=”parrots-small.mp4” type=”video/mp4”>

<source src=”parrots-small.webm” type=”video/webm”>

</video>

<div class=”gradient”></div>

Then give the video a relative position and a z-index of 1. Give the gradient
div a relative position, the same dimensions as the video, and a z-index of 2 (so it
remains on top of the video element), and apply the gradient:

FIGURE 6.4 This video is

50-percent transparent in

Firefox 5.

ptg6964689

124 CHAPTER 6 STYLING MEDIA ELEMENTS WITH CSS

.gradient {

 width:305px;

 height:152px;

margin:-187px 30px 30px;

 position:relative;

 z-index:2;

 background-image: -webkit-linear-gradient(

 top,

 rgba(255,255,255,0),

 rgba(255,255,255,1)

);

 background-image: -moz-linear-gradient(

 top,

 rgba(255,255,255,0),

 rgba(255,255,255,1)

);

 background-image: -o-linear-gradient(

 top,

 rgba(255,255,255,0),

 rgba(255,255,255,1)

);

 background-image: linear-gradient(

 top,

 rgba(255,255,255,0),

 rgba(255,255,255,1)

);

}

ptg6964689

ADVANCED WHIZZYNESS WITH CSS3 125

The gradient colours are defined using the new CSS3 rgba colour-setting rule
mentioned earlier. The colour definitions used in the preceding example have the
“from” colour defined with an opacity of 0 (transparent), and the “to” colour is
defined with an opacity of 1 (opaque).

Notice that there are four different definitions for the gradient: one with the
-moz prefix (Mozilla Firefox specific), one with -webkit (WebKit browser specific;
Safari and Chrome), one with –o (Opera), and one without any browser-specific
prefix, which is the CSS3 definition but might not yet be supported.

The definitions generally take the format:

position, gradient-from-colour, gradient-to-colour

You can see how the gradient looks in Figure 6.5. Notice that the controls are
covered and cannot be used, so you should implement them via the JavaScript API,
as described in Chapter 5.

Gradient works in Firefox, Chrome, and Safari.

FIGURE 6.5 The video with the gradient applied in Firefox 5 (left) and Chrome 13 (right).

TIP: It’s always a good idea to provide browser-specific CSS

definitions (if they exist) as well as the actual specification version

to ensure that all browsers that are capable of using the style rule will.

NOTE: You can do more with CSS3 linear gradient rules than is

shown in the examples, but any further explanation is outside the

scope of the book. You can read more about CSS3 linear gradients at

http://dev.opera.com/articles/view/css3-linear-gradients.

http://dev.opera.com/articles/view/css3-linear-gradients

ptg6964689

126 CHAPTER 6 STYLING MEDIA ELEMENTS WITH CSS

ROUNDED CORNERS

Rounded corners were once the bane of the web developer’s life, with many an
hour spent fiddling with background images to add rounded corners to an HTML
element. That pain is relieved in CSS3 with the addition of border-radius, which
allows you to add rounded corners to any HTML element, and that includes the
multimedia elements:

video {

 -moz-border-radius:20px;

 -webkit-border-radius:20px;

 border-radius:20px;

}

Once again, there are a number of browser-specific definitions, but each gives
the element a rounded-corner radius of 20 pixels (Figure 6.6).

At the moment, rounded corners on media elements currently only work in
Firefox.

SHADOW

In conjunction with rounded corners, adding a shadow to an HTML element is
another common web developer task. And once again. CSS3 comes to the rescue
and adds it to the specification.

Using the following code, you can add a shadow colour of #999 to the 10 pixels
at the bottom and right of the video with a spread of 5 pixels:

FIGURE 6.6 A video element

with lovely rounded corners.

ptg6964689

ADVANCED WHIZZYNESS WITH CSS3 127

video {

-moz-box-shadow: 10px 10px 5px #999;

-webkit-box-shadow: 10px 10px 5px #999;

box-shadow: 10px 10px 5px #999;

}

The result is shown in Figure 6.7.

ROUNDED CORNERS PLUS SHADOW

Combining rounded corners with shadow and applying them to a video element has an odd effect in all

browsers other than Firefox.

Firefox renders the properties correctly, but other browsers ignore the rounded corners on the video

element and instead show the rounded corners on the shadow (Figure 6.8)!

FIGURE 6.8 The video with rounded corners and a drop shadow rendered in Firefox (left) and then in Chrome (right).

FIGURE 6.7 A video with a

drop shadow in Chrome 13.

ptg6964689

128 CHAPTER 6 STYLING MEDIA ELEMENTS WITH CSS

Not only can you apply a drop shadow and rounded corners to the video
element, but you can also apply them to the audio element:

<audio controls>

<source src=”sayHello.ogg” type=”audio/ogg”>

<source src=”sayHello.mp4” type=”audio/mp4”>

</audio>

This audio element is then styled like this:

audio {

 border-radius:10px;

box-shadow:10px 10px 5px #888;

}

The preceding audio element example displays best in Firefox (Figure 6.9);
other browsers don’t apply the rounded corners to the audio element.

SIZING YOUR CONTENT

Two new properties in the CSS3 specification allow you to specify how replaced
content within replaced elements, such as images and video, are contained. You
might want your video content to occupy a space of certain dimensions but want
the aspect ratio to be maintained rather than stretching or squashing the content.
Equally, you may actually want the video content to be squashed or stretched!
The two properties that allow you to define how you want the video content to be
rendered are the object-fit and object-position properties.

FIGURE 6.9 Audio controls dis-

played with rounded corners

and a drop shadow in Firefox.

ptg6964689

ADVANCED WHIZZYNESS WITH CSS3 129

OBJECT-FIT

object-fit specifies how the element should be scaled relative to the container,
using its height and width. object-fit can have a number of values:

� fill The contents fill the container.

� contain The contents fill the container, and the aspect ratio of the
multimedia element is maintained.

� cover The contents fill the container completely.

� none The contents fill the entire container irrespective of the
aspect ratio, so some stretching may occur.

� scale-down Apply whichever one of none or contain would result in
a smaller size.

It’s quite difficult to understand what each object-fit value means without
actually seeing its result. So let’s look at an example of all of them using five videos:

<video id=”v1” width=”200” height=”200” preload=”metadata”>

<source src=”parrots-tiny.mp4” type=”video/mp4”>

<source src=”parrots-small.webm” type=”video/webm”>

</video>

<video id=”v2” width=”200” height=”200” preload=”metadata”>

<source src=”parrots-small.mp4” type=”video/mp4”>

<source src=”parrots-small.webm” type=”video/webm”>

</video>

<video id=”v3” width=”200” height=”200” preload=”metadata”>

<source src=”parrots-small.mp4” type=”video/mp4”>

<source src=”parrots-small.webm” type=”video/webm”>

</video>

<video id=”v4” width=”200” height=”200” preload=”metadata”>

<source src=”parrots-small.mp4” type=”video/mp4”>

ptg6964689

130 CHAPTER 6 STYLING MEDIA ELEMENTS WITH CSS

<source src=”parrots-small.webm” type=”video/webm”>

</video>

<video id=”v5” width=”200” height=”200” preload=”metadata”>

<source src=”parrots-small.mp4” type=”video/mp4”>

<source src=”parrots-small.webm” type=”video/webm”>

</video>

Style the videos like this:

video {

border:1px solid #000;

 display:block;

 margin-bottom:10px;

}

video#v1 {

 -o-object-fit:none;

}

video#v2 {

 -o-object-fit:contain;

}

video#v3 {

 -o-object-fit:cover;

}

video#v4 {

 -o-object-fit:fill;

}

video#v5 {

 -o-object-fit:scale-down;

}

ptg6964689

ADVANCED WHIZZYNESS WITH CSS3 131

Figures 6.10 through 6.14 show how the preceding code displays the videos
in Opera 11.50.

Incidentally, this method of positioning objects currently works only in Opera
and needs to use the Opera-specific property o-object-fit.

FIGURE 6.10 The video element uses

the object-fit:fill setting to enclose

the content.

FIGURE 6.13 The video element uses

the object-fit:none setting to enclose

the content.

FIGURE 6.11 The video element uses

the object-fit:contain setting to

enclose the content.

FIGURE 6.14 The video element uses

the object-fit:scale-down setting to

enclose the content.

FIGURE 6.12 The video element uses

the object-fit:cover setting to

enclose the content.

ptg6964689

132 CHAPTER 6 STYLING MEDIA ELEMENTS WITH CSS

OBJECT-POSITION

object-position indicates the alignment of the element within the container. This
CSS rule takes the same values as the well-known background-position property
and is used in the same way to define where the element should be placed.

Using four of the previous video definitions, you could position them as follows:

<video id=”v1” preload=”metadata”>

<source src=”parrots-tiny.mp4” type=”video/mp4”>

<source src=”parrots-tiny.webm” type=”video/webm”>

</video>

<video id=”v2” preload=”metadata”>

<source src=”parrots-tiny.mp4” type=”video/mp4”>

<source src=”parrots-tiny.webm” type=”video/webm”>

</video>

<video id=”v3” preload=”metadata”>

<source src=”parrots-tiny.mp4” type=”video/mp4”>

<source src=”parrots-tiny.webm” type=”video/webm”>

</video>

<video id=”v4” preload=”metadata”>

<source src=”parrots-tiny.mp4” type=”video/mp4”>

<source src=”parrots-tiny.webm” type=”video/webm”>

</video>

ptg6964689

ADVANCED WHIZZYNESS WITH CSS3 133

Style the videos as follows but with a different –o-object-position CSS rule
defined for each video:

video {

border:1px solid #000;

display:block;

margin-bottom:10px;

width:300px;

height:180px;

-o-object-fit:none;

}

video#v1 {

-o-object-position:top left;

}

video#v2 {

-o-object-position:right center;

}

video#v3 {

-o-object-position:right bottom;

}

video#v4 {

-o-object-position:center;

}

You’ve now defined four videos, each with a border and specified dimensions
but with different settings for object-position.

NOTE: The object-position property is currently only supported in Opera,

which requires the browser-specific -o-object-position property.

ptg6964689

134 CHAPTER 6 STYLING MEDIA ELEMENTS WITH CSS

Figures 6.15 through 6.18 show how each of the videos render in Opera 11.50.
You can apply and use several CSS3 rules with the video element. Those dis-

cussed in this section just give you a taste of what is available to you. You’re encour-
aged to explore others on your own.

Some WebKit-specific settings are not part of the CSS3 specification, but they
do exist and do some cool stuff. We’ll look at some of those next.

FIGURE 6.15 The video’s content is placed using

object-position:top left.

FIGURE 6.17 The video’s content is placed using

object-position:right bottom.

FIGURE 6.16 The video’s content is placed using

object-position:right center.

FIGURE 6.18 The video’s content is placed using

object-position:center.

TIP: You can read more about the object-fit

and object-position CSS3 properties at

http://dev.w3.org/csswg/css3-images/#object-fit and

http://dev.w3.org/csswg/css3-images/#object-position.

http://dev.w3.org/csswg/css3-images/#object-fit
http://dev.w3.org/csswg/css3-images/#object-position

ptg6964689

WEBKIT-SPECIFIC CSS3 RULES 135

Two fun WebKit-specific properties are well worth looking at: reflect and mask.
It is hoped that they will become part of a wider specification. Even if they don’t,
you can wow your WebKit browser users now with the effects they produce.

REFLECT

The -webkit-box-reflect property allows you to specify a reflection on an HTML
element. Here, you’ll apply it to a video:

video {

 -webkit-box-reflect:below 0px;

}

The short code snippet defines a reflection immediately below the video in
question (Figure 6.19). The controls in the video have been removed because they
will also be included in the reflection, which is not ideal; instead, you should imple-
ment them via the Media JavaScript API.

FIGURE 6.19 A video on auto-

play reflected beneath itself in

Chrome 13.

WEBKIT-SPECIFIC CSS3 RULES

ptg6964689

136 CHAPTER 6 STYLING MEDIA ELEMENTS WITH CSS

You could also reflect the video 30 pixels to the right (Figure 6.20).

video {

-webkit-box-reflect:right 30px;

}

MASK

You can also add a mask over the video using the -webkit-mask-box-image property.
To do this, you need to create a mask image, which should be the same dimensions
as the video. The mask should also be transparent where you want to hide the
video and opaque where you want the video to show through.

Then you simply assign the URL of that image to the -webkit-mask-box-image
property within the video element CSS rule set and supply a background colour
that will fill the opaque areas of the mask image:

video {

-webkit-mask-box-image:url(‘oval-mask.png’);

background-color:#262626;

}

FIGURE 6.20 The video is reflected on the right side, 30 pixels away, in Chrome 13.

NOTE: Chrome 13 requires the image mask to be opaque where you

want to hide the video and transparent where you want the video

to show through. This was also a requirement in Safari 5.0.5 but was

recently changed in version 5.1.

ptg6964689

WRAPPING UP 137

This example uses a simple mask image in the shape of an oval; the oval area
is where the video should appear (Figure 6.21).

If the controls are hidden or partially hidden behind the mask image, they will
be inaccessible; therefore, you should remove the default control set and imple-
ment it via JavaScript.

If you wanted users to view a video through a particular image for extra effect—
for example, to view a video of the sea through a porthole—you could use a mask
image.

It’s a shame that the reflect and mask properties are WebKit specific. But who
knows; perhaps some day they’ll be standardised and will make it into the next
CSS specification.

WRAPPING UP

You learned how you can create HTML5 multimedia elements just like any other
HTML elements within your web document and style and position them in the
same way, too. This chapter has only given you a taste of what you can do when
styling your elements. Be sure to experiment with styling and see what you can
discover and what results you can achieve.

You also learned about some of the new functionality that comes with a few
of the latest CSS3 properties. But CSS3 extends a bit further. Chapter 7 discusses
transitions, transforms, and animation in CSS3.

FIGURE 6.21 A video hidden behind a mask image in Safari 5.1 (left); using the same mask image in Chrome 13 (middle); and using

a reversed masking image in Chrome 13 (right).

TIP: You can read more about using the reflect and mask properties at

http://designshack.co.uk/articles/css/mastering-css-reflections-in-webkit.

http://designshack.co.uk/articles/css/mastering-css-reflections-in-webkit

ptg6964689

7

TRANSITIONS,
TRANSFORMS,
AND ANIMATION

ptg6964689

139

You know you can use CSS to style your

multimedia elements, but CSS3 provides

some new and exciting additions. Using

three of these new additions—transitions, transforms, and

animation—you can create visual enhancements via CSS with-

out the need for any fancy JavaScript. Because such features are

considered presentational, it’s ideal that they’re part of CSS.

This chapter briefly introduces you to some of the aspects of CSS3

transitions, transforms, and animation. You’ll learn how to use

and combine them to add dynamic effects to your layout.

ptg6964689

140 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

USING TRANSITIONS

One of the dictionary definitions for a transition is a “passage from one form, state,
style, or place to another.” This is the same with HTML elements and particularly
with styling. It is either this colour or that colour, placed at this position or that
position. There is no in-between state; it is one or the other. Transitions add an
in-between state between one style, position, or state and another.

For example, let’s say you have an HTML element that you have defined set
dimensions for and that on hover you want that particular element to increase
in size. This is relatively simple to do with the following CSS applied to an HTML
img element:

img{

width:183px;

height:164px;

}

img:hover {

width:275px;

height:246px;

}

And here is the image that the preceding CSS is applied to:

Hovering over this image will result in it jumping from 183 × 164 pixels in size to
275 × 246 pixels and back again (when you move the mouse away). The transition
between the two states is nonexistent, because the image switches from one size
to the other instantaneously (Figure 7.1).

This is where CSS Transitions come in. The W3C describes transitions this way:

“CSS Transitions allows property changes in CSS values to occur smoothly
over a specified duration.”

NOTE: All the coding examples used in this chapter

are online at www.html5multimedia.com.

www.html5multimedia.com

ptg6964689

USING TRANSITIONS 141

Using the previous example, you can add a transition rule to the img element
so that it gradually increases in size to 275 × 246 pixels rather than jumping from
its original size to the new larger size.

To create this transition, you’ll use some of the transition properties listed in
Table 7.1.

TABLE 7.1 CSS3 Transition Properties

NAME DESCRIPTION

transition-property Specifies the name(s) of the transition to which the transition is to be applied

(e.g., background, color, font-size, none, or all).

transition-duration Defines the length of time in seconds that the transition will actually take. A value of

0s indicates that the transition is to take place immediately.

transition-timing-function Specifies the function to be used in calculating the intermediate values during the tran-

sition. There are a number of predefined values for this property: ease, linear, ease-in,

ease-out, ease-in-out, and cubic-bezier(), which allows you to define your own.

transition-delay Defines when the transition will start. A value of 0s, the default setting, causes the

transition to begin immediately.

A

B

FIGURE 7.1 The ball jumps

in size from one state (A) to

another (B) on hover.

TIP: CSS Transitions are supported by all

the major browsers, although you should use

browser-specific CSS rules to ensure compatibility.

ptg6964689

142 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

Given that you should add all the different vendor-specific rules for each transi-
tion property specified, this can lead to rather a long list! For Mozilla alone, defining
a transition rule could take three lines:

-moz-transition-property:all;

-moz-transition-duration:1s;

-moz-transition-timing-function:ease;

Adding rules for the other three vendors plus the nonvendor-specific rule
definition would make that 15 lines of CSS just for one transition! Fortunately, you
can get around this by using the shorthand rule, which allows you to define the
various properties together, for example:

-moz-transition: all 1s ease;

So, using the previous transition rule information and providing all the different
vendor-specific shorthand rules, you can define the transition like this:

img {

width:183px;

height:164px;

-webkit-transition: all 1s ease;

-moz-transition: all 1s ease;

-o-transition: all 1s ease;

-ms-transition: all 1s ease;

transition: all 1s ease;

}

TIP: For a list of all the properties that you can apply transitions to, see

www.w3.org/TR/css3-transitions/#properties-from-css, and for more on the transi-

tion timing functions, see www.w3.org/TR/css3-transitions/#transition-timing-function.

www.w3.org/TR/css3-transitions/#properties-from-css
www.w3.org/TR/css3-transitions/#transition-timing-function

ptg6964689

USING TRANSITIONS 143

You put the transition rule on the normal state of the element in question
rather than the :hover state. The reason is that you might want the transition to
apply to all states on this element, such as :focus.

Now the transition between the two states on hover is much smoother as the
image gradually changes from one size to the next (Figure 7.2).

USING TRANSITIONS WITH AUDIO AND VIDEO

Because you can apply transitions to any HTML element, you can of course use
transition with the audio and video elements:

video {

width:146px;

height:76px;

-webkit-transition: all 1s ease;

-moz-transition: all 1s ease;

-o-transition: all 1s ease;

-ms-transition: all 1s ease;

transition: all 1s ease;

}

A

B

C

FIGURE 7.2 Although you’ll

have to use your imagination

here, the image now smoothly

increases from one size (A) to

the other (C) with transition

states in between (represented

by B).

ptg6964689

144 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

video:hover {

 width:292px;

 height:152px;

}

Try to visualise how the video smoothly increases in size from 146 × 76 to
292 × 152 (Figure 7.3).

STYLING WITH CSS TRANSITIONS

With CSS Transitions, you can style your video in different ways to create a better
experience for your users. For example, suppose you have a video that you’ve styled
with a drop shadow, like this:

<video controls preload=”metadata”>

<source src=”parrots-small.mp4” type=”video/mp4”>

<source src=”parrots-small.webm” type=”video/webm”>

</video>

video {

margin:100px;

-moz-box-shadow: 5px 5px 5px #999;

-webkit-box-shadow: 5px 5px 5px #999;

box-shadow: 5px 5px 5px #999;

}

A

B

C

FIGURE 7.3 On hover, the video smoothly transitions from one size (A) to another (C) with transitions in between (represented by B).

ptg6964689

USING TRANSITIONS 145

But you want to increase the drop shadow when a user hovers over the video.
Nothing fancy; you just want to add a subtle responsive action back to the user.
You’d define the hover state for the video, and then add the transition to the normal
state of the video element:

video {

margin:100px;

-moz-box-shadow: 5px 5px 5px #999;

-webkit-box-shadow: 5px 5px 5px #999;

box-shadow: 5px 5px 5px #999;

-webkit-transition: all 1s ease;

-moz-transition: all 1s ease;

-o-transition: all 1s ease;

-ms-transition: all 1s ease;

transition: all 1s ease;

}

video:hover {

-moz-box-shadow: 10px 10px 5px #999;

-webkit-box-shadow: 10px 10px 5px #999;

box-shadow: 10px 10px 5px #999;

}

Now the shadow increases ever so slightly on the hover state, creating subtle
but effective feedback to the user (Figure 7.4).

FIGURE 7.4 When the user hovers on the video (left), the drop shadow increases smoothly (right).

ptg6964689

146 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

FADING TRANSITIONS

You can also use a transition to fade the video from an opacity value of 0.5 to 1 on
:hover and :focus. You might want to do this if you have a list of videos displayed
on the screen at the same time and want the video that the user hovers over and
plays to become opaque:

video {

opacity:0.5;

-webkit-transition: opacity 2s linear;

-moz-transition: opacity 2s linear;

-o-transition: opacity 2s linear;

-ms-transition: opacity 2s linear;

transition: opacity 2s linear;

}

video:hover, video:focus {

opacity:1;

}

This time the duration is increased to 2 seconds, and the transition targets the
opacity value only (rather than all, as the previous examples did) (Figure 7.5).

NOTE: Chrome seems to have issues with transitioning opacity on the

video element; it fades only the controls rather than the entire element.

ptg6964689

USING TRANSITIONS 147

The previous examples give you an idea of what you can do with CSS
Transitions—create new states for the element and transition to them smoothly.

But that’s not all you can do. You can also apply two-dimensional and three-
dimensional transformations to HTML elements.

A

B

C

FIGURE 7.5 The video starts

with an opacity of 50 percent

(A) to fully visible (C) on hover,

with a transition in between

(represented by B).

TIP: You can read more about CSS3 Transitions in

the specification at www.w3.org/TR/css3-transitions.

www.w3.org/TR/css3-transitions

ptg6964689

148 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

A transform is defined as changing the appearance or form of something. The
“something” in this case, of course, is an HTML element. An HTML element is
positioned somewhere in a web document, and its position is usually determined
by properties and values in CSS. But you might want to transform the HTML
element in some way, either its position or appearance, and CSS Transforms allow
you to do this.

There are two types of CSS Transforms, 2D and 3D. Let’s first take a look at 2D
Transforms.

2D Transforms allow elements to be transformed in two-dimensional space.
With CSS 2D Transforms, you can scale, rotate, skew, and translate an HTML
element within the space it’s defined—that is, the web document.

SCALING A VIDEO

The best way to start looking at 2D Transforms is to work through a simple example.
Using the colourful parrots video, you’ll add a scaling transform to scale the video’s
size on the hover state of the video:

<video controls preload=”metadata”>

<source src=”parrots-tiny.mp4” type=”video/mp4”>

<source src=”parrots-tiny.webm” type=”video/webm”>

</video>

To add the transform, you use the transform rule, but again, vendor-specific
rules are required to ensure the best browser coverage.

You first need to specify which transform you want to use. In this case, you’ll
use the scale transform, which takes one parameter that indicates the scale by

FIGURE 7.6 The video scales by

a factor of 1.5 on hover, moving

from a small size (left) to a

larger size (right).

EXPLORING 2D TRANSFORMS

NOTE: Like CSS3 Transitions, 2D Transforms are well supported across

modern browsers, as long as you use vendor-specific CSS rules.

ptg6964689

EXPLORING 2D TRANSFORMS 149

which you want the element to be transformed. A value greater than 1 scales up;
any value less than 1 scales down. The values work like percentages; scale(0.75)
indicates a scale of 75 percent, whereas scale(1.25) would indicate a scale of 125
percent. In this example, you’ll scale up the video by a value of 1.5 (150 percent):

video:hover {

 -webkit-transform:scale(1.5);

 -moz-transform:scale(1.5);

 -o-transform:scale(1.5);

 -ms-transform:scale(1.5);

 -transform:scale(1.5);

}

Now when the user hovers over the video, it will scale upward by a factor of 1.5
(Figure 7.6).

But like the first transition example earlier in the chapter, the transition between
the states is clunky and ugly. So, what can you do? Well, add a transition of course!

Using what you’ve already learned, you can apply a simple transition to the nor-
mal state of the video element to make the scale transform action much smoother
(Figure 7.7):

video {

-webkit-transition: all 1s ease;

-moz-transition: all 1s ease;

-o-transition: all 1s ease;

-ms-transition: all 1s ease;

-transition: all 1s ease;

}

A B

C

FIGURE 7.7 The scale trans-

form is now much smoother

and nicer to look at as it moves

from a small size (A) to a larger

size (C) via an in-between

state (B).

ptg6964689

150 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

Of course, scale isn’t the only transformation available; you can also rotate the
element, which is what you’ll do next.

ROTATING A VIDEO

This time you’ll rotate the video’s normal state, so no transition or hover state
rules are required.

Using the same transform rule as you did earlier, you simply indicate that you
want the element to be rotated rather than scaled. For example, you might have a
number of videos on a page and you want them to look as though they’re scattered
randomly on the page, each at a slightly different angle.

The rotate transform also takes one parameter: the number of degrees in which
the element is to be rotated. A positive value rotates it clockwise; a negative value
rotates it anticlockwise:

video {

 -webkit-transform:rotate(-5deg);

 -moz-transform:rotate(-5deg);

 -o-transform:rotate(-5deg);

 -ms-transform:rotate(-5deg);

 -transform:rotate(-5deg);

}

Here, the video is rotated 5 degrees anticlockwise (Figure 7.8).
And the goodness doesn’t end there! You can also skew the video should this

be what you want to achieve.

FIGURE 7.8 The video is

rotated 5 degrees in an

anticlockwise direction.

ptg6964689

EXPLORING 2D TRANSFORMS 151

SKEWING A VIDEO

Using the video with an added drop shadow, you can skew it 15 degrees to the left:

video {

-webkit-transform:skew(15deg);

-moz-transform:skew(15deg);

-o-transform:skew(15deg);

-ms-transform:skew(15deg);

-transform:skew(15deg);

-moz-box-shadow: -10px 10px 5px #999;

-webkit-box-shadow: -10px 10px 5px #999;

box-shadow: -10px 10px 5px #999;

}

A negative skew value would skew the video to the right. Figure 7.9 shows the
result of skewing to the left.

The skew transform can also take two parameters, allowing you to specify two
different skew values for the X and Y axes.

Oh, and there’s more! You can also translate an element from one position to
another.

TRANSLATING A VIDEO

The translate transform takes two parameters, relativeX and relativeY. These
two parameters will move the element to the required position specified relative
to its normal position without affecting the elements around it.

FIGURE 7.9 A video with

a drop shadow skewed

15 degrees to the left.

ptg6964689

152 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

In this example, let’s use two videos beside each other in a div with a black
border. On its hover state, each video will move 50 pixels to the right and down
from its current position:

<div class=”container”>

<video controls preload=”metadata”>

 <source src=”parrots-tiny.mp4” type=”video/mp4”>

 <source src=”parrots-tiny.webm” type=”video/webm”>

 </video>

 <video controls>

 <source src=”parrots-tiny.mp4” type=”video/mp4”>

 <source src=”parrots-tiny.webm” type=”video/webm”>

 </video>

</div>

video:hover {

 -webkit-transform:translate(50px,50px);

 -moz-transform:translate(50px,50px);

 -o-transform:translate(50px,50px);

 -ms-transform:translate(50px,50px);

 transform:translate(50px,50px);

}

If you wanted to translate the videos to different positions, you could do so by
giving each video a unique identifier and then specifying different translate values
for each video via this identifier.

Combining what you learned earlier, you can also add a border, a drop shadow,
and an easing transition to the videos to give them a smooth transform:

video {

margin-right:10px;

border:1px solid #000;

-moz-box-shadow: -10px 10px 5px #999;

ptg6964689

EXPLORING 2D TRANSFORMS 153

-webkit-box-shadow: -10px 10px 5px #999;

box-shadow: -10px 10px 5px #999;

-webkit-transition: all 1s ease;

-moz-transition: all 1s ease;

-o-transition: all 1s ease;

-ms-transition: all 1s ease;

-transition: all 1s ease;

}

Figures 7.10 through 7.12 give you an idea of how the transform would work.

CSS 2D Transforms can be quite useful to achieve some nifty effects. But recall
that there are two types of CSS Transforms. Let’s now have a look at 3D Transforms.

FIGURE 7.10 The videos sit beside each other in their

normal state.

FIGURE 7.11 The first video’s hover state is triggered, and the

video makes its way to its new translated position.

FIGURE 7.12 The first video settles

into its new temporary position.

Note how it hasn’t affected the

position of the second video.

TIP: Most of the CSS3 2D Transform functions also have

X and Y equivalents, such as scaleX() and skewY(), which

allow you to work on one axis only. The matrix() function also

exists, but it is quite complex! You can read more about these and

2D Transforms in general at www.w3.org/TR/css3-2d-transforms.

www.w3.org/TR/css3-2d-transforms

ptg6964689

154 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

3D Transforms are, of course, quite similar to 2D Transforms except they deal
with three dimensions rather than two. Unfortunately, 3D Transforms are poorly
supported across browsers; only WebKit browsers currently provide any support
at all. It is for this reason that they are only briefly mentioned here.

The W3C specification mentions that although a 3D Transform:

“. . . uses a three-dimensional coordinate system, the elements themselves
are not three-dimensional objects. Instead, they exist on a two-dimensional
plane (a flat surface) and have no depth.”

You can give elements a perspective via the perspective property, which sets
the perspective (in pixels) from which an element is viewed. This gives a sense of
depth, which causes elements farther away from the viewer to appear smaller.

You can also rotate elements around the three different axes of a 3D plane
using the rotate3D(x, y, z, rotation-degree) function. For example, to apply
a 25-degree rotation around the Y axis, you’d use rotate3d(0, 1, 0, 25deg).
Each of the x, y, and z parameters takes a 1 or 0, which indicates whether to rotate
around that axis or not.

Using the scattered videos on a page example mentioned earlier, you might
want to add some depth for WebKit users. Let’s look at a simple example that shows
the two properties just mentioned to give you an idea of how they work.

To begin, define a div with a “main” class, which also contains another div
with a “bg” class that contains the video:

<div class=”main”>

<div class=”bg”>

TIP: Applying perspective to an element does not apply

to the element itself, only its children.

NOTES: You can read more about 3D Transforms in the W3C specification

at www.w3.org/TR/css3-3d-transforms.

Because WebKit browsers are currently the only ones that support

3D Transforms, only the WebKit-specific CSS3 properties are used in

the example in this section.

PLAYING WITH 3D TRANSFORMS

www.w3.org/TR/css3-3d-transforms

ptg6964689

PLAYING WITH 3D TRANSFORMS 155

 <video controls preload=”metadata”>

 <source src=”parrots-small.mp4” type=”video/mp4”>

 <source src=”parrots-small.webm” type=”video/webm”>

 </video>

 </div>

</div>

Then define positioning for each of these elements in the CSS and also give
the video a drop shadow:

div.main {

 position:absolute;

 top:50%;

 left:50%;

 margin-left:-350px;

 margin-top:-233px;

}

div.bg {

 height:246px;

 width:380px;

 background-color:#aaa;

}

video {

 width:292px;

 position:absolute;

 top:50px;

 left:50px;

-webkit-box-shadow:-10px 10px 5px #888;

}

ptg6964689

156 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

There is no sign of the 3D Transform at the moment, because it hasn’t been
applied yet (Figure 7.13)!

The reason behind the outer div is that you want to apply perspective to it, so
that it affects the elements within, in this case the bg div and the video. So, let’s
apply a perspective of 1000:

div.main {

position:absolute;

top:50%;

left:50%;

margin-left:-350px;

margin-top:-233px;

-webkit-perspective:1000;

}

This perspective doesn’t have any visual effect on the elements, but it will when
you add the next and final CSS rule. Add a rotation transform around the Y axis
with a 40-degree angle to the div with the bg class:

div.bg {

height:246px;

width:380px;

background-color:#aaa;

-webkit-transform:rotate3d(0, 1, 0, 40deg);

}

FIGURE 7.13 The appearance of

the elements in Safari 5.1.

ptg6964689

PLAYING WITH 3D TRANSFORMS 157

Figure 7.14 shows how the elements are rendered around the Y axis, and Figure
7.15 shows the same video rotating around both axes.

The preceding example shows only a small slice of what you can do with 3D
Transforms, but it should give you a general gist of what you can achieve.

Because of the limited browser support, I’d recommend not using 3D Transforms
at the moment. However, they’re definitely worth playing about with to see what
you can do with them, as long as you use a WebKit browser. When browser support
increases, you’ll no doubt see a lot more about 3D Transforms!

With transitions and transforms under your belt, it’s time to explore another
piece of the CSS3 family, animations.

FIGURE 7.14 The video and background div are rotated at

a 40-degree angle around the Y axis in Safari 5.1.

FIGURE 7.15 The same elements and degree of rotation are shown

around the X and Y axes.

TIP: For more information about transforms and 3D Transforms,

see the Safari Developer Library at http://developer.apple.com/library/

safari/#documentation/InternetWeb/Conceptual/SafariVisualEffectsProgGuide/

Transforms/Transforms.html.

http://developer.apple.com/library/safari/#documentation/InternetWeb/Conceptual/SafariVisualEffectsProgGuide/Transforms/Transforms.html
http://developer.apple.com/library/safari/#documentation/InternetWeb/Conceptual/SafariVisualEffectsProgGuide/Transforms/Transforms.html
http://developer.apple.com/library/safari/#documentation/InternetWeb/Conceptual/SafariVisualEffectsProgGuide/Transforms/Transforms.html

ptg6964689

158 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

The CSS3 specification introduces the idea of defined animations, which allow you
to specify the values that CSS properties of particular HTML elements will take
over a given time interval. This sequence of values, when strung together over the
specified time interval, causes the HTML element in question to become animated.

The W3C specification puts it this way:

“CSS Animations allow an author to modify CSS property values over time.”

“Values over time” implies that you need to define certain values for different
time periods, which you do via the key to CSS Animations, Keyframes.

@KEYFRAMES

Keyframes allow you to define functions within the CSS in which you can specify
CSS rules for start, end, and intermediary states for an HTML element. To specify
such a rule, you use the @keyframes keyword followed by a unique identifier or func-
tion name. This is then followed by a set of CSS rules contained within curly braces
that specify the different frames of the animation, that is, how the animated ele-
ment will be moved, rotated, scaled, and so on at different points in the animation.

For example, a very simple Keyframes animation function that moves an
element from side to side could be defined as follows:

@keyframes shake {

0% {

 left:5px;

}

25% {

 left:10px;

}

50% {

 left:15px;

}

WORKING WITH ANIMATIONS

ptg6964689

WORKING WITH ANIMATIONS 159

 75% {

 left:20px;

 }

 100% {

 left:25px

 }

}

In the Keyframes function shake, five different time frames are defined; each
one contains a different left CSS definition. So at each time frame, the element
should have animated to that new position.

You could also write this using the from and to properties, which allow you to
specify the start and end states of the animation:

@keyframes shake {

 from {

 left:5px;

 }

 to {

 left:25px;

 }

}

The preceding definition has the same effect as the earlier definition but is
obviously shorter. This can be useful if the animation is a simple one; you can let
the browser work out the in-between states.

To actually define an animation, you use a combination of the properties listed
in Table 7.2 on the next page.

ptg6964689

160 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

TABLE 7.2 CSS3 Animation Properties

PROPERTY DESCRIPTION

animation-name Identifies the animation name(s) to apply. Each name should be a defined Keyframe

animation function.

animation-duration Defines the length of time it should take for the animation to complete one cycle.

animation-timing-function Defines how the animation will progress over one cycle of its durations. It can be one of

a number of predefined values: ease, linear, ease-in, ease-out, ease-in-out, or cubic-

bezier(). Note that these are the same values that can be used for a transition-timing-

function as mentioned in Table 7.1.

animation-iteration-count Specifies the number of iterations the animation is to perform. Can be set to infinite,

which will cause the animation to loop continuously.

animation-direction Defines whether or not the animation should play in reverse on alternate cycles. Valid

values are normal and alternate. A value of normal is the default.

animation-delay Indicates when the animation will start. Allows a delay to be added to the beginning

of the animation if required. A value of 0s, the default, causes the animation to begin

immediately.

animation-fill-mode Indicates what values are applied by the animation outside of the time it is executing.

By default, the values contained within the animation frames are not persisted once the

animation is complete. Setting this value can override that by using one of four different

values:

none. None of the values persist outside of the animation. This is the default.

backwards. Values defined in the first frame will be persisted once the animation

is complete.

forwards. Values defined in the final frame will be persisted once the animation

is complete.

both. Values in both the first and final frame will be persisted when the

animation is complete.

NOTE: The animation-play-state, which defines whether an animation

is running or paused, is also currently defined in the CSS3 Animations

specification but most likely will be removed in the near future

(www.w3.org/TR/css3-animations/#the-animation-play-state-property).

www.w3.org/TR/css3-animations/#the-animation-play-state-property

ptg6964689

WORKING WITH ANIMATIONS 161

As with transitions, creating the vendor-specific definitions could lead to quite a
long set of rules, so once again using the shorthand notation, in this case animation,
is the best course of action:

-webkit-animation:shake 5s 1 ease;

This CSS snippet defines the shake Keyframes animation to be used, with a
duration of 5 seconds for one iteration, and uses the ease animation timing
function.

Moving on from this simple moving animation, let’s take a look at how you
might use a rotation within an animation sequence.

ANIMATED VIDEO COVER

Using a combination of CSS Transforms and Animations, let’s put together a simple
example that starts with a covered video, and on click, the cover spins away reveal-
ing the video underneath.

You first need to define the HTML markup:

<div class=”container”>

<div id=”cover” class=”cover”></div>

<div class=”bg”>

<video poster=”sintel-poster.jpg” preload=”metadata” controls>

 <source src=”sintel-small.mp4” type=”video/mp4”>

 <source src=”sintel-small.webm” type=”video/webm”>

 </video>

</div>

</div>

NOTE: Support for CSS Animations is currently limited to

WebKit browsers and Firefox 4+. Therefore, once again, vendor-

specific CSS rules are required to make CSS Animations work.

ptg6964689

162 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

The container div contains the cover div, which you’ll be animating, and a bg
div, which contains the definition for the video. Note that the video in question
has a poster image defined, uses the browser’s default controls, and also hints that
the browser is to only preload the video’s metadata.

Next, you need to define the CSS and concentrate on the way the HTML elements
actually look; you’ll add the animations and transforms later.

Give all three divs set dimensions and a white background colour. Also, position
the cover and bg divs absolutely and apply a light grey border 1 pixel wide. Centre
the container div on the page and place it 20 percent down from the top of the page:

.container, .cover, .bg {

width:311px;

height:138px;

background-color:#fff;

}

.container {

margin:20% auto 0 auto;

}

.cover, .bg {

position:absolute;

border:1px solid #aaa;

}

In addition, give the cover div a background image, which specifies what the
cover actually looks like. Set the cursor to be the pointer graphic, and give it a
z-index value of 3, because you want this div to be on top:

NOTE: The video used in the video cover animation example

is Sintel by the Blender Foundation and the Durian Open Movie

Project. You can read more about it at www.sintel.org.

www.sintel.org

ptg6964689

WORKING WITH ANIMATIONS 163

.cover {

background:#fff url(‘sintel-cover.jpg’) no-repeat center center;

 z-index:3;

 cursor:pointer;

}

Now give the bg div a z-index, but a lower value of 2 so that the cover div will
be stacked on top of it:

.bg {

 z-index:2;

}

Then simply give the video element a set dimension and a margin value of
5 pixels:

video {

 width:301px;

 height:128px;

 margin:5px;

}

Figure 7.16 shows how the video cover looks.
Of course, you now need to actually animate the cover, so that when a user

clicks on it, it spins away and behind the video, revealing the video, which can
then be played.

FIGURE 7.16 The covered

video looks great.

ptg6964689

164 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

To implement the animation, you need to define the Keyframes function that
will move the div and spin it at the same time. To achieve this, you’ll use two dif-
ferent transforms, translate and rotate. The Keyframes function removecover
is defined as:

@-moz-keyframes removecover {

0% {

 -moz-transform:translate(0,0) rotate(0deg);

 z-index:3;

}

50% {

 -moz-transform:translate(-180px,-180px) rotate(-180deg);

 z-index:3;

}

100% {

 -moz-transform:translate(0,0) rotate(-360deg);

 z-index:1;

}

}

Only three frames need to be defined here, because you want the div to move
away to a certain point (-180 pixels away on the X and Y axes), rotate 360 degrees,
and then return to the same position, but with one difference. Notice that the
z-index is also specified within the frame definitions. Because the cover div will
remain on top as it spins away and then settle behind the video and bg div, the
z-index value defined in the final frame needs to be persisted once the animation
is finished. You’ll achieve this by using the animation-fill-mode property.

NOTE: The animated cover example is defined for Firefox

only using the –moz prefix. You can easily duplicate the rules

for WebKit browsers by using the –webkit prefix instead.

ptg6964689

WORKING WITH ANIMATIONS 165

The animation definition is assigned to an animate class, which you will later
assign to the cover div. The shorthand definition for the animation is:

div.animate {

-moz-animation:removecover 2s 1 linear forwards;

}

So you assign the Keyframes removecover function to this animate class with
a 2-second duration, iterate it once with a linear timing function, and set the
animation-fill-mode to forwards so the rules contained in the final animation
frame will persist once the animation is over—that is, a z-index of 1.

To ensure that the animation is smooth, add a transition to the cover div:

.cover {

background:#fff url(‘sintel-cover.jpg’) no-repeat center center;

z-index:3;

cursor:pointer;

-moz-transition:all 1s ease;

-webkit-transition:all 1s ease;

}

For the animation to actually happen, you simply add the CSS animate class to
the cover div when the user clicks on it. Because you can’t do this via CSS, a small
bit of JavaScript is required to listen for the click event on the cover div and then
append the class name:

var cover = document.querySelector(‘div.cover’);

cover.addEventListener(‘click’, function() {

cover.className += ‘ animate’;

}, false);

NOTE: When appending to the element’s class name, a space is also added

before the new class name so that the element’s class attribute maintains

the required space-separated list of classes, for example, “cover animate”.

ptg6964689

166 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

And that’s it! When a user clicks on the cover, it will spin away from and behind
the video, allowing the video to be played (Figure 7.17).

Let’s now take a look at how you can use a 3D Transform in an animation.

A

C

B

D

FIGURE 7.17 Imagine, if you

will, the cover spinning away

from and behind the video.

ptg6964689

WORKING WITH ANIMATIONS 167

ANIMATED SPIN

In the previous example, you combined CSS Transforms and Animation. Of course,
it was a 2D Transform, but here you’ll use a 3D Transform. This means that it only
works on WebKit browsers, so the code will only target those browsers.

For this example, you’ll use the rotate3d() transform mentioned earlier.
Once again, you first need to define the Keyframes function that will define

the time frames for the animation. Using the whirring cogs of imagination, let’s
call this one spin:

@-webkit-keyframes spin {

 0% {

 -webkit-transform:rotate3d(0,0,0,0deg);

 }

 25% {

 -webkit-transform:rotate3d(0,1,0,90deg);

 }

 50% {

 -webkit-transform:rotate3d(0,1,0,180deg);

 }

 75% {

 -webkit-transform:rotate3d(0,1,0,240deg);

 }

 100% {

 -webkit-transform:rotate3d(0,1,0,360deg);

 }

}

ptg6964689

168 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

Again, you define five different time frames, each rotating the element on the
Y axis at a different degree angle.

You then link up this function with the video’s :hover state:

video:hover {

-webkit-animation:spin 5s infinite linear;

}

And presto! It spins (Figure 7.18)!
Let’s put what you’ve learned into practical use.

FIGURE 7.18 A poor attempt

at showing you a spinning

video in Safari 5.1 through

static images.

ptg6964689

WORKING WITH ANIMATIONS 169

EXTENDING THE ANIMATED VIDEO COVER TO 3D

Using the animated video cover example you saw earlier, you can apply the rotate3d
transform to the cover animation for WebKit browsers instead of the simpler rotate
transform.

To do this, all you need to do is define the appropriate Keyframes animation
removecover function for WebKit and assign it to the animate div class:

@-webkit-keyframes removecover {

 0% {

 -webkit-transform:translate(0,0) rotate3d(0,0,0,0deg);

 z-index:3;

 }

 50% {

 -webkit-transform:translate(-180px,-180px)
p rotate3d(1,1,1,-180deg);

 z-index:3;

 }

 100% {

 -webkit-transform:translate(0,0) rotate3d(0,0,0,0deg);

 z-index:1;

 }

}

div.animate {

-webkit-animation:removecover 2s 1 linear forwards;

}

ptg6964689

170 CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION

Note that the 3D rotation is assigned to rotate around all three axes because it
produces a better spinning effect when it’s moving (Figure 7.19).

The information included in this section only dips into CSS Animations because
an entire book could be written on them. But it does show you what you can do
with animations and that anything you can do with them on other elements, you
can also do to audio and video elements.

FIGURE 7.19 Using that won-

derful imagination of yours,

watch the cover spin and

rotate in 3D away from and

behind the video!

ptg6964689

WRAPPING UP 171

CSS3 Transforms, Transitions, and Animations are powerful additions to the web
developer’s toolbox, and it’s useful to know what they’re capable of.

Even though browser support is currently sporadic, transitions and 2D Trans-
forms are supported well enough for you to consider reading more about them,
becoming familiar with them, and using them in your sites where appropriate.
Moderation is key, so don’t overdo them and overwhelm your users.

Most likely, it’s only a matter of time before 3D Transforms and full animation
are fully supported cross-browser, so keep an eye on their development as well.

Next, you’ll move away from the world of styling and onto completely different
but very useful features for HTML5 video in particular—video subtitling and other
accessibility capabilities.

WRAPPING UP

ptg6964689

8

MULTIMEDIA AND
ACCESSIBILITY

ptg6964689

173

Up to now you’ve learned just how simple

it can be to deliver audio and video across

the Internet to your end users natively in

HTML. Such power! But with this power comes responsibility.

You need to take a step back and think about your end users. Not

all of them may be able to access the media as you intended. Some

might have a sensory impairment; others might not understand

the language your media is delivered in. What can you do to pro-

vide these users with access to the media you want to deliver?

In this chapter, you’ll learn how HTML5 helps to provide you with

several ways of presenting your media content to users. As a result,

you’ll increase the availability of your media to users with different

needs and requirements, making it more accessible.

ptg6964689

174 CHAPTER 8 MULTIMEDIA AND ACCESSIBILITY

MEDIA AND POTENTIAL
ACCESSIBILITY ISSUES

When thinking about the users who will be attempting to view your media content,
you might make a number of assumptions:

� Users will view your content on a desktop, laptop, tablet, or phone.

� Users will have some way of listening to the audio of your content, be it via
headphones or speakers.

� Users will be able to understand the language in which you deliver the media.

� Users will be able to successfully download and play your media.

All are fairly reasonable assumptions to make and most likely cover the vast
majority of users who will want to access your content. You may be happy with your
content being accessible to these users only; after all, majority rules, doesn’t it?

Well, I’d strongly encourage you to think about making your content accessible
to users who do not fall into the category of the assumptions just listed. Who are
these viewers? They include:

� Users who have a sensory impairment that prevents them from listening
to your content’s audio or viewing video.

� Users who don’t understand the language the media is delivered in.

� Users who use devices such as screen readers and/or use keyboards to access
media content on the web.

� Users who can’t successfully hear or view your content due to the environ-
ment they are in or because of device limitations.

Because most media content will usually include some audio, not being able to
hear or understand the audio it contains is quite a showstopper in comprehending
the content’s message and information.

Equally, being able to access the content through a device such as a screen
reader but then not being able to actually use it due to the media controls not being
properly set up (e.g., for keyboard access) would annoy any user.

You’ll explore the accessibility of media controls later in this chapter. You’ll
also take a look at what HTML5 brings to the table in an attempt to address the
issue of users being unable to see, hear, or understand your media content. But
first, let’s take a quick look at what led to HTML5’s attempt to confront this acces-
sibility problem—SRT.

ptg6964689

A BRIEF LOOK AT SRT 175

SRT is an existing file format for containing video subtitles and their timings. An
SRT file is often produced automatically using a Windows program called SubRip
(http://zuggy.wz.cz), which uses optical character recognition (OCR) to obtain the
subtitles from the specified video source.

The SubRip file format is a basic text file with the .srt file extension that fol-
lows a basic format:

Subtitle number

hh:mm:ss,msmsms --> hh:mm:ss,msmsms

Subtitle Text (one or more lines)

...

Each subtitle set begins with a unique subtitle number, followed by the start
and end timestamps of the timing the subtitle represents on a separate line, which
is then followed by one or more lines of subtitle text. Each subsequent subtitle set
is separated by a blank line. The timestamp format hh:mm:ss,msmsms specifies the
hours, minutes, seconds, and milliseconds of the time in question. Note that the
millisecond separator is a comma.

An example of such a file follows:

1

00:00:10,500 --> 00:00:13,000

Elephant’s Dream

2

00:00:15,000 --> 00:00:18,000

At the left we can see...

The SRT file format is quite popular and is often the format that video subtitles
are released in. This file format isn’t currently used as part of HTML5’s attempt to
tackle accessibility, although it was to begin with but has now been extended and
given a new name, WebVTT.

A BRIEF LOOK AT SRT

http://zuggy.wz.cz

ptg6964689

176 CHAPTER 8 MULTIMEDIA AND ACCESSIBILITY

WebVTT (Web Video Text Tracks) is a file format that is intended for marking up
external text tracks. It was initially part of the WHATWG and the W3C HTML5
specifications, and was an extension of SRT called WebSRT (Web Subtitle Resource
Tracks). But the W3C was concerned that HTML5 should be independent of any
chosen captioning format, and therefore, it was removed from that specification.

The presence of WebVTT is currently one major difference between the
WHATWG HTML5 specification and the W3C specification.

Although no browser currently supports WebVTT, major browser vendors
have indicated that they will implement support for WebVTT in the future. This
indication has led to the creation of a WebVTT Working Group Charter (www.
w3.org/2011/05/google-webvtt-charter.html) at the W3C, whose mission is to:

“create a W3C specification starting from the WHATWG WebVTT (Web Video
Text Tracks) language and solidify it through the creation of a WebVTT
test suite and through the creation of semantic mappings of other subtitle
formats to or from WebVTT in order to facilitate browser implementation
and market adoption.”

This promise of vendor support will hopefully in turn eventually lead to a
formal standardisation of the WebVTT specification at the W3C. With browser
support and that of the W3C, you can be sure that WebVTT is here to stay and is
destined become the de facto method of marking up text tracks within audio and
video content on the web.

So what is the WebVTT file format and how can it help you make your content
accessible? Read on.

WHAT CAN WEBVTT DO?

You use the WebVTT file format to define WebVTT files. One of the main uses of
these files is to provide subtitles to video content, although the format of the file
doesn’t indicate what its contents are used for.

NOTE: Even though the SRT in WebSRT stands for Subtitle Resource Tracks,

the original acronym didn’t stand for anything and merely reflected

the file extension used. WebSRT is a “backronym”; Subtitle Resource

Tracks was shoe-horned into the three letters to actually mean something.

INTRODUCING WEBVTT

www.w3.org/2011/05/google-webvtt-charter.html
www.w3.org/2011/05/google-webvtt-charter.html

ptg6964689

INTRODUCING WEBVTT 177

The WebVTT format also allows you to provide a textual description of the
video content, which can then be used by various accessibility devices (which
might read the descriptions out loud) to describe the content of the video to those
who cannot see it. You inform the browser of the WebVTT file and of its purpose
using HTML markup; you’ll find out how this is done later in this chapter when
you read about the track element.

Let’s take a look at the WebVTT file format in more detail.

WEBVTT FILE FORMAT

A WebVTT file is a simple text file with the .vtt extension that needs to follow a
specified format, which you will look at shortly. The file must be encoded as UTF-8
and labeled with the MIME type text/tt. The line terminators within the file can
only be \r (a carriage return), \n (a new line), or \r\n (a carriage return followed by a
new line). It must also contain a WebVTT file body, which consists of the following:

WEBVTT

[cue]

[cue]

...

The WEBVTT string at the top identifies the contents as a WebVTT file and must
then be followed by at least one blank line, which is then followed by any number
of cues, each of which is separated by a blank line.

A cue is defined as:

[idstring]

[hh:]mm:ss.msmsms --> [hh:]mm:ss.msmsms [cue settings]

TextLine1

TextLine2

...

idstring is a unique identifier within the file that identifies the cue. It can
consist of one or more characters that do not contain the substring “-->” or any
of the line terminators mentioned earlier.

ptg6964689

178 CHAPTER 8 MULTIMEDIA AND ACCESSIBILITY

[hh:]mm:ss.msmsms --> [hh:]mm:ss.msmsms indicates the timestamp range
within the video file that the cue is specified for. [hh:]mm:ss.msmsms is a simple
timestamp; the hour portion is optional (depending on the length of the video in
question of course).

cue settings allow you to specify the positioning of the text; you’ll read more
about them in a moment.

TextLineN is the actual text in the video file that the timestamp range in the
cue represents. The content can be all in one line or presented in any number
of separate lines. Any lines will be contained within the cue until a blank line is
encountered, which indicates the end of that particular cue.

Let’s take a quick look at a sample WebVTT file containing two timestamp
ranges:

WEBVTT

1

00:00:10.500 --> 00:00:13.000

Elephant’s Dream

2

00:00:15.000 --> 00:00:18.000

At the left we can see...

This example defines two cues: The first one starts 10 seconds and 500 mil-
liseconds into the video and ends at 13 seconds in, and the second one starts 15
seconds into the video and ends 3 seconds later. The subtitle text for each cue is
given below its timestamp.

Using cues is relatively straightforward, and you can see how the file can be
built up with a number of cues to cover the length of an entire video. You can also
specify some settings on a per-cue basis. These affect the positioning of the cue on

NOTE: The millisecond separators are

full stops, not commas as in SRT.

ptg6964689

INTRODUCING WEBVTT 179

the related video. You can have a number of setting values, and a cue setting can
contain one or more values, each one separated by a space. The various settings
are listed in Table 8.1.

If no cue settings are specified, the text will align to the middle, at the bottom
of the video frame (Figure 8.1).

TABLE 8.1 WebVTT Cue Settings

MEANING FORMAT VALUES EFFECT

Text direction D:value vertical

vertical-lr

Vertical right to left.

Vertical left to right.

Line position L:value 0–100%

[−]number

Percentage position of the cue relative to the video frame.

Line number to be displayed on.

Text alignment A:value start

middle

end

Text aligned to start of the line.

Text aligned to middle of the line.

Text aligned to end of the line.

Text position T:value 0-100% Percentage position of cue text relative to the video frame.

Text size S:value 0-100% The percentage size of the cue text.

FIGURE 8.1 How a subtitle cue

might appear on a video with

no cue settings specified.

ptg6964689

180 CHAPTER 8 MULTIMEDIA AND ACCESSIBILITY

Let’s add some of these settings to the example used earlier:

WEBVTT

1

00:00:10.500 --> 00:00:13.000 A:start

Elephant’s Dream

2

00:00:15.000 --> 00:00:18.000 A:end L:10%

At the left we can see...

The text in the first cue will be aligned to the left of the video (much the same
way as the CSS rule text-align:left works) (Figure 8.2).

The second cue has two settings applied to it: The text will be aligned to the
end of the line (similar to text-align:right in CSS) and will be placed on the line
10 percent down from the top of the video (Figure 8.3).

In addition to specifying cue settings for controlling the positioning and align-
ment of cue text, there are also a number of inline styles that you can apply to the
text. These look and act the same as HTML elements. They contain a start and an
end tag, and the formatting is applied to the text in between. These tags are listed
in Table 8.2.

FIGURE 8.2 How a cue subtitle

might appear on a video with

a cue setting of A:start.

ptg6964689

INTRODUCING WEBVTT 181

TABLE 8.2 WebVTT Text Tags

TAG NAME DESCRIPTION

c Defines class text that permits a CSS style class name to be added to the tag, e.g., <c.className>.

i Italicises the text content.

b Bolds the text content.

u Underlines the text content.

v Defines voice content that permits a voice name to be added to the tag, e.g., <v.Speaker1>,

which can then be styled via CSS.

ruby Defines ruby content (short runs of text alongside base text, often used in East Asian documents

to indicate pronunciation or to provide short annotations. See www.w3.org/TR/css3-ruby for

further information).

[hh:]mm:ss.msmsms Defines a timestamp at which a certain piece of content within the cue text becomes active.

Similar to karaoke-style text, appearing step by step.

Note that there is no end tag; the text after the timestamp will appear unless it encounters

another timestamp or it’s the end of the cue.

Let’s extend the example further and use some of the text tags to format the
cue text:

FIGURE 8.3 How a cue subtitle

might appear on a video with

a cue setting of A:end L:10%.

www.w3.org/TR/css3-ruby

ptg6964689

182 CHAPTER 8 MULTIMEDIA AND ACCESSIBILITY

WEBVTT

1

00:00:00.000 --> 00:00:14.999

Elephant’s <c.dream>Dream</c>

2

00:00:15.000 --> 00:00:18.000 A:end L:10%

At the <i>left</i> we can see ...

3

00:00:18.167 --> 00:00:22.000

At the right <00:00:20.000>we can see the...

With the first cue, a class name of “dream” has been added, a style for which
you can define within your HTML file in the same way as you’d create any CSS
style rules. In Figure 8.4, the “dream” CSS class has been defined with red text and
uppercase text.

FIGURE 8.4 Video-cue text

with a style defined using CSS

and the WebVTT c text tag.

NOTE: Any CSS class names that you might use within your WebVTT

subtitle definitions can be defined in the containing HTML file or an

external CSS file in the same way as you’d specify any other CSS classes.

ptg6964689

INTRODUCING WEBVTT 183

The second cue now has tags that will display the word “left” in italics and “see”
in bold type (Figure 8.5).

An extra cue is added to this example to show how the timestamp is used to
display the text “karaoke style.” When the cue starts, the words “At the right” will
appear first. Then the text “we can see…” will be displayed at the appropriate time-
stamp (Figure 8.6).

FIGURE 8.5 Video-cue text

that uses the i and b text tags.

FIGURE 8.6 This video-cue text shows the text in stages.

NOTE: If you want the characters &, <, and > to appear in the text of a

video cue, you need to escape them with & < and > respectively.

ptg6964689

184 CHAPTER 8 MULTIMEDIA AND ACCESSIBILITY

WEBVTT FUTURE DEVELOPMENTS

It’s worth noting that because the WebVTT file format is relatively new to

the specification and with the recent creation of the WebVTT Working Group

Charter, additions to the specification are likely.

If you want to keep abreast of any changes to this specification, keep an eye

on the Working Group Charter’s site (www.w3.org/2011/05/google-webvtt

-charter.html) and the blog of Silvia Pfeiffer (http://blog.gingertech.net) who

is currently editor of the Working Group Charter. Silvia also blogs regularly

about HTML5-related accessibility topics.

You can see how the complete narrative in a video could be added to a WebVTT
text file with formatting and styling.

But how do you connect a WebVTT file with a particular video? This is where
the new HTML5 track element steps in.

www.w3.org/2011/05/google-webvtt-charter.html
www.w3.org/2011/05/google-webvtt-charter.html
http://blog.gingertech.net

ptg6964689

THE TRACK ELEMENT 185

The track element is one of the new HTML5 elements. Its purpose is to allow
external text tracks to be specified for media elements, such as audio and video.
The track element does not represent anything on its own and must be used in
conjunction with, and as a child of, a media element.

The track element takes a number of attributes, which are listed in Table 8.3.

TABLE 8.3 Track Element Attributes

ATTRIBUTE DESCRIPTION

src Contains the URL to the text track data (e.g., a WebVTT file).

kind Defines the type of content the track definition (and the source defined in src) is to be used for.

It can have a number of values:

subtitles. A transcription or translation of the media element’s dialog; suitable for when the

audio is available to the user but not understood.

captions. Similar to subtitles, but also contains sound effects, music cues, and other relevant

audio information; suitable for when the soundtrack is unavailable to the user.

descriptions. Textual descriptions of the video component of the media resource; suitable for when

the visual component is unavailable.

chapters. Chapter titles intended for navigating the media resource. This could be displayed to

users for them to choose from a list to jump to the appropriately named chapter in

the video.

metadata. Tracks intended for use from script. The browser will usually not display them to the

user. This data could be used by devices to determine such things as whether it can

display it or not.

srclang Specifies the language that the text track data pointed to in src is in. Must be present if kind is set

to subtitles.

label Provides a user-readable title for the track, which can be displayed to users when they are asked to

choose between, for example, English or German subtitles.

default If this attribute is present, it indicates that this track is the one to be used as the default if the user does

not indicate a preference.

ruby Defines ruby content (short runs of text alongside base text, often used in East Asian documents to

indicate pronunciation or to provide short annotations. See www.w3.org/TR/css3-ruby for further

information).

[hh:]mm:ss.

msmsms

Defines a timestamp at which a certain piece of content within the cue text becomes active. Similar to

karaoke-style text, appearing step by step.

Note that there is no end tag; the text after the timestamp will appear unless it encounters another

timestamp or it’s the end of the cue.

THE TRACK ELEMENT

www.w3.org/TR/css3-ruby

ptg6964689

186 CHAPTER 8 MULTIMEDIA AND ACCESSIBILITY

The following example shows how a track element might be used in connec-
tion with a video to provide subtitles:

<video controls>

<source src=”video-file.mp4” type=”video/mp4”>

<source src=”video-file.webm” type=”video/webm”>

 <track src=”en.vtt” kind=”subtitles” srclang=”en” label=”English
p subtitles”>

</video>

The track element in the example specifies that the en.vtt file contains Eng-
lish subtitles (as the label says) in the English language (srclang is set to en) of
kind: subtitles for the surrounding video element. From this example, you can
see just how easy it would be to add a second subtitles file that might be in a dif-
ferent language:

<video controls>

<source src=”video-file.mp4” type=”video/mp4”>

<source src=”video-file.webm” type=”video/webm”>

 <track src=”en.vtt” kind=”subtitles” srclang=”en” label=”English
p subtitles” default>

 <track src=”de.vtt” kind=”subtitles” srclang=”de” label=”German
p subtitles”>

</video>

Here, another track definition has been added, pointing to a de.vtt file that
contains German subtitles; srclang is set to de.

Notice that the default attribute has been added to the English subtitles defini-
tion, marking it as the default subtitle set to be used if the user doesn’t specifically
select one.

ptg6964689

THE TRACK ELEMENT 187

If you wanted to extend the example further and add a chapter listing in each
language (English and German), you would do the following:

<video controls>

<source src=”video-file.mp4” type=”video/mp4”>

<source src=”video-file.webm” type=”video/webm”>

 <track src=”en.vtt” kind=”subtitles” srclang=”en” label=”English
p subtitles” default>

 <track src=”de.vtt” kind=”subtitles” srclang=”de” label=”German
p subtitles”>

 <track src=”ch-en.vtt” kind=”chapters” srclang=”en”
p label=”English chapter listing” default>

 <track src=”ch-de.vtt” kind=”chapters” srclang=”de”
p label=”German chapter listing”>

</video>

Once the various WebVTT files have been created with the content you want,
it’s a fairly simple process to add them to the appropriate video.

Everything you’ve just read about WebVTT all sounds quite promising; however,
even though some browsers support the track element to some degree, currently
no browser supports the WebVTT file format.

All is not lost, though, because several JavaScript libraries are available that
enable you to start using WebVTT today.

NOTE: At the time of this writing, the WebKit (which Chrome and

Safari are based on) nightly build has some support for WebVTT.

ptg6964689

188 CHAPTER 8 MULTIMEDIA AND ACCESSIBILITY

A small number of browsers support the track element to some degree. The latest
WebKit browsers (e.g., Chrome 12 and Safari 5.0.5) recognise the element but don’t
do anything with it. The current version of Firefox (5) parses the element but also
does nothing with it. Although these browsers are taking steps in the right direc-
tion, they don’t really help you implement WebVTT now.

Fortunately, four JavaScript libraries allow you to define the track element with
WebVTT files in your web document that will deliver what you want:

� Playr. http://www.delphiki.com/html5/playr

Supports: subtitles, chapters, some cue settings

Browsers: Opera, Chrome, Safari, Firefox

� LeanBack Player. http://dev.mennerich.name/showroom/html5_video

Supports: subtitles

Browsers: All major browsers with fallback to Flash if required

� Captionator. https://github.com/cgiffard/Captionator
(CaptionCrunch version)

Supports: subtitles, all cue settings

Browsers: Opera, Chrome, Safari, Firefox, IE9

� MediaElementJS. http://mediaelementjs.com

Supports: subtitles (timing format uses SRT format)

Browsers: All major browsers with fallback to Flash if required

SRT SUPPORT

Although only a handful of JavaScript players support WebVTT, a number of them support SRT subtitle files.

Those players that support WebVTT (Playr, LeanBack, Captionator, and MediaElementJS) also support SRT in

addition to the following that provide support for SRT only:

� js_videosub. https://bitbucket.org/tagawa/jscaptions

� jscaptions. http://www.storiesinflight.com/js_videosub

� Kaltura. http://www.kaltura.org/project/HTML5_Video_Media_JavaScript_Library

USING WEBVTT AND THE
TRACK ELEMENT NOW

http://www.delphiki.com/html5/playr
http://dev.mennerich.name/showroom/html5_video
https://github.com/cgiffard/Captionator
http://mediaelementjs.com
https://bitbucket.org/tagawa/jscaptions
http://www.storiesinflight.com/js_videosub
http://www.kaltura.org/project/HTML5_Video_Media_JavaScript_Library

ptg6964689

USING WEBVTT AND THE TRACK ELEMENT NOW 189

None of these libraries offer support for all the different values for the kind
attribute of the track element: They only support the subtitle value (Playr also
supports the chapter value). Because subtitles are one of the most important
values, it’s a good start. This support also allows you to begin adding subtitles to
your videos now and seeing them in action.

Let’s look at how you might use the Playr JavaScript library to add subtitles
and chapters to a video.

PLAYR EXAMPLE

To use Playr, you must first download it from the Playr download website at https://
github.com/delphiki/Playr. Once downloaded, you need to include the Playr CSS
file and JavaScript in your web document:

<link rel=”stylesheet” href=”playr.css” />

<script src=”playr.js”></script>

When defining your video, you simply add the CSS class “playr_video” to your
video element, and Playr will automatically be used for that video.

A sample of Playr with a short animated film called Elephant’s Dream (© copy-
right 2006, Blender Foundation, Netherlands Media Art Institute, www.elephants
dream.org) is available on the book’s website at www.html5multimedia.com.

The code used for this video is as follows:

<video class=”playr_video” preload=”metadata” controls
p poster=”elephants-dream.title.jpg”>

<source src=”elephants-dream-medium.mp4” type=”video/mp4”>

<source src=”elephants-dream-medium.webm” type=”video/webm”>

 <track label=”English subtitles” kind=”subtitles” srclang=”en”
p src=”elephants-dream-subtitles-en.vtt” default>

 <track label=”German subtitles” kind=”subtitles” srclang=”de”
p src=”elephants-dream-subtitles-de.vtt”>

 <track label=”Chapters” kind=”chapters” srclang=”en”
p src=”elephants-dream-chapters-en.vtt”>

</video>

www.elephantsdream.org
www.elephantsdream.org
www.html5multimedia.com
https://github.com/delphiki/Playr
https://github.com/delphiki/Playr

ptg6964689

190 CHAPTER 8 MULTIMEDIA AND ACCESSIBILITY

Figure 8.7 shows how this video and track definition would look in the Playr
video player.

Also, three track elements are used to point to English and German subtitles,
and English chapters.

Figures 8.8 through 8.11 show how Playr displays the different options.
Playr is a handy video player, and its ability to display subtitles and chapters

is very useful. Support for the other kinds of track element contents are planned,
so like other available video players, it will keep on improving.

Another important part of making media content accessible are the controls.
Next, you’ll learn how accessible the default players are and what can you do to
make your own custom controls more accessible.

FIGURE 8.7 The Playr video

player with Elephant’s Dream.

NOTE: Playr currently doesn’t support multiple chapter files

or the default attribute but will do so in a future release.

ptg6964689

USING WEBVTT AND THE TRACK ELEMENT NOW 191

FIGURE 8.8 Playr’s menu

allows viewers to choose

English and German subtitles

plus chapters.

FIGURE 8.11 A sample of how

chapter selection looks in Playr.

FIGURE 8.9 Subtitles have been placed 6 percent from the top

(using L:6%) and bolded with .
FIGURE 8.10 The same video with German subtitles chosen.

ptg6964689

192 CHAPTER 8 MULTIMEDIA AND ACCESSIBILITY

As mentioned earlier, it’s quite important for accessibility that the media controls
can be accessed from the keyboard. Browsers have their own set of controls for
media elements, but how accessible are they from the keyboard? Unfortunately,
at the moment, the answer is not very. Opera seems to be the only browser whose
default control set is immediately accessible from the keyboard. You can easily tab
from one control to the other, use the Return key to toggle the Play/Pause button,
and use the arrow keys to control the seek bar and volume control.

So, if you want to make your media content fully accessible across all modern
browsers, you need to implement your own custom controls. In Chapter 5, you
learned how to add custom controls, and it is these custom controls that you will
now extend to make them more accessible.

IMPROVING THE ACCESSIBILITY OF CUSTOM CONTROLS

You’ve already used the HTML button element to implement nearly all of the
controls. Using button elements immediately increases the accessibility of the
controls because the button element is automatically accessible from the key-
board. That fact alone makes the custom controls keyboard accessible. Because
the controls are also listed in the same order as they appear on the player, their
tab order is also pretty much in the required logical order. However, you might
want to change the tab order of the progress bar and the Play/Pause button. Most
likely, users would want to play the video first, so that button should be the first
control that they can access.

You can specify the tab order of HTML controls using the tabindex attribute.
The order specified by this attribute is the one that the browser will tell the key-
board to follow. So you apply a tabindex of 1 to the Play/Pause button and 2 to the
progress bar, and then apply subsequent tabindexes in the order in which they
appear in the source:

MEDIA CONTROLS AND
ACCESSIBILITY

ptg6964689

MEDIA CONTROLS AND ACCESSIBILITY 193

<div id=”controls”>

 <div id=”progressBar”>
p </div>

 <button id=”playpause” alt=”play” title=”play” tabindex=”1”>
p play</button>

 <button id=”stop” alt=”stop” title=”stop” tabindex=”3”>stop
p </button>

 <button id=”rewind” alt=”rewind” title=”rewind” tabindex=”4”>
p «</button>

 <button id=”ffwd” alt=”fast forward” title=”fast forward”
p tabindex=”5”>»</button>

 <button id=”volumeDown” alt=”decrease volume” title=”-”
p tabindex=”6”>button>

 <button id=”volumeUp” alt=”increase volume” title=”+”
p tabindex=”7”>+</button>

 <button id=”mute” alt=”mute” title=”mute” tabindex=”8”>mute
p </button>

</div>

THE RANGE ELEMENT

In Chapter 5, it was mentioned that the HTML5 range element wasn’t used

in the custom media control set due to its limited support across HTML5

browsers.

The range element would be ideal for use as a progress bar if support was

better because it too automatically provides keyboard accessibility, and the

seek bar would work via the keyboard (the up and down keys would toggle

the seek when the element has focus) without any further requirements.

NOTE: In this code listing, the onclick()

events have been omitted for brevity.

ptg6964689

194 CHAPTER 8 MULTIMEDIA AND ACCESSIBILITY

Because the buttons provide keyboard accessibility automatically, all you need
to tackle now is the progress bar, which uses a div and a span.

Just as in Chapter 5, you need to add an event listener for the keypress event,
which fires when a key is pressed, and then act on it. You’re interested in just a key
press on the progress bar, so the event is added to the progress bar only:

var progressBar = document.getElementById(“progressBar”);

progressBar.addEventListener(“keypress”, function(e) {

 checkKey(e.keyCode);

}, false);

The function that is called when a key press is detected is called checkKey()
with a parameter indicating the numeric code of the key that was pressed:

function checkKey(code) {

if (code == 38) { // up arrow key

 video.currentTime += 0.5;

 }

else if (code == 40) { // down arrow key

 video.currentTime -= 0.5;

 }

}

The checkKey() function simply checks the key code to see if it’s the up arrow
key (code 38) or the down arrow key (code 40). Depending on which key it is, the
video’s currentTime attribute is increased or decreased by 0.05 (an arbitrary time
value, but it seems a good step to move the video forward or backward by).

And that’s it. The progress bar’s seek capabilities can now be accessed via the
keyboard with the up and down arrow keys when it’s in focus. The end result ren-
ders your media custom controls a lot more accessible than they would have been.

ptg6964689

WRAPPING UP 195

With regard to accessibility, HTML5 has advanced and expanded from its initial
definition of the WebSRT file format to WebVTT. With browser vendors planning
to support this format, a new W3C Working Group was formed with the intention
of formalising the WebVTT specification for browsers to start supporting. So hope-
fully, browser support is only a matter of time.

Although native support is currently patchy, you can use existing JavaScript
libraries to add subtitles to your videos now. These libraries will undoubtedly
increase their functionality and capabilities in the future.

You can also make the custom media controls you built in Chapter 5 more
accessible via the keyboard.

Overall, accessibility is a goal you should be thinking about when serving mul-
timedia content to your users. The more users who can access your content the
better, right?

The next chapter moves away from accessibility and explores how HTML5
multimedia can interact with one of the more exciting HTML5 features, canvas.

WRAPPING UP

ptg6964689

9

USING VIDEO
WITH CANVAS

ptg6964689

197

In addition to native multimedia, one of

the most talked about capabilities that

HTML5 brings to the web table is the

ability to draw and manipulate graphics using JavaScript via the

new canvas element. The canvas element defines an area on a

web page that you can draw on using a JavaScript API.

Canvas and its corresponding API have many uses, from copy-

ing media and drawing simple graphs to filling colours, directly

manipulating pixels, and creating complex games that are played

inside the browser without needing a third-party plugin.

You can also use multimedia elements in interactions with canvas

and the API. This chapter briefly explores some of these simple

interactions, with, as always, fully explained examples.

ptg6964689

198 CHAPTER 9 USING VIDEO WITH CANVAS

THE CANVAS ELEMENT

The brief chapter introduction told you what you can use the canvas element for
and that it’s actually quite useless on its own. However, it is very easy to use and
only has two possible attributes, which are listed in Table 9.1.

TABLE 9.1 Canvas Element Attributes

ATTRIBUTE DESCRIPTION

width Defines the width of the canvas drawing area.

height Defines the height of the canvas drawing area.

That’s it, really! You can, of course, also define the canvas’s dimensions using
CSS or JavaScript. And just like every other HTML element, the position, borders,
and so on of the canvas element can be defined via CSS.

Defining a canvas element on your web document is as simple as this:

<canvas width=”500” height=”500”></canvas>

Of course, leaving it at that renders absolutely nothing of interest on the web
page, so you probably wouldn’t see a thing because it would render as a blank
space. You could add a border to it via CSS so you could actually view it when you
are experimenting.

The canvas is a two-dimensional grid, and as such has two axes, X and Y. To
define a position within the canvas, you specify two coordinates on this grid (X,Y).
The top-left corner position of the grid is considered “home” and has the coor-
dinates (0,0).

BROWSER SUPPORT

Browser support for the canvas element and the accompanying API are rather good—all major browsers

support them. Internet Explorer 8 and earlier versions, of course, do not support them, but you can use

Google’s ExplorerCanvas JavaScript library (http://code.google.com/p/explorercanvas) to bring canvas and

API support to those browsers.

TIP: You should always specify the width and height of your

canvas element using the attributes, CSS, or JavaScript. If you don’t,

the element’s dimensions will default to 300 × 150 pixels.

http://code.google.com/p/explorercanvas

ptg6964689

THE 2D API 199

But to actually do anything useful with the canvas element, you need to invoke
the 2D JavaScript API, which is what you’ll do next.

THE 2D API

Although the canvas element is part of the HTML5 specification, the 2D API that
you use to draw on it was, but is no longer, part of the specification. It was moved
into its own specification at the W3C (http://dev.w3.org/html5/2dcontext).

The 2D API has a whole host of different functions and functionality, which are
beyond the scope of this chapter. However, you’ll learn about and use a few of these
functions in the examples throughout the chapter. You are, of course, encouraged
to seek out one (or more) of the many books on the subject.

The canvas contains a drawing context, which is where the actual drawing
takes place. At the moment, only a 2D context exists, but the HTML5 specification
mentions that it’s likely there will be a 3D context available in the future (no date
is given of course!).

To use the 2D drawing context, you need to get a handle to it. But first you
need to get a handle to the canvas element, which is easily done using one of the
standard JavaScript functions querySelector() or getElementById():

var canvas = document.querySelector(‘canvas’);

To get a handle on the 2D drawing context, you use the getContext() func-
tion, which accepts one argument and at the moment can only have the value 2d.

var context = canvas.getContext(‘2d’);

And there you have your context handle, which you can use to draw on the
canvas. You’ll do that next using the fillRect() function.

The fillRect(x, y, w, h) function draws a simple rectangle on the canvas,
and it takes four arguments: the X and Y coordinates where the rectangle is to be
placed (its top-left corner), and the width and height of the rectangle.

http://dev.w3.org/html5/2dcontext

ptg6964689

200 CHAPTER 9 USING VIDEO WITH CANVAS

The following code draws a black (the default colour) rectangle that is 150 × 100
pixels at the X and Y coordinates (20,20):

context.fillRect(20, 20, 150, 100);

Figure 9.1 shows the resulting rectangle.
The fillRect() function is one of the most basic functions of the 2D API, and

you’ll use it quite often. Other functions allow you to draw lines and circles, but
because you don’t need them for the main examples that follow, they aren’t dis-
cussed here.

Now that you have an understanding of the canvas element and a basic under-
standing of the 2D API, let’s move on to an example that allows you to take screen
shots of an HTML5 video.

FIGURE 9.1 A simple rectangle

drawn on the canvas element

using the fillRect() function.

TIP: For a good grounding in HTML5 canvas basics, check out

http://dev.opera.com/articles/view/html-5-canvas-the-basics.

http://dev.opera.com/articles/view/html-5-canvas-the-basics

ptg6964689

TAKING A SCREEN SHOT OF AN HTML5 VIDEO 201

Say, for example, that you want to allow users to take screen shots of your video
as it’s playing and display them somewhere else, for example, on the web page
next to the video. You can use a canvas element as the drawing surface in which
to actually place the screen shot image.

Sound a bit complicated? Well, it’s not. You only need to use two of the JavaScript
API functions: fillRect()and one other that you’ll read about in a moment.

Before you take the screen shot, you must first set up the video and a button for
taking the screen shot, as well as complete a few other initialisation tasks.

First up, set up the HTML for the video, button, and canvas elements:

<video controls>

<source src=”elephants-dream-medium.mp4” type=”video/mp4”>

<source src=”elephants-dream-medium.webm” type=”video/webm”>

</video>

<canvas></canvas>

<button id=”snap”>Take screenshot</button>

Notice that there’s no width and height specified on the canvas element yet;
that will be done via JavaScript later, so don’t worry! You’ll also add a function to
the onclick event of the button element; again, this will happen a bit later on.

Now on to some JavaScript. Recall that you need to grab a handle to the 2D
drawing context of the canvas element. You also need to get a handle to the video
element because you’ll need that later:

var video = document.querySelector(‘video’);

var canvas = document.querySelector(‘canvas’);

var context = canvas.getContext(‘2d’);

var w, h, ratio;

Some other variables are also defined for later use: for example, the w (width)
and h (height), whose names make the data they’ll contain quite obvious.

In this example, you’ll create screen shots that are smaller than the video. This
shows that it is possible to work with screen shots that have a different size than
the original video.

TAKING A SCREEN SHOT

OF AN HTML5 VIDEO

ptg6964689

202 CHAPTER 9 USING VIDEO WITH CANVAS

It was mentioned earlier that the dimensions of the canvas element need to be
defined should you want to override the default dimensions of 300 × 150, which
you do here. Therefore, you need to work out the ratio of the video’s width to its
height (hence the ratio variable defined in the previous code snippet). You also
can only do this when the video is actually available for the browser to be able to
check the dimensions of the video. So, you need to wait until the video’s dimen-
sions are available. And how do you do this? By listening for the loadedmetadata
API event that you may recall from Chapter 5:

video.addEventListener(‘loadedmetadata’, function() {

ratio = video.videoWidth / video.videoHeight;

w = video.videoWidth - 100;

h = parseInt(w / ratio, 10);

canvas.width = w;

canvas.height = h;

}, false);

When the loadedmetadata event is raised, the ratio of the video is calculated.
The w variable is then set to be (arbitrarily) 100 less than the actual width of the
video, and the h variable is set to whatever ratio the value in w is to the video’s
ratio. The canvas element’s width and height are then set to the calculated values
in w and h.

You then need to define the actual function that will take the screen shot and
attach it to the button’s onclick event. But before you do so, let’s take a quick look
at the other 2D API function that you’ll need here, drawImage().

The drawImage(image, x, y, w, h) function can take a number of parameters,
but you’ll only use five of them in this example. As its name suggests, this function
allows you to draw an image onto the canvas. The first parameter is the image to
draw, and the next four are the same as in fillRect(): the X and Y coordinates of
the drawn image’s top-left corner, and its width and height.

TIP: For more information on the drawImage() function and

the various parameters it can take, see www.whatwg.org/specs/

web-apps/current-work/multipage/the-canvas-element.html#drawimage.

www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html#drawimage
www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html#drawimage

ptg6964689

TAKING A SCREEN SHOT OF AN HTML5 VIDEO 203

The image parameter can be one of the following HTML elements: img, canvas,
or video. Yes, the video element can be passed to this function, and it will auto-
matically create an image from the current frame of the video in question and
draw it on the canvas.

Next, you define the function snap() to take the actual screen shot and attach
it to the button element:

<button id=”snap” onclick=”snap()”>Take screenshot</button>

And snap() is defined as:

function snap() {

context.fillRect(0, 0, w, h);

context.drawImage(video, 0, 0, w, h);

}

Two lines are all that are required! The rectangle in the canvas that will be filled
is defined first—in this case it’s the entire canvas element—and then you use
drawImage() to draw the image from the video.

TIP: You can clear whatever is in a canvas

element by simply redefining the width and

height of the canvas, which effectively resets it.

ptg6964689

204 CHAPTER 9 USING VIDEO WITH CANVAS

That’s all it takes to take a screen shot from the video. As the video is playing,
you can keep clicking the “Take screenshot” button and a new screen shot of the
video will be taken at whatever point it’s at (Figure 9.2).

Most of the coding effort involved setting up the video, button, and canvas ele-
ments, whereas the actual work only took two lines, which is the biggest advantage
of canvas and is kinda cool.

You’ll expand on this example next by copying the entire video into the canvas
element as it’s playing.

A

B

FIGURE 9.2 The canvas ele-

ment on the right (A) is empty

to begin with until the “Take

screenshot” button is clicked,

which draws a still from the

video as an image on the

canvas (B).

ptg6964689

MAKING A COPY OF A PLAYING VIDEO 205

In the previous example, you saw how easy it was to take screen shots of a video
as it’s playing. But what if you wanted to take that a bit further and update the
copied image automatically as the main video is playing, in effect, creating an
exact copy of the video, but smaller? All you need to do is use the same code from
the preceding example and add listeners for various events that update the image
in the canvas element.

Recall from Chapter 5 the events that are raised when a video is playing, paused,
stopped, or ended. It is these events, more specifically the play, paused, and ended
events, that you need to use.

To achieve the video copy, you need to use the standard setInterval() func-
tion, which allows you to specify that a particular JavaScript function is to be called
at specific intervals. When the video starts to play, you listen and catch the play
event, and using the setInterval() function, set the snap() function you defined
earlier to be called every 33 milliseconds:

video.addEventListener(‘play’, function() {

 setInterval(“snap()”, 33);

}, false);

MAKING A COPY OF A PLAYING VIDEO

ptg6964689

206 CHAPTER 9 USING VIDEO WITH CANVAS

This code causes the snap() function to automatically update the canvas’s
drawing context with a new screen shot of the video, which makes it look like it’s
actually playing (Figure 9.3).

You also should listen for when the video has been paused or ended (using the
paused and ended events) so that you can stop the snap() function from being
called at the intervals defined. To clear an interval, you call the standard JavaScript
function clearInterval():

video.addEventListener(‘paused’, function() {

 clearInterval();

}, false);

video.addEventListener(‘ended’, function() {

 clearInterval();

}, false);

A

B

FIGURE 9.3 The canvas
element on the right updates

automatically as the video is

playing, keeping it in sync with

the video (A and B).

ptg6964689

MAKING A COPY OF A PLAYING VIDEO 207

And that’s all there is to it. When you play the video, it will update the image in
the canvas as it’s playing, even if you skip ahead (Figure 9.4). And when you pause
it or end it, the canvas image will stop being updated.

In a similar vein, but slightly more complicated, you’ll next make the video copy
appear in greyscale, unlike the colour original. To do this, you need to manipulate
the actual pixels of the video, which once again is not as complicated as it might
sound.

A

B

FIGURE 9.4 The video stays

in sync (A) even when you use

the seek control to jump ahead

in the video (B).

ptg6964689

208 CHAPTER 9 USING VIDEO WITH CANVAS

Another useful thing that you can do with objects within the canvas drawing context
is to alter the individual pixels. You’ll do just that in this example by altering the
pixels in the video so they appear grey rather than in colour.

You’ll be building on the code created in the first example in this chapter. So,
the first thing you need to do is to define a second canvas for the manipulations to
take place. This is used as a background canvas, which you’ll use to work on before
drawing the final result on the actual display canvas. The background canvas will
only exist within the JavaScript code, not as an HTML element on the page, and
therefore won’t be seen by the user.

To do this, you simply create a new instance of the canvas element using the
standard createElement() JavaScript function:

var bgCanvas= document.createElement(‘canvas’);

Once this instance has been created, you also need a handle to its 2D drawing
context so you can use it:

var bgContext = bgCanvas.getContext(‘2d’);

In the earlier example, you set the width and height of the display canvas via
JavaScript, and you also need to set the background canvas to the same dimensions:

video.addEventListener(‘loadedmetadata’, function() {

ratio = video.videoWidth / video.videoHeight;

w = video.videoWidth - 100;

h = parseInt(w / ratio, 10);

canvas.width = w;

canvas.height = h;

bgCanvas.width = w;

bgCanvas.height = h;

}, false);

PLAYING THE VIDEO COPY IN GREYSCALE

ptg6964689

PLAYING THE VIDEO COPY IN GREYSCALE 209

Before you alter the pixels, you need to meet two new functions that you’ll
use: getImageData(x, y, w, h) and putImageData(imageData, x, y). The
getImageData(x, y, w, h) function returns an ImageData object for the rectangle
specified by the parameters: x and y specify the upper-left corner of the rectangle,
and w and h are the rectangle’s width and height.

The ImageData object that is returned, as its name suggests, contains the image
data for the rectangle specified in the call getImageData(). The information that
this returned object contains is listed in Table 9.2.

TABLE 9.2 ImageData Object Contents

ATTRIBUTE DESCRIPTION

width The width of the returned image data rectangle.

height The height of the returned image data rectangle.

data A two-dimensional array that contains the actual pixel information

for each pixel. Each pixel has four entries listed sequentially; values

for the pixels are red, green, blue, and alpha channel.

For example, if the first pixel is white, it would contain the

information:

data[0][0] = 255 // red channel

data[0][1] = 255 // green channel

data[0][2] = 255 // blue channel

data[0][3] = 1 // alpha channel (opacity)

As you’ve probably guessed, it will be through the data attribute that you’ll be
able to alter the pixel information of the image.

The other function, putImageData(imageData, x, y), paints the pixel data
specified in imageData at the coordinates indicated by x and y. Using this informa-
tion, let’s make the video grey!

ptg6964689

210 CHAPTER 9 USING VIDEO WITH CANVAS

Define the function makeItGrey(), which will do all the required shenanigans:

function makeItGrey() {

bgContext.drawImage(video, 0, 0, w, h);

var pixelData = bgContext.getImageData(0, 0, w, h);

for (var i = 0; i < pixelData.data.length; i += 4) {

var r = pixelData.data[i];

var g = pixelData.data[i+1];

var b = pixelData.data[i+2];

var averageColour = (r + g + b) / 3;

pixelData.data[i] = averageColour;

pixelData.data[i+1] = averageColour;

pixelData.data[i+2] = averageColour;

}

context.putImageData(pixelData, 0, 0);

}

Let’s walk through the code, starting with the background context:

bgContext.drawImage(video, 0, 0, w, h);

Similar to the earlier example, you need to take a snapshot of the video and
draw it to the canvas. You do the same here, but this time you draw the image on
the background context rather than the display context.

You then obtain the pixel data from the background context’s image that you’ve
just drawn. You’ll be manipulating the data returned in the pixelData object:

var pixelData = bgContext.getImageData(0, 0, w, h);

You then need to loop through each item in the pixelDatas data array, which
contains the actual information for each pixel. As mentioned in Table 9.2, the data
array is a two-dimensional array with four data items for each pixel. It is for this
reason that the loop counter is set to add 4 for each iteration:

ptg6964689

PLAYING THE VIDEO COPY IN GREYSCALE 211

for (var i = 0; i < pixelData.data.length; i += 4) {

...

}

For each pixel, you then need to extract the relevant red, green, and blue infor-
mation for that pixel. The alpha channel data is not required in this example, so
you can safely ignore it:

var r = pixelData.data[i]; // red channel

var g = pixelData.data[i + 1]; // green channel

var b = pixelData.data[i + 2]; // blue channel

Now that you have this information, you need to convert it to grey. A number of
methods are available to do this, the simplest of which is to calculate the average
colour across all three values:

var averageColour = (r + g + b) / 3;

You then set each red, green, and blue value for each of the pixels to be this
new average colour:

pixelData.data[i] = averageColour;

pixelData.data[i + 1] = averageColour;

pixelData.data[i + 2] = averageColour;

Finally, you need to write the newly manipulated image and its data to the
actual display canvas context:

context.putImageData(pixelData, 0, 0);

TIP: If you’re creating this example as you follow along, it

won’t work unless you run it through a web server. A local file

will be considered “cross-origin” (i.e., from another website), so the

API will forbid you from obtaining an image from it and manipulating

its pixels. This cross-origin security policy exists to prevent files on

one domain from accessing and altering information from a file on

another domain without permission.

ptg6964689

212 CHAPTER 9 USING VIDEO WITH CANVAS

Of course, right now this code doesn’t do anything: You need to ensure that the
makeItGrey() function actually gets called.

Mimicking what you did in the second example, the function can simply be
set up to be called at 33-millisecond intervals using the setInterval() function
when the video is set to play:

video.addEventListener(‘play’, function() {

 setInterval(“makeItGrey()”, 33);

}, false);

And presto, the video copy is displayed on the canvas but this time in greyscale
(Figure 9.5).

There’s a lot more that you can do with canvas and with pixel manipulation.
This chapter provided just a small insight into what you can achieve. If what you’ve
read has piqued your interest, plenty of good online tutorials (e.g., www.html5rocks.
com/en/tutorials/#canvas) and books are available that you can follow up with,
and I encourage you to do so. Go and play!

FIGURE 9.5 A greyscale copy of

the original video is displayed

in the canvas element on the

right.

www.html5rocks.com/en/tutorials/#canvas
www.html5rocks.com/en/tutorials/#canvas

ptg6964689

WRAPPING UP 213

The canvas element and the 2D JavaScript API have a lot of potential, and indeed,
many games and JavaScript libraries are beginning to use them to their full potential.

Because you can draw a video directly onto a canvas, it allows you to do simple
tasks like take screen shots and keep a copy of a playing video in sync with a ver-
sion in the canvas. You can also manipulate pixels by obtaining the image data and
then drawing it back onto the canvas.

The next chapter also focuses on video and images, but this time with another
format that has been in existence before HTML5 but seems to have come to the
forefront since HTML5 has become more popular. Scalable Vector Graphics (SVG)
is up next.

WRAPPING UP

ptg6964689

10

USING VIDEO
WITH SVG

ptg6964689

215

Scalable Vector Graphics (SVG) is a

language that allows you to define

two-dimensional vector graphics for

display in your web documents. Written in XML and supported by

all of the major browsers, you can use it to describe vector shapes,

text, and images on which you can also apply specific filters.

SVG has been around for a while but seems to have escaped the

notice of most web developers. This has changed with the advent of

HTML5 and the svg element and the fact that it is now supported

by Internet Explorer 9. As people became more interested in canvas

(which you read about in Chapter 9) and its capabilities, they also

began to take more notice of SVG and what it might be capable of.

This chapter briefly explores SVG and how you can use it to achieve

a number of effects with HTML5 media elements, more specifically

the video element.

ptg6964689

216 CHAPTER 10 USING VIDEO WITH SVG

A BRIEF INTRODUCTION TO SVG

The SVG specification is not part of HTML5 but has been in development with the
W3C since 1999 as an open standard. Version 1.1 is the current recommendation
since 2001. A new version, 1.2, is a recent working draft, but it is version 1.1 that
this chapter will mainly discuss.

As mentioned in the chapter introduction, SVG is written in XML, and the
browser uses this XML definition to render the required shape, text, or image. In
effect, the XML file will contain drawing instructions for the browser to interpret
and use to render the required graphics—for example, coordinates of points to
draw lines to, text to include, and different curves and shapes. This of course means
that the only data that needs to be downloaded by the browser for it to display the
graphic(s) in question is an XML text file rather than potentially larger image files.

Another advantage of SVG is that the graphics produced are vector graphics
rather than raster graphics, so the image will be scaled cleanly by the browser
within the available space should it need to be.

RASTER AND VECTOR GRAPHICS

A raster graphics image, or bitmap, is a data structure that contains pixel

information for a graphic. Because the graphic defined by this pixel informa-

tion depends on all the pixel information available, it is dependent on the

resolution the original image was created in. For this reason, it doesn’t scale

up very well because it doesn’t have enough pixel information for the new

size, which leads to a loss of quality. Raster graphics also lead to large file

sizes because they contain information on each pixel in the image.

Vector graphics, on the other hand, are defined via geometrical informa-

tion, such as points, curves, lines, shapes, and so on, all of which are based

on mathematical equations. The tool drawing the image, in this case a web

browser, uses this geometrical information to redraw the graphic, allowing

it to build the best-quality image possible given the screen resolution.

Vector graphic files are smaller in size than raster graphic files because they

only contain formulas to create the required shapes rather than individual

pixel information.

Figure 10.1 illustrates the difference between raster and vector graphics

when an image is scaled up.

FIGURE 10.1 The difference in

quality between raster (top)

and vector graphics (bottom)

when scaled up.

ptg6964689

A BRIEF INTRODUCTION TO SVG 217

You can also apply features such as filter effects and clipping paths to SVG
graphics, and animate them as well. You’ll see examples of some of these added
features later in the chapter.

The SVG specification is quite large, and a rundown of all its capabilities is
outside the scope of this chapter. You can view the latest specification, version 1.1,
at the W3C at www.w3.org/TR/SVG11. Only those features and elements that are
used in the examples in this chapter will be described here.

Let’s look at how well-supported SVG is amongst the main browsers.

BROWSER SUPPORT

Because it’s been around for so long, and with Internet Explorer finally joining in
with version 9, SVG is now supported by the latest versions of the major browsers.
However, as mentioned earlier, the SVG specification is huge, so different parts of
it are supported by different browsers.

An amazingly in-depth table of how well SVG is supported across the major
browsers is maintained by Jeff Schiller, co-chair of the W3C SVG Interest Group at
www.codedread.com/svg-support-table.html (you can see a condensed version at
www.codedread.com/svg-support.php). Overall, the main features are supported
by Firefox, Safari, Chrome, Opera, and Internet Explorer 9 and later.

There is a caveat to this support with regards to HTML5 media. The “main
features” of SVG that are widely supported relate to those you would use when
drawing images and text within a web document. Support is not as widespread
with regards to filters or masking, or anything that this chapter will show you with
regards to SVG interactions with HTML5 videos. Currently, only Firefox and Safari
support the SVG features that you will see in this chapter.

XML SVG definitions are usually contained within an external XML file with
a .svg extension, which is then embedded in a web document via such elements
as embed and object. HTML5 changes the requirement for an external file with
the introduction of the svg element, which allows you to define SVG definitions
within an HTML5 web document.

THE SVG ELEMENT

The svg element is part of the HTML5 specification and allows you to define SVG
shapes, text, and graphics within a web document without having to embed an
external SVG file.

www.w3.org/TR/SVG11
www.codedread.com/svg-support-table.html
www.codedread.com/svg-support.php

ptg6964689

218 CHAPTER 10 USING VIDEO WITH SVG

You can also use the svg element to define SVG code that will be used elsewhere
in the document for functions such as masking and animation. You will see it used
in this way later in some examples in this chapter.

The latest versions of all the major browsers currently support the svg element,
except for Opera, which will support it in version 12. You can view an updated
browser support table for the svg element at http://caniuse.com/svg-html5.

Let’s take a quick look at some of the simplest SVG elements that are available
for you to use.

SVG TEXT

The SVG text element allows you to specify a graphics element that consists of text.
It can take a number of attributes—a full list of which is available at www.w3.org/
TR/SVG11/text.html#TextElement. But here you will only use a few of the attributes.

In this example, let’s display the letters SVG using an SVG text element. The
SVG code required for this is as follows:

<svg>

 <text x=”0” y=”50” font-size=”50” font-family=”Georgia”
p fill=”#cd0000” stroke=”black” stroke-width=”1”>SVG</text>

</svg>

This code defines the position of the text using X and Y values, and also uses
the fill attribute to set the text colour to a reddish colour. The size and family
of the font is set using the font-size and font-family attributes, respectively.
A black outline of width 1 is also added to the text via the stroke and stroke-width
attributes.

Figure 10.2 shows how the resulting text is rendered in Firefox and Safari.

FIGURE 10.2 Simple text ren-

dering in SVG in Firefox 5 (left)

and Safari 5.1 (right).

NOTES: If you want an SVG definition to display in Opera 11.50, you can embed it as an

external SVG file and it will work fine, as it will in all the other major browsers.

You can read more about the svg element at http://dev.w3.org/html5/spec/Overview.html#svg-0.

www.w3.org/TR/SVG11/text.html#TextElement
www.w3.org/TR/SVG11/text.html#TextElement
http://caniuse.com/svg-html5
http://dev.w3.org/html5/spec/Overview.html#svg-0

ptg6964689

A BRIEF INTRODUCTION TO SVG 219

SVG CIRCLE

One of the simplest shapes that you might want to draw via SVG is a circle. This
is relatively easy because SVG provides the circle element for your convenience:

<svg height=”200”>

<circle cx=”100” cy=”100” r=”100” fill=”#0e8c3a” />

</svg>

This code defines the position of the circle using X and Y coordinates but this
time using the cx and cy attributes. The radius of the circle is set to 100 using the
r attribute. Once again fill is used to specify the colour of the circle, in this case
a type of green.

Figure 10.3 shows you how the circle looks in a browser.

FIGURE 10.3 A circle drawn

in SVG in Chrome 13 (left) and

Firefox 5 (right).

ptg6964689

220 CHAPTER 10 USING VIDEO WITH SVG

SVG ELLIPSE

You can also draw an ellipse, which is a circle elongated in one direction. To draw
an ellipse, as well as the X and Y positions of the shape, you also need to specify
the radius width and height:

<svg height=”200”>

<ellipse cx=”100” cy=”100” rx=”100” ry=”50” fill=”#0276fd” />

</svg>

The fill colour here is set to a shade of blue, and the width and height of the
radius is now defined using the rx and ry attributes respectively.

Note: You could of course use the ellipse element to draw a circle if you set
the rx and ry attributes to the same value, but obviously it’s best to use the circle
element because that’s what it’s there for!

You can see how this simple ellipse renders in Figure 10.4.
The previous examples show only a very small taste of how you can draw shapes

and text using SVG. There’s a whole lot more that you can do with SVG, so I encour-
age you to seek out more information and play around with it.

Next, you’ll use this basic SVG knowledge to interact with the HTML5 video
element.

FIGURE 10.4 A bluish ellipse in

Safari 5.1 (left) and Chrome 13

(right).

TIP: For some online SVG resources, go to http://www.learnsvg.com

and http://my.opera.com/tagawa/blog/learning-svg.

http://www.learnsvg.com
http://my.opera.com/tagawa/blog/learning-svg

ptg6964689

USING SVG WITH HTML5 VIDEO 221

In the previous section you were introduced to some of the simpler features of
drawing SVG text and shapes. In this section, you’ll learn how to use those simple
text and shape definitions in conjunction with the HTML5 video element as masks,
and you’ll also apply some nifty filters to your video that SVG provides as well.

ADDING A TEXT MASK TO A VIDEO

In Chapter 6, you learned how to add a mask over a video in WebKit browsers using
the –webkit-mask-box-image CSS property. Well, you can also add masks over
video via SVG. You just define an SVG graphic as the mask and use it on your video.

Note: Using inline SVG (i.e., with the SVG definition within the web document
via the svg element) to mask elements currently only works in Firefox.

For this first example, you’ll add a text mask over the video. The video being
played will only be visible where the text exists.

For these examples, let’s again use the colourful parrots video:

<video autoplay controls>

<source src=”parrots-small.mp4” type=”video/mp4”>

<source src=”parrots-small.webm” type=”video/webm”>

</video>

To define a mask in SVG, you simply enclose it within the mask element. Also,
give the mask element a unique identifier of “vmask”, because you’ll need to refer-
ence it later:

<svg>

<mask id=”vmask”>

 <text x=”10” y=”140” font-size=”200” font-family=”Verdana”
p font-weight=”bold” fill=”#fff”>H5</text>

 </mask>

</svg>

NOTE: All the examples listed in this chapter are available on

the book’s companion website at www.html5multimedia.com.

USING SVG WITH HTML5 VIDEO

www.html5multimedia.com

ptg6964689

222 CHAPTER 10 USING VIDEO WITH SVG

In the preceding code example, within the mask element, a text element is
defined using the text “H5” with various attributes, the most noteworthy of which
is the fill attribute. When you’re defining a mask, you must use white as the fill
colour for the element the mask is being applied to so that it will be fully visible
through the mask.

For the code to actually do anything, you then need to apply the mask to the
video element, which you do via the mask property in the CSS definition for the
video element:

video {

mask:url(‘#vmask’);

}

The value the mask property is set to is the unique identifier you assigned to
the mask element earlier, in this case “vmask”.

You can see how this renders in Firefox 5 in Figure 10.5.
Unfortunately, this example only works in Firefox because it uses inline SVG to

define the mask. But you can get it to work in Safari if you place the mask definition
in an external SVG file and reference that.

The external file text.svg is thus defined as follows:

FIGURE 10.5 The H5 text

mask over the parrot video

in Firefox 5.

TIP: One great advantage of SVG is that the elements that you define

within it are available through the DOM (Document Object Model) for

referencing and use later in SVG and by JavaScript or CSS.

ptg6964689

USING SVG WITH HTML5 VIDEO 223

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”
p “http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg version=”1.1” xmlns=”http://www.w3.org/2000/svg”
p xmlns:xlink=”http://www.w3.org/1999/xlink”>

 <defs>

 <mask>

 <text id=”text” x=”10” y=”140” font-size=”200”
p font-weight=”bold” font-family=”Verdana”
p fill=”white”>H5</text>

 </mask>

 </defs>

<use xlink:href=”#text” />

</svg>

Because this SVG file is an XML file, you place the XML header at the top:

<?xml version=”1.0” standalone=”no”?>

The standalone attribute is set to no, indicating that the XML document does
not stand alone and depends on an externally defined DTD.

WHAT’S A DTD?

A Document Type Definition (DTD) is a set of markup declarations that

defines the structure of a markup document. The DTD defines the legal

elements and attributes that the markup document can contain.

ptg6964689

224 CHAPTER 10 USING VIDEO WITH SVG

The next line is the SVG doctype declaration, which indicates that the docu-
ment content follows the SVG 1.1 DTD:

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”
p “http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

The svg element then appears, indicating the version and XML namespace (in
this case, SVG) and including a reference to the xlink document definition, which
is required a bit farther down in the XML file (where it’ll be explained):

<svg version=”1.1” xmlns=”http://www.w3.org/2000/svg”
p xmlns:xlink=”http://www.w3.org/1999/xlink”>

The defs element is used to contain any SVG definitions that will not imme-
diately be rendered onscreen but can be used later.

The mask and text element definitions contain the same code as the same inline
SVG definitions in the earlier example; the only exception is that the text element
is given the unique identifier “text”. This identifier is used in the next line in the file:

<use xlink:href=”#text” />

This line, which makes use of the xlink document definition linked to earlier,
informs the document that on loading to use the resource pointed to in the
xlink:href attribute, in this case the text element definition.

You then need to reference the external text.svg file from the original HTML5
file. In the CSS definition for the video, you used the WebKit-specific property
–webkit-mask to point to the SVG file:

video {

mask:url(‘#vmask’);

-webkit-mask:url(‘text.svg’);

}

TIP: Using the use element with xlink:href also allows you to

reuse code within the SVG file without having to duplicate it.

ptg6964689

USING SVG WITH HTML5 VIDEO 225

And presto, the text mask now also works in Safari 5.1 (Figure 10.6)!
Because Chrome is also a WebKit browser, you’re probably wondering if this

text mask works with Chrome. Unfortunately, it doesn’t work properly; the text is
simply written over the video (Figure 10.7). Hopefully, this will be fixed in a future
version of the browser.

Now that you’ve learned how to apply a text mask to an HTML5 video, you can
use the same principles to apply another SVG mask, this time using a shape.

FIGURE 10.6 The H5 text mask

as rendered in Safari 5.1.

FIGURE 10.7 The rather broken

implementation of text mask-

ing in Chrome 13.

NOTE: In the supplied examples, you might notice that the

video controls are still available to be clicked beneath the SVG

mask (if you can guess where they’re located!). This could

be quite useful because you can apply the mask without

necessarily having to implement your own custom control set.

ptg6964689

226 CHAPTER 10 USING VIDEO WITH SVG

ADDING AN ELLIPSE MASK TO A VIDEO

Earlier in this chapter, you learned that you can use SVG to define and draw an
ellipse. Just like the text element, you can also use the ellipse element to define
a mask that you can place over your HTML5 video.

The principles are of course the same as in the preceding text mask example.
In this example, you’ll define the ellipse mask in an external SVG file. It’s worth
learning how to reference such a file for Firefox as well as for Safari.

The video you’ll use in this example is the same as the preceding example:

<video autoplay controls>

<source src=”parrots-small.mp4” type=”video/mp4”>

<source src=”parrots-small.webm” type=”video/webm”>

</video>

You define the SVG mask in the external SVG XML file ellipse.svg—the defi-
nition of which is very similar to the text mask example—but you replace the text
element with an ellipse element definition:

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”
p “http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg version=”1.1” xmlns=”http://www.w3.org/2000/svg”
p xmlns:xlink=”http://www.w3.org/1999/xlink”>

 <defs>

 <mask id=”eMask”>

 <ellipse id=”ellipse” cx=”150” cy=”80” rx=”150” ry=”80”
p fill=”white” />

 </mask>

 </defs>

 <use xlink:href=”#ellipse”/>

</svg>

ptg6964689

USING SVG WITH HTML5 VIDEO 227

The mask element has a unique identifier of “eMask” because you’ll need it
for referencing. The ellipse has a unique identifier of “ellipse” and is defined with
X and Y coordinates, a radius of 150 on the X axis, and a radius of 80 on the Y axis.
The fill colour is white, as is required for masks.

The use element links to the ellipse element contained within the mask
element.

In the calling HTML file, the CSS declaration uses the –webkit-mask-box-image
property to target WebKit browsers. For Firefox, you use the mask property, and
make sure its url value also references the mask’s identifier, “eMask”, as well as
the SVG file:

video {

mask:url(‘ellipse.svg#eMask’);

-webkit-mask-box-image:url(‘ellipse.svg’);

}

And that’s it. You can see how this renders in Firefox and Safari in Figure 10.8.
As you can imagine, you could define any shape in SVG and then use it as a

mask for an HTML5 video should you want to show only some of the video to
achieve the desired effect.

Once you’ve defined your mask, you may also want to animate it for an added
effect.

FIGURE 10.8 The ellipse mask

rendered in Firefox (left) and

Safari (right).

NOTE: For browsers that don’t support SVG masks,

the video will simply be displayed normally.

ptg6964689

228 CHAPTER 10 USING VIDEO WITH SVG

ANIMATING AN SVG VIDEO MASK

SVG also allows you to define animations on the graphics that you’ve defined, and
because masks are simply graphics, you can apply animations to them as well.

The same video declaration used in the two preceding examples is again utilised
for this example, so the code won’t be repeated here.

The main areas of interest are the SVG file, which is called animate-ellipse.
svg here, and how the animation is defined:

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”
p “http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg version=”1.1” xmlns=”http://www.w3.org/2000/svg”
p xmlns:xlink=”http://www.w3.org/1999/xlink”>

 <defs>

 <mask id=”eMask”>

 <ellipse id=”ellipse” cx=”150” cy=”80” rx=”100” ry=”80”
p fill=”white”>

 <animate attributeName=”rx” dur=”3s”
p values=”100;150;100” repeatCount=”5” />

 </ellipse>

 </mask>

 </defs>

 <use xlink:href=”#ellipse”/>

</svg>

Once again, everything is declared within a mask element, and the ellipse
element declaration is largely the same as the preceding example except that the
radius along the X axis is now defined as 100.

NOTE: The animation examples could also use inline SVG to define

the SVG masks but would only work for Firefox. Therefore, all SVG defi-

nitions are declared in external files so they work in Firefox and Safari.

ptg6964689

USING SVG WITH HTML5 VIDEO 229

There is also an animate element, which, of course, defines the animation used:

<animate attributeName=”rx” dur=”3s” values=”100;150;100”
p repeatCount=”5” />

The animation in this case simply changes the ellipse’s radius from 100 to
150 and back again. The animate element is used to animate a single attribute or
property over a given duration of time.

The attributeName attribute identifies the ellipse’s attribute that will be ani-
mated, in this case the X radius, so it’s set to rx. The dur attribute indicates how
long the animation will take, the duration, which is set to 3s (3 seconds). The values
attribute is a semicolon-separated list of the values the animation will animate
from and to, from 100 to 150 and back to 100 again. And repeatCount refers to
how many times the animation will be repeated, in this case 5.

With the SVG file defined, the only thing left to do is assign it to the video using
the CSS properties you’ve already used, namely mask and –webkit-mask-box-image:

video {

 mask:url(‘animate-ellipse.svg#eMask’);

 -webkit-mask-box-image:url(‘animate-ellipse.svg’);

}

Figure 10.9 gives you a rough idea of how this animation might work in practice.
Let’s take this animation one step further and look at how you can actually

create an animation that animates the mask from one position to another rather
than animating a static shape.

A B C

FIGURE 10.9 The X radius of

the ellipse mask animates

from 100 (A) to 150 (C) through

the animation transition state

represented by image B.

NOTE: You can read more about the animate element at

www.w3.org/TR/SVG11/animate.html#AnimateElement.

www.w3.org/TR/SVG11/animate.html#AnimateElement

ptg6964689

230 CHAPTER 10 USING VIDEO WITH SVG

MOVING AN SVG VIDEO MASK

The preceding example showed you how the attributes of an SVG mask can be
animated. You can also animate the entire mask, moving it along a predefined path,
which is what you’ll do in this example.

You’ll use the same video code in this example, and once again it will only work
in Firefox and Safari.

The mask in this example is a small circle, and the animation will move the
circle mask from the first parrot’s head across to the other parrot’s head in a linear
motion, showing each one in turn.

So, once again, the SVG file, circle-animate-motion.svg, is where the action
happens:

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”
p “http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg version=”1.1” xmlns=”http://www.w3.org/2000/svg”
p xmlns:xlink=”http://www.w3.org/1999/xlink”>

 <defs>

 <mask id=”cMask”>

<path id=”path” d=”M 0 0 L 130 0” />

<circle id=”circle” cx=”85” cy=”30” r=”40” fill=”white”>

 <animateMotion begin=”0s” dur=”2s” fill=”freeze”>

 <mpath xlink:href=”#path” />

 </animateMotion>

 </circle>

 </mask>

 </defs>

 <use xlink:href=”#circle”/>

</svg>

As usual, everything is contained within a mask element, which has an identi-
fier of “cMask”.

ptg6964689

USING SVG WITH HTML5 VIDEO 231

The next line is something new, a path element definition.

<path id=”path” d=”M 0 0 L 130 0” />

You use the path element to define a predetermined path for animation. This
particular one has an identifier of “path” and the d attribute contains the actual
path data. The path data can contain a number of definitions for the path’s route,
beginning with a “moveto” command, which uses M to establish a new point for
the animation, much like lifting a pen from a page and placing it elsewhere. In this
example, the “moveto” point is set to the X and Y coordinates 0,0.

Next, you use the “lineto” command, which you indicate with an L, to define
X and Y coordinates that draw a line to and from the current point. In this example,
the “lineto” command is 130,0, so the path is in effect specifying: “draw a line from
point 0,0 to point 130,0”.

The circle has an initial position of 85 on the X axis and 30 on the Y, and it has
a radius of 40. Again, the fill colour is set to white.

The circle element also contains the definition for the animate motion via
the animateMotion element:

<animateMotion begin=”1s” dur=”4s” fill=”freeze”>

<mpath xlink:href=”#path” />

</animateMotion>

The animateMotion element here has a number of attributes. The begin attri-
bute specifies when the animation will begin; here it is set to 1s, so there’s a delay
of 1 second before the animation starts. The dur attribute indicates how long the
animation will take, in this case 4 seconds.

The fill attribute is set to freeze, which tells the animation to stay in the
position it ended up at when the animation is complete.

NOTE: The animation example uses the simplest path definition possible. You

can define other, more complicated paths that follow Bezier curves and the like.

You can read more about path data at www.w3.org/TR/SVG11/paths.html#PathData.

NOTE: You can read more about the animateMotion element at

www.w3.org/TR/SVG11/animate.html#AnimateMotionElement.

www.w3.org/TR/SVG11/paths.html#PathData
www.w3.org/TR/SVG11/animate.html#AnimateMotionElement

ptg6964689

232 CHAPTER 10 USING VIDEO WITH SVG

The mpath element informs the browser that the path that the animation will
follow is the predefined path with the “path” identifier, which is the path you
defined earlier.

All that’s left to do now is to assign the SVG to the video:

video {

 mask:url(‘circle-animate-motion.svg#cMask’);

 -webkit-mask:url(‘circle-animate-motion.svg’);

}

Figure 10.10 shows how this might look when viewed in either Firefox or Safari.
There’s a lot that you can do with SVG masks, and the previous examples show

only a small bit of what is possible. Using the preceding examples as a starting
point, be sure to experiment with SVG masks and try to enhance your web videos.

Before you stop thinking about SVG and HTML5 video, let’s look at another
exciting capability of SVG and HTML5 video—filters.

A

B

C

FIGURE 10.10 The animation

as it appears in Safari. The

circle mask moves across the

video from one parrot (A) to

the other (C) via an animation

state (B).

ptg6964689

USING SVG WITH HTML5 VIDEO 233

APPLYING SVG FILTERS TO HTML5 VIDEO

SVG has a large number of filters that you can apply to SVG graphic elements.
Although the W3C specification doesn’t specify it, Mozilla has taken it one step
further and allows you to apply SVG filters to HTML5 media elements as well, specifi-
cally the video element. This can lead to some very cool effects but needs to be used
with caution because SVG filters currently only work on HTML5 media elements
in Firefox. This might change in the future, but there is no guarantee that it will.

Because Firefox alone supports these features on HTML5 media elements, the
examples in this section use inline SVG and target only that browser.

Let’s briefly look at two of the filters, feColorMatrix and feGaussianBlur.
You can view the full list, and indeed learn more about the filter element, at
www.w3.org/TR/SVG11/filters.html#FilterElement.

THE FECOLORMATRIX FILTER

The feColorMatrix filter allows you to apply a matrix transformation to the SVG
graphics object in question. These matrices can be quite complex and a bit beyond
me to be honest, but there are a number of predefined settings that you can apply
via the type attribute. The following four examples walk you through each setting
in turn, showing you how it is applied and what its effect is.

Each filter element definition is contained within a defs element within an

svg element, a layout you should by now be familiar with:

<svg>

<defs>

<filter.>

 . .

</filter>

</defs>

</svg>

The following examples contain the filter element definition only.

NOTE: The filters mentioned in this section can

of course be applied to any SVG graphic elements.

www.w3.org/TR/SVG11/filters.html#FilterElement

ptg6964689

234 CHAPTER 10 USING VIDEO WITH SVG

COLOUR SATURATION

Applying the colour saturation matrix filter allows you to saturate the colours of
your video. You can supply one value to the values attribute, which is a single real
number between 0 and 1 that allows you to adjust the saturation of the colour:

<filter id=”saturate”>

<feColorMatrix type=”saturate” values=”0.2” />

</filter>

This code applies a saturation of 0.2, the result of which can you can see in
Figure 10.11.

HUE ROTATION

A video will use a certain amount of colours in a colour spectrum. This colour
spectrum is arranged in a circle, and it is possible to move from one part of the
colour spectrum to another by performing a hue rotation by rotating a number of
degrees around the circular colour spectrum.

The hueRotate type allows you to perform a hue rotation on the video by an
angle specified by the values attribute, which must be a valid degree value:

<filter id=”hueRotate”>

<feColorMatrix type=”hueRotate” values=”50” />

</filter>

This code applies the hueRotate type with a rotation angle of 50 degrees. You
can see the result in Figure 10.12.

FIGURE 10.11 A saturation filter with a value of 0.2 is applied to

the video.

FIGURE 10.12 The pixel hue of the video is rotated by an angle

of 50 degrees.

ptg6964689

USING SVG WITH HTML5 VIDEO 235

LUMINANCE TO ALPHA

Applying the luminanceToAlpha colour matrix type converts the red, green, and
blue (RGB) channels of the video pixels into a luminance value and then sets the
output alpha channel of each pixel based on the result (Figure 10.13). This in effect
sets the transparency values of individual pixels based on the luminance, or relative
brightness, of the pixels. There are no attributes for this type:

<filter id=”luminanceToAlpha”>

<feColorMatrix type=”luminanceToAlpha” />

</filter>

BLACK AND WHITE

To convert the video to black and white, you need to supply the actual matrix values
to the filter element via the values attribute:

<filter id=”blackAndWhiteMatrix”>

<feColorMatrix type=”matrix” values=”0.3 0.3 0.3 0 0

 0.3 0.3 0.3 0 0

 0.3 0.3 0.3 0 0

 0 0 0 1 0” />

</filter>

The result of applying these matrix values is shown in Figure 10.14 on the
next page.

FIGURE 10.13 The video with the luminanceToAlpha colour matrix type applied to it (left). The large white areas are transparent, and

a background image would show through them, as shown on the right, where you can barely make out the parrots and the branch.

ptg6964689

236 CHAPTER 10 USING VIDEO WITH SVG

Using the matrix type, as shown in the preceding black-and-white example,
allows you to apply your own matrix transform to the video pixels. To use it effec-
tively, you’ll need to have an understanding of matrix multiplication, which has
long since vacated my brain I’m afraid.

Let’s move on to take a quick look at another filter, feGaussianBlur.

THE FEGAUSSIANBLUR FILTER

The feGaussianBlur filter allows you to add a blur to the video. It takes one attribute,
stdDeviation, which can contain either one or two numbers. If two numbers are
provided, the first one indicates the standard deviation along the X axis, and the
second number provides the standard deviation value along the Y axis. A single
number provides the same value for both the X and Y axes:

<filter id=”blur”>

<feGaussianBlur stdDeviation=”2” />

</filter>

This code applies a Gaussian blur with a standard deviation value of 2. The
result is shown in Figure 10.15.

FIGURE 10.14 A matrix is applied to the video that converts the

pixels to their black-and-white versions.

FIGURE 10.15 A Gaussian blur is applied to the video. The con-

trols would also be blurred, so you need to remove them and

create your own, as explained in Chapter 5.

NOTE: You can read more about the feColorMatrix filter at

www.w3.org/TR/SVG11/filters.html#feColorMatrixElement.

www.w3.org/TR/SVG11/filters.html#feColorMatrixElement

ptg6964689

WRAPPING UP 237

You can also merge filters and apply more than one to the same element, which,
of course, you are encouraged to experiment with. Again, bear in mind that only
Firefox allows these filters to be applied to the HTML5 video element, so they
should be treated as experimental while this remains so.

You can use HTML5 video within SVG content as well, for example, within an
external SVG file. But that’s strictly SVG content related, not HTML, so is considered
outside the scope of this book.

WRAPPING UP

You’ve now had a basic introduction to SVG. SVG has been around for a long time,
and fortunately people are beginning to wake up to the fact that it can be benefi-
cial to the quick loading of their websites, and of course, the smooth rendering
of simple graphics.

You learned how you can use SVG to interact with your HTML5 video as masks
or filters. You also need to remember that not all browsers fully support this inter-
action and therefore you should use SVG with caution.

In the next chapter, you’ll look at the future of HTML5 in relation to multime-
dia and what other functionality and APIs will possibly be available for use soon.

ptg6964689

11

FUTURE FEATURES

ptg6964689

239

Although this is the final chapter in the

book, it is by no means the final chapter

with regards to HTML5 and multimedia.

You’ve learned about many HTML5 audio and video features, but

other specifications are currently being developed that contain

some new related functionality that will be of great benefit once

they are finished and browser vendors begin to implement them.

This chapter briefly discusses some of these specifications and

their content. Although they are not strictly part of HTML5, they

do contain functionality that will enhance existing HTML5 fea-

tures. These features are JavaScript APIs that will enable you to

create and manipulate audio, interact with external devices, such

as webcams and microphones, and facilitate video conferenc-

ing. Although most of these features are not yet implemented in

browsers, it’s worthwhile learning about where they are headed.

ptg6964689

240 CHAPTER 11 FUTURE FEATURES

AUDIO APIs

As you’ve read through this book, you’ve probably been aware that more was said
about video than about audio. This section works toward restoring that balance
by exploring APIs that affect audio only (although the information also applies to
video, of course, because audio exists in most video!).

At the moment, two proposed JavaScript APIs are available that allow you to
read and write raw audio data. One is the Web Audio API, which was created by
Google and is currently under discussion by the W3C Audio Working Group. This
Working Group was created in March 2011, and its chartered mission is to:

“develop a client-side script API adding more advanced audio capabilities
than are currently offered by audio elements. The API will support the
features required by advanced interactive applications including the ability
to process and synthesize audio streams directly in script, and will extend
the HTML5 <audio> and <video> media elements.”

Mozilla has also created an audio API, which is simpler than the Web Audio
API and has shipped it with Firefox 4 and later (https://wiki.mozilla.org/Audio_
Data_API). Mozilla’s Audio Data API is an extension to the HTML5 Media API that
you read about in Chapter 5.

As you can probably guess, because these APIs have been created by different
browser vendors, the parts of their respective APIs that do currently work only do
so in their respective browsers. However, this isn’t as much of an issue right now,
because they are only proposed APIs, and nothing has been decided yet.

Let’s look at the Audio Data API by Mozilla first.

AUDIO DATA API

Mozilla’s Audio Data API provides an extension to programmatically access and/
or create raw audio data in HTML5 audio and video files.

READING AUDIO DATA

As audio is being played (either via an audio or video element) and decoded, sample
data is stored in a framebuffer. When this framebuffer has data available for use,
the MozAudioAvailable event is raised. The sample data contained within the
framebuffer is raw audio data, which may or may not have been played at the time
the MozAudioAvailable event is raised.

https://wiki.mozilla.org/Audio_Data_API
https://wiki.mozilla.org/Audio_Data_API

ptg6964689

AUDIO APIS 241

Recall the loadedmetadata event mentioned in Chapter 5, which is raised when
an audio or video element has useful metadata loaded. When waiting to read
audio data, you can use this event as well. Once it is raised, the Audio Data API
then has three new attributes that can be accessed that contain vital information
for raw audio data:

� mozChannels. Indicates the number of audio channels.

� mozSampleRate. Specifies the audio sample rate per second.

� mozFrameBufferLength. Indicates the default size of the framebuffer.

Let’s look at an example that displays the data provided by these three attributes.
You first define the audio element and a simple div to contain the audio information:

<audio id=”audio” controls>

<source src=”piano.ogg” type=”audio/ogg”>

</audio>

<div id=”info”></div>

When the audio data is loaded, you access the data using the API:

var audio = document.getElementById(“audio”);

var info = document.getElementById(“info”);

audio.addEventListener(“loadedmetadata”, getAudioData, false);

function getAudioData() {

var rate = audio.mozSampleRate;

var channels = audio.mozChannels;

var length = audio.mozFrameBufferLength;

info.innerHTML = “rate: “ + rate + “
channels: “ + channels
+ “</br>length: “ + length;

}

NOTE: A Vorbis/Ogg audio file is used in this example

because the Audio Data API works only in Firefox.

ptg6964689

242 CHAPTER 11 FUTURE FEATURES

In this code sample, handles to the audio and div element are obtained. When
the loadedmetadata event is raised, the data in the three attributes—mozSampleRate,
mozChannels, and mozFrameBufferLength—is read, and their data is displayed
onscreen in the div (Figure 11.1).

You can access the framebuffer data through the MozAudioAvailable event’s
frameBuffer attribute, which is an array of decoded audio sample data in float
number format.

Let’s extend the preceding example by adding another div for displaying the
framebuffer data and then defining a new function, getBufferData, that you attach
to the MozAudioAvailable event. The getBufferData function simply outputs the
first element of the databuffer array to the screen:

<audio id=”audio” controls>

<source src=”piano.ogg” type=”audio/ogg”>

</audio>

<div id=”info”></div>

<div id=”frameinfo”></div>

And the JavaScript code (only showing the new additions) looks like this:

var frameinfo = document.getElementById(“frameinfo”);

audio.addEventListener(“MozAudioAvailable”, getBufferData, false);

function getBufferData(event) {

frameinfo.innerHTML += “[“ + event.frameBuffer[0] + “]”;

}

FIGURE 11.1 The audio file’s

sample rate, channels, and

buffer length are displayed

onscreen in Firefox 6.

ptg6964689

AUDIO APIS 243

The data that is displayed onscreen is the float values of the audio data, as
shown in Figure 11.2.

This may not look very useful right now, but you can use this data to visualise
the audio as it’s playing in a waveform or fast Fourier transform.

You can also use the Audio Data API to write to an audio element.

WRITING AUDIO DATA

The Audio Data API provides three methods that allow you to create your own audio:

� mozSetup(channels,sampleRate). Sets up an audio element with a speci-
fied number of channels and sample rate.

� mozWriteAudio(buffer). Writes audio buffer data (an array) to an audio
element.

� mozCurrentSampleOffset(). Returns the current position of the current
audio stream.

You can call these methods on an audio element, which can be an existing
HTML element to which you have obtained a handle (as you did in the preceding
examples), or you can create one dynamically using the Audio() constructor.

The following example generates and plays a simple tone when the user clicks
a Play button:

<button onclick=”play()”>play</button>

FIGURE 11.2 The audio file’s

framebuffer data shown

onscreen as the audio is

being played.

NOTE: An example of an audio file’s data being displayed as

a waveform is on the www.html5multimedia.com website.

www.html5multimedia.com

ptg6964689

244 CHAPTER 11 FUTURE FEATURES

The play function is then declared as:

function play() {

var audioOut = new Audio();

audioOut.mozSetup(2, 44100);

var audioSamples = new Float32Array(88200);

for (var i=0; i<audioSamples.length; i++) {

 audioSamples[i] = Math.sin(i/60);

}

audioOut.mozWriteAudio(audioSamples);

}

This code example creates a new audio element and then sets it up to have two
audio channels at a sample rate of 44100. A float array is then defined with twice
the number of samples, and this array is then populated with simple sine-wave
data (the divisor of 60 was chosen at random).

When a user clicks the Play button, a single long tone is produced. There’s no
point in trying to show you this in an image, so you’ll have to either try the example
in Firefox or go to www.html5multimedia.com and listen to it!

Although very simple, this example shows you how you can generate audio
data with the API. You could also read in the data from one audio element, manipu-
late it (perhaps you might want to change the pitch or tone), and then write it out
to another audio element. This, and more, is all possible through this simple Audio
Data API.

Let’s now look at the more complex Web Audio API that’s currently under
consideration by the W3C.

NOTE: For additional resources and more in-depth

demonstrations of the Audio Data API, go to https://

wiki.mozilla.org/Audio_Data_API#Additional_Resources.

www.html5multimedia.com
https://wiki.mozilla.org/Audio_Data_API#Additional_Resources
https://wiki.mozilla.org/Audio_Data_API#Additional_Resources

ptg6964689

AUDIO APIS 245

WEB AUDIO API

The draft specification for the Web Audio API is rather large and complex, with a
whole range of different interfaces and methods defined to give you a tremendous
amount of control over your audio.

This section just gives you a brief introduction to the API, so you won’t read
about everything that the API has to offer. But you can read the specification at
https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html.

The goal of the Web Audio API is to support the following features:

� Processing of media sources from audio and video elements

� Modular routing for simple or complex effect architectures

� Audio stream synthesis and processing

� Spatialised audio for 3D games and immersive environments (e.g., distance
attenuation, sound cones, and Doppler shift)

� A convolution engine to support a wide range of linear sound playback
effects, such as cathedral, concert hall, cave, and amphitheatre

This list of features is not exhaustive; you can read about more supported fea-
tures in the specification. Don’t worry if some of the items in the list don’t mean
anything to you. They don’t mean much to me either because I’m not a sound
engineer and have never worked with complex audio. Others should be familiar
to you, and you can see how the ability to create different spatialised audio, for
example, would be beneficial for game development.

It’s quite difficult to test the API at the moment because the specification is so
new and still in development. Only WebKit browsers support small bits of it. For
this reason, this section does not contain any coding examples.

https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html

ptg6964689

246 CHAPTER 11 FUTURE FEATURES

ENABLING THE WEB AUDIO API IN CHROME

At the moment, only Chrome and special builds of Safari support bits of the Web Audio API. Should you

want to play around with the API, your best bet is to use the latest version of Chrome; however, the API

is turned off by default.

To enable the Web Audio API in Chrome, type about:flags in the address bar and navigate to that page.

Find the Web Audio listing and click the Enable link. Then scroll down to the bottom of the page and click

the Relaunch Now button.

Once Chrome has restarted, the Web Audio API will be enabled.

Similar to canvas, which you read about in Chapter 9, the Web Audio API con-
tains a context for manipulating any audio data. It is this context that needs to be
created to be able to use the API and is done via the AudioContext() constructor.

One of the main features of the API is the idea of modular routing, which allows
arbitrary connections between different AudioNode objects—the building blocks
of an AudioContext object. Each AudioNode can have inputs and/or outputs, which
could be a stream of generated audio data or an audio file. As mentioned ear-
lier, an AudioNode can connect to any other AudioNode, and you can call different
methods on the different nodes to process the data within them in different ways
through various interfaces. Through these interfaces, you can change the volumes
of AudioNodes, attach them to audio or video elements, apply filters to them, apply
linear affects to them, and/or spatialise them. In fact, processing is done through
AudioNodes and processing is done to AudioNodes.

There’s no denying that the Web Audio API will be a useful companion to the
HTML5 Media API. Hopefully, the discussions of the W3C Audio Working Group
will result in taking the best features of Mozilla’s Audio Data API and the Web
Audio API, and creating an even more powerful audio API. It’s probably the first
time that the word synergy comes to mind in the right context!

Let’s move from audio to video and look at how video conferencing and similar
functionality might be facilitated, beginning with the getUserMedia API.

ptg6964689

GETUSERMEDIA API 247

When the HTML5 specification first came out, a number of features were identified
as “post-HTML5,” meaning that they were additions that should be kept in mind
for the next generation of development.

One of these features was the ability to access external devices on a computer
or phone (tablets weren’t really in mainstream use at the time, although they’re
definitely relevant now!), such as a webcam or microphone. The initial idea put
forward was to have an HTML device element that could be used, probably with
the aid of an API, to access a device and allow for the taking of pictures and web
conferencing.

This all changed in March 2011 when the device element was eliminated, and
a new API was put forward—the getUserMedia API—to enable access to such
devices.

The getUserMedia API is still very much in development, so there’s actually
little to show at this time. Back in March 2011, Opera implemented a test of this
new API, but a special build of Opera Mobile for Android is required for the test
(http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview).

When a specific device—for example, a webcam—is required to carry out a
certain task, the user must be explicitly asked to allow the device to be accessed
(the browser will implement this and use something like a pop-up window with
yes/no buttons).

The API currently contains one method—getUserMedia—which accepts the
following parameters:

� options. A comma-separated list of space-separated string tokens, the
first token of which must be either:

– audio. The media needs to include audio data.

– video. The media needs to include video data; this token can be followed
by either “user” or “environment” to indicate the preferred cameras to
use. The specification is currently unclear as to what the difference
between the two cameras might be.

NOTE: You can view the current getUserMedia API at the WHATWG:

www.whatwg.org/specs/web-apps/current-work/multipage/video-conferencing

-and-peer-to-peer-communication.html#obtaining-local-multimedia-content.

GETUSERMEDIA API

www.whatwg.org/specs/web-apps/current-work/multipage/video-conferencing-and-peer-to-peer-communication.html#obtaining-local-multimedia-content
www.whatwg.org/specs/web-apps/current-work/multipage/video-conferencing-and-peer-to-peer-communication.html#obtaining-local-multimedia-content
http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview

ptg6964689

248 CHAPTER 11 FUTURE FEATURES

� successCallback. This parameter specifies the function that is to be called
with a parameter of type LocalMediaStream (you’ll read about this in the
section “Stream API” later in this chapter) if the user accepts the request
to start using the required device.

� errorCallback. This parameter is optional and indicates the function to
call when the user declines the request.

An example of getUserMedia being used to obtain access to a user’s microphone
might look like this:

navigator.getUserMedia(‘audio’, audioReceived);

function audioReceived(stream) {

// do stuff with the audio

}

The function audioReceived is set to be called on successCallback, which
occurs when access to the microphone has been granted.

And an example of requesting access to a user’s microphone and webcam for
video conferencing might look like this:

navigator.getUserMedia(‘audio, video user’, audioAndVideoReceived);

function audioAndVideoReceived(stream) {

// do stuff with the audio and video

}

In this case, the audioAndVideoReceived function has been set to be called
on successCallback.

Of course, these examples are based on the current recommendation, which
is still under development and is likely to change in the future. But they give you
an idea of how you might use the API. Such an API will be useful for implement-
ing not only video conferencing, but also audio and webcam recordings, and live
webcam streaming for use on the web.

Before you learn how to use the data from the local device, let’s take a quick
look at another proposed API, the PeerConnection API.

ptg6964689

PEERCONNECTION API 249

The PeerConnection API allows connections to be made between different peers
(e.g., web browsers), which in turn allow audio, video, and other data to be sent
between the connected peers. Any connection between peers requires a commu-
nication, or signaling, channel, that is used to send messages between the peers
and takes the form of XMLHttpRequest-based or WebSocket-based (you’ll read more
about WebSockets later in this chapter) communication.

A PeerConnection object is then created to which the addStream() method can
be called to add any required audio and/or video streams to the connection. The
addStream() method takes a parameter of type MediaStream, which represents a
stream of media data, such as audio and video content from a webcam, which could
be created as a result of a call to a getUserMedia() call of the getUserMedia API.

Again, the specification isn’t complete and has yet to be implemented, but you can
read about it at www.whatwg.org/specs/web-apps/current-work/multipage/video-
conferencing-and-peer-to-peer-communication.html#peer-to-peer-connections.

Now you have two potential methods of obtaining a MediaStream object
that contains audio and/or video data. But what can you actually do with these
MediaStream objects? This is where the proposed Stream API comes in.

PEERCONNECTION API

www.whatwg.org/specs/web-apps/current-work/multipage/video-conferencing-and-peer-to-peer-communication.html#peer-to-peer-connections
www.whatwg.org/specs/web-apps/current-work/multipage/video-conferencing-and-peer-to-peer-communication.html#peer-to-peer-connections

ptg6964689

250 CHAPTER 11 FUTURE FEATURES

The goal of the Stream API is to enable you to stream audio and/or video data
from a media source, be it a local device, such as a webcam or microphone, or a
streaming URL.

Once the media stream data has been obtained, theoretically it can be hooked
up to an HTML5 audio or video element and played to the user.

At this time, none of the current browsers support the Stream API, although
the Opera link mentioned earlier with the getUserMedia API makes use of a test
implementation of some of the API.

The building block of the Stream API is the MediaStream object, which you’ll
learn about next.

THE MEDIASTREAM OBJECT

Earlier, you were introduced to the LocalMediaStream and MediaStream objects. The
LocalMediaStream object is derived from the MediaStream object, which defines
a media stream. It can contain zero or more audio and video tracks, each of which
can contain multiple channels of data. Each of the individual tracks within the
object can be disabled. For example, if a user mutes video sound, the audio track
would be disabled. All the available tracks are enabled by default.

A MediaStream object has an input and an output. If a MediaStream object is
created as a result of a call to a getUserMedia() call of the getUserMedia API, the
input will be the local device, such as a webcam or a microphone. If the MediaStream
object is created as a result of a call to the PeerConnection API, the input will be
the data received from the remote peer.

NOTE: You can see the current Stream API specification at

www.whatwg.org/specs/web-apps/current-work/multipage/video

-conferencing-and-peer-to-peer-communication.html#stream-api.

STREAM API

www.whatwg.org/specs/web-apps/current-work/multipage/video-conferencing-and-peer-to-peer-communication.html#stream-api
www.whatwg.org/specs/web-apps/current-work/multipage/video-conferencing-and-peer-to-peer-communication.html#stream-api

ptg6964689

STREAM API 251

The MediaStream object also has a method called record(), which is used to
start the attached device recording. In addition, the LocalMediaStream object has
a stop() method, which stops the local device from streaming and/or recording.

The following example shows how the getUserMedia API and the Stream API
might be used together to stream a webcam directly to an HTML5 video element:

<video autoplay></video>

<script>

navigator.getUserMedia(‘video user’, webcamReceived);

function webcamReceived(webcamStream) {

 video.src = webcamStream;

 }

</script>

In the preceding code, the call to getUserMedia() returns a MediaStream object,
which has been assigned the (arbitrary) variable name webcamStream and is then
assigned to the video element’s src parameter. Of course, this shows you how a
simple example might work; there is currently no ability to test it on any of the
major browsers.

Once again, the Stream API looks very promising toward delivering easy-to-
build solutions for audio and webcam streaming, audio and video recording, and
video conferencing. So the Stream API can help you stream data from these devices,
but you first need to set up a connection, possibly using one of the APIs mentioned
in the previous section. And you’ll recall that WebSockets was mentioned earlier
as a possible connection method for the PeerConnection API. Therefore, you’ll
look at WebSockets next.

ptg6964689

252 CHAPTER 11 FUTURE FEATURES

WebSockets provide a method of setting up bidirectional communication between a
browser and a server, which is “always-open” and runs directly on TCP rather than
using HTTP. Previous HTTP methods used “long-polling,” where the browser would
constantly poll the server in an effort to ensure that the connection stays open.

Strictly speaking, the WebSocket API isn’t a “future feature.” You can actually
use WebSockets now, even though they have yet to be fully standardised. Browser
support varies: Safari has supported it since version 5, Chrome since version 10,
and Opera has partially supported it since version 11. Firefox has supported a
proprietary version since Firefox 4 (prefixed with “Moz”).

Note: WebSockets are not actually part of HTML5. They have their own W3C
specification at http://dev.w3.org/html5/websockets.

The connection between the browser and the server is kept open; therefore,
only the data that needs to be sent is actually sent, without any overheads. Compare
this to Ajax calls, which set up a new HTTP request and exchange with every piece
of data that needs to be sent.

THE WEBSOCKET INTERFACE

The WebSocket interface is really quite simple to use. A WebSocket constructor
(MozWebSocket in the case of Firefox) can accept two parameters: the url that
specifies the URL of the WebSocket server to connect to and an optional protocols
parameter, which is either a string or an array of strings that specifies the required
protocol.

TIP: WebSockets are disabled by default in Opera 11.50, but you

can enable them by typing about:config in the address bar and

searching for “WebSockets.”

NOTE: An overhead in this case is extra information in addition to the

actual data to be sent that HTTP needs to send and receive with each

request in order to communicate.

WEBSOCKET API

http://dev.w3.org/html5/websockets

ptg6964689

WEBSOCKET API 253

Once a connection has been made and a WebSocket object is returned, you can
use a number of methods and attributes. Tables 11.1 and 11.2 list these methods
and attributes.

TABLE 11.1 WebSocket Methods

METHOD DESCRIPTION

send(data) Sends the specified data across the open connection. The data can be

a string, an ArrayBuffer, or a Blob.

close() Closes the open connection.

TABLE 11.2 WebSocket Attributes

ATTRIBUTE DESCRIPTION

readyState Contains the current state of the WebSocket connection, which can

be one of the following (corresponding integer values are shown in

brackets):

CONNECTING (0). The connection has not yet been established.

OPEN (1). The connection is established and communication

across it is possible.

CLOSING (2). The connection is currently closing down.

CLOSED (3). The connection has been closed or could not be

opened.

bufferedAmount Contains the number of bytes that have been queued up using the

send() method but have not yet been sent across the connection.

This does not include any overheads used by the protocol.

extensions Contains the extensions selected by the server (if any).

protocols Contains the subprotocol that the server has selected for use (if any).

NOTE: The specification isn’t clear as to what string values

the WebSocket() protocols attribute can contain:

var con = new WebSocket(‘wss://echo.websocket.org’);

This code attempts to obtain a connection to the

wss://echo.websocket.org WebSocket server.

ptg6964689

254 CHAPTER 11 FUTURE FEATURES

When the WebSocket connection is open, you can use the send() method
to send any data across the connection to the WebSocket server. Of course, you
need to know when the WebSocket connection is open before you can do that. For
that, of course, you need to wait for events. Four such events are specified by the
specification, and they’re listed in Table 11.3.

TABLE 11.3 WebSocket Events

EVENT DESCRIPTION

onopen Raised when a WebSocket connection has been successfully made to

the server in question.

onmessage Raised when a message has been received over the open WebSocket

connection.

onclose Raised when the open WebSocket connection is closed.

onerror Raised when the open WebSocket connection reports an error.

And that’s it for the WebSocket interface. The next section will put some of
these methods, attributes, and events together using a simple example.

USING WEBSOCKETS

Using what you’ve just read about in the preceding section, let’s construct a simple
WebSocket example that opens a WebSocket connection and sends and receives
data from a WebSocket server.

NOTE: Setting up a WebSocket server is outside the scope

of this book, but you can set up your own using node.js.

Remy Sharp details an account of how you might do this at

http://remysharp.com/slicehost-nodejs-websockets.

http://remysharp.com/slicehost-nodejs-websockets

ptg6964689

WEBSOCKET API 255

For this example, you’ll use the wss://echo.websocket.org WebSocket server,
which is freely available and simply echoes back the data that you send to it.

You first need to set up some HTML that allows the connection to be opened
and closed, and data sent via some simple buttons. You also need an input field
to enter the message to send and then a simple div to display the data that was
sent and received:

<div>

Connection Status: Closed

</div>

<button id=”connect” onclick=”connect()”>connect</button>

<button id=”close” onclick=”closeConnection()”>close</button>

<div>

<label for=”msg”>Message</label>

<input id=”msg” type=”text” />

<button id=”send” onclick=”send()”>send</button>

</div>

<div id=”display”></div>

Let’s walk through the required JavaScript code.
You first need to define a variable to store the WebSocket connection:

var con;

Now let’s look at the connect() function:

function connect() {

con = new WebSocket(‘wss://echo.websocket.org’);

con.onopen = function () {

 setStatus(“Open”);

};

con.onmessage = function (e) {

displayMsg(“Server: “ + e.data);

 };

ptg6964689

256 CHAPTER 11 FUTURE FEATURES

con.onclose = function (e) {

 setStatus(“Closed”);

};

con.onerror = function (error) {

setStatus(“Error “ + error);

 };

}

You start by making a call to the WebSocket constructor to open the connection.
Then you assign different functions to each of the events mentioned in Table 11.3
to be called when that particular event is raised.

The setStatus() function simply changes the status message in the conStatus
span defined in the HTML:

function setStatus(status) {

document.getElementById(‘conStatus’).innerHTML = status;

}

Similarly, the displayMsg() function simply appends the string in question
to the display div:

function displayMsg(msg) {

document.getElementById(‘display’).innerHTML += msg + “
”;

}

The closeConnection() function checks to see if the connection is closed
(connection state 3), and if not, calls the close() method on the WebSocket object:

function closeConnection() {

if (con.readyState != 3) con.close();

}

ptg6964689

WEBSOCKET API 257

And last but by no means least, the send() function checks to see if the connec-
tion is actually open (connection state 1), reads the value entered in the msg input
field, displays the value onscreen, and then sends it across the open connection:

function send() {

if (con.readyState == 1) {

var msg = document.getElementById(“msg”).value;

displayMsg(“Client: “ + msg);

 con.send(msg);

}

}

The resulting code is not much to look at, but it neatly shows how easy it is
to use the WebSocket API for two-way communication with a WebSocket server.

Figure 11.3 shows how the preceding code might look in action.

FIGURE 11.3 After clicking the

Connect button and opening

the connection (left), a test

message is sent across the

open WebSocket and echoed

to the screen (right).

NOTE: The code for this example is avail-

able at www.html5multimedia.com.

www.html5multimedia.com

ptg6964689

258 CHAPTER 11 FUTURE FEATURES

So what do WebSockets have to do with HTML5 media? Well, that’s a good
question, because in any related application, the Stream API will be used in the
future to stream any audio and video data. But in an application that uses streaming
audio and video, it’s also quite possible that other data might need to be trans-
ferred. For example, as mentioned earlier, the PeerConnection API might utilise
WebSockets for communication between peers. In addition, imagine that you have
a video chat application that you also want to add text chat to (in case users want
to mute the sound).

At the moment, there are, of course, a number of applications available that
provide functionality such as video and audio chat, but they’re just that, applica-
tions. They need to be installed.

Similarly through the browser, you can also use Flash to provide the same
functionality, but again that requires something extra to be installed, in this case
a third-party plugin. And recall that the iPad, for example, doesn’t support Flash.

In the future, having all this capability built in to the browser means that as long
as the browser supports these APIs (which all major browsers should, eventually),
nothing more will be needed to deliver the required functionality. It will just work.
And that is indeed a step in the right direction.

ptg6964689

WRAPPING UP 259

The future features you’ve learned about in this chapter have given you an idea
of what you might need to be learning more about if you’re thinking about imple-
menting more than audio and video on your website.

The proposed Audio API, once it’s finished, will allow you to manipulate audio
before playing it to your users, for say, taking advantage of an advanced sound
setup. Game developers will also benefit from the extended API because it will
allow them to dynamically create and edit sound.

Creating simple video conferencing is a step closer to reality with the upcoming
getUserMedia, PeerConnection, and Stream APIs. These should work well together
to help you deliver a streaming video and audio solution to your users.

And finally, the WebSocket API allows you to enhance your websites and
applications that use the other APIs discussed in this chapter, allowing data to be
transferred efficiently across web connections.

This final chapter supports the fact that HTML5 multimedia is still undergoing
change and growing. And even though the specification is currently in “Last Call”
(for changes), other specifications that will help enhance HTML5 will continue
to grow from it.

Never stop learning, because you can never know enough or everything.

WRAPPING UP

ptg6964689

260 INDEX

NUMBERS
2D API, 199–200. See also canvas element

2D drawing context, using, 199

2D Transforms. See also transforms

matrix() function, 153

rotating videos, 150

scaling videos, 148–150

skewing videos, 151

support for, 148

translating videos, 151–153

X and Y equivalents, 153

3D Transforms. See also transforms

perspective property, 154, 156

rotating elements, 154, 156–157

using, 154–157

W3C definition, 154

3D video cover, 169–170

SYMBOLS
& (ampersand) character, including in video

cues, 183

< (left angle bracket), including in video
cues, 183

> (right angle bracket), including in video
cues, 183

A
AAC (Advanced Audio Coding) audio

format, 48

browser support for, 49

accessibility

audience for, 174

checkKey() function, 194

improving for custom controls, 192–194

progress bar, 194

SRT file format, 175

WebVTT (Web Video Text Tracks), 176

Adobe Flash media player, 25–26, 29

in Internet Explorer 8, 57–58

using embed element, 56

all media type, 76

ampersand (&) character, including in video
cues, 183

Android video support, 64–65, 80–81

animateMotion element, using with SVG
video masks, 231

animating SVG video masks, 228–229

animation-fill-mode property, using,
164–165

APIs. See also JavaScript API

Audio Data, 240–244

getUserMedia API, 247–248

PeerConnection, 249

Stream, 250–251

Web Audio, 245–246

WebSocket, 252–258

applet element, using with plugins, 28

application/ogg MIME type, 62

article element, 10, 13–16

aside element, 18

audio browser support, 49–51

audio codecs, defined, 46

audio controls, 34

Audio Data API

accessing data, 241

framebuffer data, 242–243

JavaScript code, 242

loadedmetadata event, 241

mozChannels attribute, 241

mozCurrentSampleOffset() method, 243

mozFrameBufferLength attribute, 241

mozSampleRate attribute, 241

mozSetup() method, 243

mozWriteAudio() method, 243

play function, 244

reading audio data, 240–243

writing audio data, 243

INDEX

ptg6964689

INDEX 261

audio declaration, 34

audio element

autoplay attribute, 33

controls attribute, 33, 52–53

crossorigin attribute, 33

loop attribute, 33

mediagroup attribute, 33

muted attribute, 33

muting files, 53

playing audio files, 52

preload attribute, 32, 53

src attribute, 32

using in native multimedia, 32–34

using transitions with, 143–144

audio files

encoding, 50

playing, 52–58

audio formats

AAC (Advanced Audio Coding), 48–49

browser support for, 49–51

MP3, 47, 49

MP4, 48–49

MPEG, 47

Ogg Vorbis, 46, 49

WAV (Waveform Audio File Format),
48–49

B
backwards compatibility, 5

Berners-Lee, Tim, 4

black and white filter, applying, 235–236

Blender Foundation, 162

blur, adding to video, 236

braille media type, 76

browser support

audio formats, 49–51

canvas element, 198

SVG (Scalable Vector Graphics), 217

video formats, 64–66, 114–115

browsers

compatibility, 20

encoding audio files, 50

legacy, 51

button CSS class name, 10

C
Camen, Kroc, 75

canvas element. See also 2D API

attributes, 198

browser support for, 198

clearing contents of, 203

defining, 198

drawing context, 199

fillRect() function, 199–201

getting handle to, 199

height attribute, 198

overriding default dimensions, 202

website, 212

width attribute, 198

X and Y axes, 198

Captionator JavaScript library, 188

captions, element for, 19

Cascading Style Sheets (CSS). See CSS
(Cascading Style Sheets)

character encoding, providing, 9

charset element, 9

Chrome

enabling Web Audio API in, Web
Audio API, 246

opacity consideration, 146

playbackRate attribute, 111

video support, 64

circle-animate-motion.svg file, 230

codec

defined, 62

including in type attribute, 70

colour saturation matrix filter, applying, 234

container, defined, 62

ptg6964689

262 INDEX

content CSS class name, 10

control attribute, using with video files, 67

controls. See also JavaScript API

accessibility of, 192–194

fast forward button, 110–111

Mute button, 104–107

Play/Pause button, 98–102

progress bar, 107–109

removing from videos, 100

rewind button, 110–111

seek bar, 112–113

Stop button, 98–102

Volume button, 104–107

copying playing video, 205–207

copyright CSS class name, 10

createElement() function, using, 208

crossorigin attribute, 36

CSS (Cascading Style Sheets), 118

interpreting, 9

quirks mode, 9

standards mode, 9

CSS class names

button, 10

content, 10

copyright, 10

footer, 10

header, 10

menu, 10

nav, 10

small, 10

text, 10

title, 10

CSS styling

div for video title, 119–120

title added to video, 119

video example, 118–121

CSS Transitions, styling with, 144–145. See
also transitions

CSS2 website, 75

CSS3. See also WebKit-specific CSS3 rules

gradient, 123–125

linear gradients, 125

object-fit property, 129–131

object-position property, 132–134

opacity property, 122

rounded corners, 126–127

shadow, 126–128

sizing content, 128–134

specification, 122

CSS3 Animations

3D video cover, 169–170

defining, 160

from property, 159

Keyframes function, 158–161

properties, 160

spin, 167–168

to property, 159

video cover, 161–166

W3C specification, 158

CSS3 Transitions specification, 147

currentTime setting, capturing, 108–109

custom controls. See also JavaScript API

accessibility of, 192–194

fast forward button, 110–111

Mute button, 104–107

Play/Pause button, 98–102

progress bar, 107–109

removing from videos, 100

rewind button, 110–111

seek bar, 112–113

Stop button, 98–102

Volume button, 104–107

D
DirectShow media player, 25

div element, 13

DOCTYPE element, 7–8

ptg6964689

INDEX 263

downloads. See websites

drawImage() function, using, screen
shot, 202

drop shadow, adding to video, 144–145, 155

DTD (Document Type Definition),
defined, 223

Durian Open Movie Project, 162

E
elements

applet, 28

article, 13–16

aside, 18

charset, 9

charset, 9

DOCTYPE, 8–9

embed, 28

figcaption, 19

figure, 19

footer, 11

h, 16

header, 11

hgroup, 12

naming, 10

nav, 17

object, 28

param, 30

for plugins, 28

range, 104

script, 20

section, 13–16

svg, 217–218

wmode, 30

Elephant’s Dream

cue subtitle, 180–181

Playr video player, 190

subtitle cue, 179

updating canvas element, 206

video-cue text, 182–183

ellipse mask

adding to video, 226–227

mask element, 227

use element, 227

embed element, using with plugins, 28

embossed media type, 76

encoders for audio

Media Converter, 50

Miro Video Converter, 50

English subtitles, specifying, 186

event listener, adding for keypress event, 194

events in JavaScript API

abort, 93

canplay, 93

canplaythrough, 94

durationchange, 94

emptied, 93

ended, 94

error, 93

keypress, 194

listening for, 102–104

loadeddata, 89, 93

loadedmetadata, 93, 202

loadstart, 93

onclick, 106, 110

pause, 94, 104

pause and play, 102–103

play, 94

playing, 94

progress, 93

ratechange, 94

seeked, 94

seeking, 94

stalled, 93

suspend, 93

timechange, 95

timeupdate, 94–95

volumechange, 94

waiting, 94

eXtensible Markup Language (XML), 4

ptg6964689

264 INDEX

F
fast forward button, adding, 110–111

feColorMatrix filter, 233

feGaussianBlur filter, applying, 236

figcaption element, 19

figure element, 19

fill attribute, setting to freeze, 231

fillRect() function, using with canvas,
199–202

filter element definition, 233–237

Firefox

audio support, 49

video support, 64

Flash fallback, using with video files, 73

Flash file playback, providing, 55

Flash Player, 25–26, 29

in Internet Explorer 8, 57–58

using embed element, 56

Flash Player 10.2

lack of support for, 27

vulnerability in, 27

footer element, 10–11

Fraunhofer patent, 47

functions in JavaScript API

addEventListener(), 102

addTextTrack(), 97

canPlayType(), 97

changePlaybackSpeed(), 110

changeVolume(), 105

clearInterval() function, 206

createElement(), 208

drawImage(), 201

fillRect(), 201–202

findPos(), 113

getImageData(), 209

load(), 97

Math.floor(), 105

pause(), 97, 101

play(), 96–97, 101

playVideo(), 96

putImageData(), 209

setInterval() function, 205

setPlayPosition(), 112–113

toggleMute(), 106

togglePlay(), 101, 103

using, 96

G
Gasston, Peter, 80

Gaussian blur, applying to video, 236

German subtitles, specifying, 186

getImageData() function, using, 209

getUserMedia API, 247–248

audio parameter, 247

errorCallback parameter, 248

microphone access, 248

options parameter, 247

successCallback parameter, 248

video parameter, 247

Google Chrome

enabling Web Audio API in, Web
Audio API, 246

opacity consideration, 146

playbackRate attribute, 111

video support, 64

gradients

using in CSS3, 123–125

using with video, 123–125

greyscale video, playing, 208–212

H
h element, using in header, 16

H.264 (MP4) video format, 63

Handbrake video encoder,
downloading, 66

ptg6964689

INDEX 265

handheld media type, 76

header element, 10–11

hgroup element, 12

Hickson, Ian, 6, 10

HTML (HyperText Markup Language), 4

HTML controls, specifying tab order of, 192

HTML5

availability of, 7

backwards compatibility, 5

versus HTML4.01, 4

progression of, 4–6

range element, 193

tabindex attribute, 192–193

video support, 65

W3C specification, 4–6

WHATWG specification, 4–6

HTML5 elements

applet, 28

article, 13–16

aside, 18

charset, 9

DOCTYPE, 7–8

embed, 28

figcaption, 19

figure, 19

footer, 11

h, 16

header, 11

hgroup, 12

naming, 10

nav, 17

object, 28

param, 30

for plugins, 28

range, 104

script, 20

section, 13–16

svg, 217–218

wmode, 30

html5shim script, downloading, 20

hue rotation filter, applying, 234

I
image links, using with video files, 72–75

ImageData object contents

data attribute, 209

height attribute, 209

width attribute, 209

innerHTML, setting, 20

innerShiv script, downloading, 20

Internet Explorer 9, native multimedia in, 42

Internet Explorer (IE), 5

browser compatibility, 20

video support, 64

iOS video support, 64

J
JavaScript API. See also APIs; custom

controls

audio attributes, 87–91

audioTracks attribute, 90

autoplay attribute, 87

buffered attribute, 89

checking video looping, 92

controller attribute, 90

controls attribute, 88

crossOrigin attribute, 88

currentSrc attribute, 88

currentTime attribute, 90, 92, 95, 101

defaultMuted attribute, 90

defaultPlaybackRate attribute, 90

duration attribute, 87

ended attribute, 87

getElementsByTagName() function, 92

grabbing handle to video object, 92

height video attribute, 91

initialTime attribute, 90

ptg6964689

266 INDEX

JavaScript API (continued)

loop attribute, 88

mediaGroup attribute, 90

muted attribute, 88

networkState attribute, 88

paused attribute, 87

playbackRate attribute, 87

played attribute, 90

poster video attribute, 91

preload attribute, 89

readyState attribute, 89

seekable attribute, 90

seeking attribute, 89

src attribute, 88

startOffsetTime attribute, 90

startTime attribute, 88

textTracks attribute, 90

TimeRange object, 91

title attribute, 101

tutorial, 86

video attributes, 87–90

videoHeight video attribute, 91

videoTracks attribute, 90

videoWidth video attribute, 91

volume attribute, 87

Web Audio, 240

width video attribute, 91

JavaScript API events

abort, 93

canplay, 93

canplaythrough, 94

durationchange, 94

emptied, 93

ended, 94

error, 93

keypress, 194

listening for, 102–104

loadeddata, 89, 93

loadedmetadata, 93, 202

loadstart, 93

onclick, 106, 110

pause, 94, 104

pause and play, 102–103

play, 94

playing, 94

progress, 93

ratechange, 94

seeked, 94

seeking, 94

stalled, 93

suspend, 93

timechange, 95

timeupdate, 94–95

volumechange, 94

waiting, 94

JavaScript API methods

addEventListener(), 102

addTextTrack(), 97

canPlayType(), 97

changePlaybackSpeed(), 110

changeVolume(), 105

clearInterval() function, 206

createElement(), 208

drawImage(), 201

fillRect(), 201–202

findPos(), 113

getImageData(), 209

load(), 97

Math.floor(), 105

pause(), 97, 101

play(), 96–97, 101

playVideo(), 96

putImageData(), 209

setInterval() function, 205

setPlayPosition(), 112–113

toggleMute(), 106

togglePlay(), 101, 103

using, 96

ptg6964689

INDEX 267

JavaScript libraries

Captionator, 188

LeanBack Player, 188

MediaElementJS, 188

Playr, 188

jQuery, using, 20

js_videosub, downloading, 188

jscaptions, downloading, 188

JW Player, downloading, 55

K
Kaltura, downloading, 188

Keyframes function

removecover, 165, 169

using, 158–161

using with video cover, 164

keypress event, adding event listener for, 194

L
“Last Call” stage, 6

LeanBack Player JavaScript library, 188

left angle bracket (<), including in video
cues, 183

lineto command, using with SVG video
masks, 231

“Links and Anchors,” 5

loadedmetadata event, using, 202

luminance to alpha filter, applying, 235

M
Macromedia media players, 25

makeItGrey() function

calling, 212

defining, 210

masks. See also SVG video masks

adding over video, 136–137

applying to video element, 222–223

defining in SVG, 221

Media Converter, downloading, 50, 66

media players. See also plugins

Adobe Flash, 25–26

Adobe Flash media player, 29

DirectShow, 25

plugins, 27

QuickTime, 26

RealAudio, 24

security issues, 27

Shockwave, 25

Windows Media Player, 25–26

media queries

aspect-ratio device feature, 77

color device feature, 77

color-index device feature, 77

combining with media types, 77

device features, 77

device-aspect-ratio feature, 77

device-height feature, 77

device-width feature, 77

grid device feature, 77

height device feature, 77

monochrome device feature, 77

orientation device feature, 77

resolution device feature, 77

scan device feature, 77

specification, 76

testing with, 79

using, 75–78, 80

width device feature, 77

media types

all, 76

braille, 76

combining with media queries, 77

embossed, 76

handheld, 76

print, 76

projection, 76

screen, 76

ptg6964689

268 INDEX

media types (continued)

speech, 76

testing with, 79

tty, 76

tv, 76

using, 75–78, 80

MediaElementJS JavaScript library, 188

mediagroup attribute, 36

MediaStream objects

input and output, 250

LocalMediaStream object, 251

obtaining, 249

record() method, 251

using, 250–251

menu CSS class name, 10

methods in JavaScript API

addEventListener(), 102

addTextTrack(), 97

canPlayType(), 97

changePlaybackSpeed(), 110

changeVolume(), 105

clearInterval() function, 206

createElement(), 208

drawImage(), 201

fillRect(), 201–202

findPos(), 113

getImageData(), 209

load(), 97

Math.floor(), 105

pause(), 97, 101

play(), 96–97, 101

playVideo(), 96

putImageData(), 209

setInterval() function, 205

setPlayPosition(), 112–113

toggleMute(), 106

togglePlay(), 101, 103

using, 96

Microsoft plugins, 26

MIDI (Musical Instrument Digital Interface)
format, 24

MIME (Multipurpose Internet Mail
Extension), 29, 47

application/ogg type, 62

video/mpeg type, 63

video/webm type, 63

Miro Video Converter, downloading, 50, 66

Modernizr detection library,
downloading, 115

Mozilla Firefox

audio support, 49

video support, 64

Mozilla’s Audio Data API

accessing data, 241

framebuffer data, 242–243

JavaScript code, 242

loadedmetadata event, 241

mozChannels attribute, 241

mozCurrentSampleOffset() method, 243

mozFrameBufferLength attribute, 241

mozSampleRate attribute, 241

mozSetup() method, 243

mozWriteAudio() method, 243

play function, 244

reading audio data, 240–243

writing audio data, 243

MP3 audio format, 47, 49

MP4 (H.264), 48

browser support, 49, 64–65

encoding delayed playback, 66

video format, 63

MPEG (Moving Picture Experts Group), 47, 63

multimedia. See media players; native
multimedia

Mute button, adding, 104–107

muted attribute, setting, 67

muting files, 53

ptg6964689

INDEX 269

N
native multimedia

audio element, 32, 52

benefits, 31

in Internet Explorer 9, 42

in Safari, 42

source element, 38–39

track element, 40–41

video element, 35–37

nav element, 10, 17

node.js website, 254

O
object element, using with plugins, 28–29

Ogg Vorbis audio format, 46, 49

browser support for, 49

using, 52

opacity value

fading, 146–147

using in CSS3, 122

Opera video support, 64, 133

Outlining Algorithm, 16

P
param element, using with plugins, 30

path element, using with SVG video
masks, 231

PeerConnection API, 249

perspective property, using with 3D
Transforms, 154

Pfeiffer, Silvia, 184

pixelData object, manipulating data in,
210–211

pixels, setting transparency for, 235

playing video, copying, 205–207. See also
video copy

Play/Pause button, adding, 98–102

Playr JavaScript library, 188–191

plugins. See also media players

applet element, 28

embed element, 28

object element, 28

param element, 30

using with media players, 27

wmode element, 30

print media type, 76

progress bar

adding, 107–109

adding for accessibility, 194

updateProgress() function, 108–109

using range element as, 193

projection media type, 76

ProtoFluid application, downloading, 79

putImageData() function, using, 209

Q
QuickTime multimedia player, 26

quirks mode, 9

R
range element, using as progress bar, 193

rastar graphics, 216

RealAudio player, 24

reflection, specifying on HTML elements,
135–136

rewind button, adding, 110–111

RGB channels, converting, 235

right angle bracket (>), including in video
cues, 183

rotate transform, using, 150, 164

rotate3d() transform, using, 167–168

rounded corners, using in CSS3, 126–127

ptg6964689

270 INDEX

S
Safari

audio support, 49

native multimedia in, 42

playbackRate attribute, 111

video support, 64

Scalable Vector Graphics (SVG)

advantages, 216–217, 222

browser support, 217

circle element, 219

ellipse element, 220

fill attribute for text colour, 218

text element, 218

scale transform, using, 148–150

screen media type, 76

screen shot

drawImage() function, 202–203

fillRect() function, 201–202

loadedmetadata API event, 202

ratio variable, 202

snap() function, 203

taking of HTML5 video, 201–204

script element, 20

section element, 13–16

seek bar, adding, 112–113

shadows, using in CSS3, 126–128

Sharp, Remy, 20, 254

Shockwave, 25

Sintel video cover animation, 162

sites

2D API, 199

2D Transforms, 153

3D Transforms, 154, 157

Android video support, 80

animate element, 229

animateMotion element, 231

animation-play-state property, 160

Audio Data API, 244

sites (continued)

Blender Foundation, 162

Camen Design, 75

canvas basics, 200, 212

Captionator JavaScript library, 188

CSS2, 75

CSS3 linear gradients, 125

CSS3 specification, 122

CSS3 Transitions specification, 147

drawImage() function, 202

Durian Open Movie Project, 162

getUserMedia API, 247

Handbrake, 66

HTML5 Document Outlines, 16

html5shim script, 20

innerShiv script, 20

JavaScript tutorial, 86

js_videosub, 188

jscaptions, 188

JW Player, 55

Kaltura, 188

LeanBack Player JavaScript library, 188

“Links and Anchors,” 5

mask property, 137

Media Converter, 50, 66

media queries, 76

MediaElementJS JavaScript library, 188

Miro Video Converter, 50, 66

Modernizr detection library, 115

MPEG (Moving Picture Experts Group), 63

node.js, 254

object-fit property, 134

object-position property, 134

PeerConnection API, 249

Playr JavaScript library, 188

ProtoFluid application, 79

reflect property, 137

Sintel video cover animation, 162

Stream API, 250

ptg6964689

INDEX 271

SubRip program, 175

SVG filters, 233

SVG text element attributes, 218

Theora Ogg, 62

transforms, 157

transition properties, 142

WebSocket API, 252

WebSocket servers, 254

WebVTT Working Group Charter, 176

Working Group Charter, 184

Xiph.Org Foundation, 62

skew transform, using, 151

small CSS class name, 10

snap() function

using with screen shot, 203

using with video copy, 205–206

source element

media attribute, 39

src attribute, 39

type attribute, 39

speech media type, 76

spin Keyframes function, defining, 167–168

SRT file format, 175, 188

standards mode, 9

Stop button, adding, 98–102

Stream API, 252

goal of, 250

MediaStream object, 250–251

SubRip program, downloading, 175

subtitles

adding to videos, 189–191

English, 186

German, 186

using, 175

SVG (Scalable Vector Graphics)

advantages, 216–217, 222

browser support, 217

circle element, 219

ellipse element, 220

fill attribute for text colour, 218

text element, 218

SVG and HTML5 video, 220. See also videos

adding ellipse masks, 226–227

adding text masks, 221–225

svg element, 217–218, 224

SVG filters

applying to HTML5 video, 233–237

black and white, 235–236

colour saturation matrix, 234

feColorMatrix, 233

feGaussianBlur, 236

hue rotation, 234

luminance to alpha, 235

merging, 237

SVG text element attributes, fill attribute
for text colour, 218

SVG video masks. See also masks

animate element, 229

animateMotion element, 231

animating, 228–229

attributeName attribute, 229

circle element, 231

circle-animate-motion.svg file, 230

defs element, 224

doctype declaration, 224

ellipse element, 228

fill attribute, 231

lineto command, 231

moving, 230–233

mpath element, 232

path element, 231

text.svg file, 224

xlink document definition, 224

SWF file format, 25

ptg6964689

272 INDEX

T
tab order, specifying for controls, 192–193

text CSS class name, 10

text mask, adding to video, 221–225

Theora Ogg video compression format, 62,
64–65, 69

title CSS class name, 10

track element

attributes, 185

chapter listings, 187

default attribute, 41, 185–186

English subtitles, 186

[hh:]mm:ss.msmsms attribute, 185

kind attribute, 41, 185

label attribute, 41, 185

purpose, 185

ruby attribute, 185

src attribute, 41, 185

srclang attribute, 41, 185

using with WebVTT, 188–191

video subtitles example, 186

transforms. See also 2D Transforms; 3D
Transforms

defined, 148

rotate, 164

rotate3d(), 167–168

translate, 164

transitions. See also CSS Transitions

creating, 141–143

fading, 146–147

properties, 141

using with audio, 143–144

using with video, 143–144

W3C definition, 140

translate transform, using, 151–153, 164

transparency, setting for pixels, 235

tty media type, 76

tv media type, 76

U
UTF-8 character encoding, 9

V
vector graphics, 216

version, determining, 7–8

video browser support, 64–66, 114–115

video controls, 37

video copy. See also playing video

clearInterval() function, 206

getImageData() function, 209

makeItGrey() function, 210, 212

pixelData object, 210–211

playing in greyscale, 208–212

setInterval() function, 205, 212

setting background canvas, 208

setting red, green, and blue values, 211

snap() function, 205–206

video cover

animating, 161–166

divs, 162–163

extending to 3D, 169–170

Keyframes function, 164

video cues, special characters in, 183

video element

adding controls attribute to, 99

autoplay attribute, 35

controls attribute, 35

crossorigin attribute, 36

height attribute, 36

loop attribute, 35

mediagroup attribute, 36

muted attribute, 35

poster attribute, 35

preload attribute, 35

src attribute, 35

using source element in, 70

ptg6964689

INDEX 273

using transitions with, 143–144

width attribute, 36

video files

applying masks to, 136–137

autoplay attribute, 67, 70

changing images, 71

control attribute, 67–68

embed element, 73–74

encoding, 65–66

Flash fallback, 73

height attribute, 67

image download link, 74–75

image links, 72–73

legacy fallback, 72–75

loop attribute, 67, 70

making available, 75

object element, 73–74

object-fit property, 129–131

object-position property, 132–134

playback from varying sources, 69–75

playing, 67–68

poster attribute, 71

preload attribute, 68

removing controls, 68

removing default controls from, 100

restoring default controls, 68

type attribute, 70

using drop shadow with, 144–145

using gradients with, 123–125

width attribute, 67

video formats

MP4 (H.264), 63

Theora Ogg, 62

WebM, 63

video/mpeg MIME type, 63

videos. See also SVG and HTML5 video

adding blur to, 236

adding drop shadows to, 155

adding subtitles to, 189–191

fading, 146–147

rotating with 2D Transforms, 150

scaling with 2D Transforms, 148–150

skewing with 2D Transforms, 151

taking screen shots of, 201–204

translating with 2D Transforms, 151–153

video/webm MIME type, 63

Volume button, adding, 104–107

.vtt extension, using with WebVTT, 177

W
W3C (World Wide Web Consortium), 4

WAV (Waveform Audio File Format), 48–49

Web Audio API, 240

AudioContext() constructor, 246

AudioNode objects, 246

enabling in Chrome, 246

goal of, 245

modular routing, 246

Web Forms 2.0, 5

Web Hypertext Application Technology
Group (WHATWG), 5–6

WebKit-specific CSS3 rules. See also CSS3

mask-box-image property, 136–137

reflect property, 135–136

WebM files, playing, 67

WebM video format, 63–65

websites

2D API, 199

2D Transforms, 153

3D Transforms, 154, 157

Android video support, 80

animate element, 229

animateMotion element, 231

animation-play-state property, 160

Audio Data API, 244

Blender Foundation, 162

Camen Design, 75

ptg6964689

274 INDEX

websites (continued)

canvas basics, 200, 212

Captionator JavaScript library, 188

CSS2, 75

CSS3 linear gradients, 125

CSS3 specification, 122

CSS3 Transitions specification, 147

drawImage() function, 202

Durian Open Movie Project, 162

getUserMedia API, 247

Handbrake, 66

HTML5 Document Outlines, 16

html5shim script, 20

innerShiv script, 20

JavaScript tutorial, 86

js_videosub, 188

jscaptions, 188

JW Player, 55

Kaltura, 188

LeanBack Player JavaScript library, 188

“Links and Anchors,” 5

mask property, 137

Media Converter, 50, 66

media queries, 76

MediaElementJS JavaScript library, 188

Miro Video Converter, 50, 66

Modernizr detection library, 115

MPEG (Moving Picture Experts Group), 63

node.js, 254

object-fit property, 134

object-position property, 134

PeerConnection API, 249

Playr JavaScript library, 188

ProtoFluid application, 79

reflect property, 137

Sintel video cover animation, 162

Stream API, 250

SubRip program, 175

SVG filters, 233

SVG text element attributes, 218

Theora Ogg, 62

transforms, 157

transition properties, 142

WebSocket API, 252

WebSocket servers, 254

WebVTT Working Group Charter, 176

Working Group Charter, 184

Xiph.Org Foundation, 62

WebSocket API, 252–258

bufferedAmount attribute, 253

close() method, 253

enabling WebSockets, 252

error event, 254

extensions attribute, 253

onclose event, 254

onmessage event, 254

onopen event, 254

overhead, 252

protocols attribute, 253

readyState attribute, 253

send() method, 253–254

WebSocket connection, storing, 255

WebSocket constructor

protocols parameter, 252

url parameter, 252

WebSocket server

setting up, 254

using, 255

WebSockets

close() method, 256

closeConnection() function, 256

connect() function, 255–256

displayMsg() function, 256

div for data display, 255

HTML for connection, 255

input field, 255

JavaScript code, 255–256

send() function, 257

ptg6964689

INDEX 275

setStatus() function, 256

using, 254–258

WebVTT (Web Video Text Tracks), features
of, 176–177

WebVTT file format

A:value cue setting, 179

b text tag, 181

bold tag, 181

c text tag, 181

class text, 181

CSS class names, 182

cue settings, 178

cue settings, 179–180

D:value cue setting, 179

future developments, 184

[hh:]mm:ss.msmsms text tag, 181

i text tag, 181

idstring, 177

italics tag, 181

line position cue setting, 179

L:value cue setting, 179

ruby text tag, 181

special characters, 183

subtitle cue, 179

S:value cue setting, 179

text cue settings, 179

text tags, 181

TextLineN, 178

timestamp ranges, 178–179

timestamp tag, 181

T:value cue setting, 179

u text tag, 181

underline tag, 181

using with track element, 188–191

v text tag, 181

voice content tag, 181

.vtt extension, 177

WHATWG (Web Hypertext Application
Technology Group), 5–6

Windows Media Player, 25–26

wmode element, using with plugins, 30

Working Group Charter website, 184

World Wide Web Consortium (W3C), 4

X
XHTML

Strict, 4–5

Transitional, 4–5

Xiph.Org Foundation website, 62

XML (eXtensible Markup Language), 4

ptg6964689

Unlimited online access to all Peachpit,
Adobe Press, Apple Training and New
Riders videos and books, as well as content
from other leading publishers including:
O’Reilly Media, Focal Press, Sams, Que,
Total Training, John Wiley & Sons, Course
Technology PTR, Class on Demand, VTC
and more.

No time commitment or contract
required! Sign up for one month or
a year. All for $19.99 a month

SIGN UP TODAY
peachpit.com/creativeedge

ptg6964689

You love our books and you
love to share them with your colleagues and
friends...why not earn some $$ doing it!

If you have a website, blog or even a Facebook page,
you can start earning money by putting a Peachpit
link on your page.

If a visitor clicks on that link and purchases something
on peachpit.com, you earn commissions* on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post an ad and
we’ll take care of the rest.

ApplY And get stArted!
It’s quick and easy to apply.
To learn more go to:
http://www.peachpit.com/affiliates/
*Valid for all books, eBooks and video sales at www.Peachpit.com

Join the
PeachPit
AffiliAte teAm!

	Contents
	Introduction
	CHAPTER 1 AN INTRODUCTION TO HTML5
	What Is HTML5?
	The Progression of HTML5
	When Can You Use HTML5?

	Main HTML5 Structural Elements
	DOCTYPE and Charset
	<header> and <footer>
	<hgroup>
	<article> and <section>
	<nav>
	<aside>
	<figure> and <figcaption>
	<script>

	Wrapping Up

	CHAPTER 2 HTML5 MULTIMEDIA ELEMENTS
	History of Web Multimedia
	Media Players
	HTML Elements

	Welcome, Native Multimedia!
	The Audio Element
	The Video Element
	The Source Element
	The Track Element

	Wrapping Up

	CHAPTER 3 USING AUDIO
	Audio Codecs and File Formats
	Ogg Vorbis
	MP3
	WAV
	AAC
	MP4

	Browser Support for Audio Formats
	Encoding Your Audio File
	Legacy Browser Fallback

	Examples of Using the Audio Element
	Playing an Audio File
	Playing an Audio File with Different Sources
	Playing an Audio File with Different Sources and Legacy Fallback

	Wrapping Up

	CHAPTER 4 USING VIDEO
	Video Codecs and File Formats
	Theora Ogg
	MP4 (H.264)
	WebM

	Browser Support for Video Formats
	Encoding Your Video Files

	Using the Video Elements
	Playing a Video File
	Playing a Video File with Different Sources
	Playing a Video File with Different Sources and Legacy Fallback
	Targeting Devices with Different Video Files Using Media Types and Queries
	Android and Video

	Wrapping Up

	CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS
	What Is JavaScript?
	Exploring the API Attributes
	Harnessing the API Events
	Using the API Methods
	Creating a Simple Video Player with Custom Controls
	Adding Play/Pause and Stop Buttons
	Adding Volume and Mute Buttons
	Adding a Progress Bar
	Adding Fast-Forward and Rewind Buttons
	Adding a Seek Bar
	Non-HTML5 Browsers

	Wrapping Up

	CHAPTER 6 STYLING MEDIA ELEMENTS WITH CSS
	Simple CSS Styling
	Advanced Whizzyness with CSS3
	Opacity
	Gradient
	Rounded Corners
	Shadow
	Sizing Your Content

	WebKit-specific CSS3 Rules
	Reflect
	Mask

	Wrapping Up

	CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION
	Using Transitions
	Using Transitions with Audio and Video
	Styling with CSS Transitions
	Fading Transitions

	Exploring 2D Transforms
	Scaling a Video
	Rotating a Video
	Skewing a Video
	Translating a Video

	Playing with 3D Transforms
	Working with Animations
	@keyframes
	Animated Video Cover
	Animated Spin
	Extending the Animated Video Cover to 3D

	Wrapping Up

	CHAPTER 8 MULTIMEDIA AND ACCESSIBILITY
	Media and Potential Accessibility Issues
	A Brief Look at SRT
	Introducing WebVTT
	What Can WebVTT Do?
	WebVTT File Format

	The Track Element
	Using WebVTT and the Track Element Now
	Playr Example

	Media Controls and Accessibility
	Wrapping Up

	CHAPTER 9 USING VIDEO WITH CANVAS
	The Canvas Element
	The 2D API
	Taking a Screen Shot of an HTML5 Video
	Making a Copy of a Playing Video
	Playing the Video Copy in Greyscale
	Wrapping Up

	CHAPTER 10 USING VIDEO WITH SVG
	A Brief Introduction to SVG
	Browser Support
	The svg Element
	SVG Text
	SVG Circle
	SVG Ellipse

	Using SVG with HTML5 Video
	Adding a Text Mask to a Video
	Adding an Ellipse Mask to a Video
	Animating an SVG Video Mask
	Moving an SVG Video Mask
	Applying SVG Filters to HTML5 Video

	Wrapping Up

	CHAPTER 11 FUTURE FEATURES
	Audio APIs
	Audio Data API
	Web Audio API

	GetUserMedia API
	PeerConnection API
	Stream API
	The MediaStream Object

	WebSocket API
	The WebSocket Interface
	Using WebSockets

	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

